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Genetic mapping and evolutionary analysis of
human-expanded cognitive networks
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Danielle Posthuma2,11 & Martijn P. van den Heuvel 1,11*

Cognitive brain networks such as the default-mode network (DMN), frontoparietal network,

and salience network, are key functional networks of the human brain. Here we show that the

rapid evolutionary cortical expansion of cognitive networks in the human brain, and most

pronounced the DMN, runs parallel with high expression of human-accelerated genes (HAR

genes). Using comparative transcriptomics analysis, we present that HAR genes are differ-

entially more expressed in higher-order cognitive networks in humans compared to chim-

panzees and macaques and that genes with high expression in the DMN are involved in

synapse and dendrite formation. Moreover, HAR and DMN genes show significant asso-

ciations with individual variations in DMN functional activity, intelligence, sociability, and

mental conditions such as schizophrenia and autism. Our results suggest that the expansion

of higher-order functional networks subserving increasing cognitive properties has been an

important locus of genetic changes in recent human brain evolution.
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The human brain is capable of supporting a wide range of
complex cognitive abilities, more so than other highly
developed and intelligent great apes, such as the chim-

panzee, one of our closest living evolutionary relatives with which
we share the majority of our genetic material1. This distinction in
cognitive abilities is commonly believed to be associated with the
rapid expansion of multimodal association areas and their
structural and functional connections in the human brain2–4,
with cognitive functional networks, such as the frontoparietal
network, salience network, and default-mode network (DMN),
playing an essential role in higher-order brain functions5–7. These
cognitive functional networks are highly heritable8,9 and relate to
genetic effects associated with neuron growth and metabolism10.
Uncovering the evolutionary genetic underpinnings of cognitive
functional networks, and in particular, to what extent cognitive
functional networks have developed in recent human evolution, is
crucial for our understanding of the high cognitive complexity of
human brain function.

The DMN in particular has been identified as a central network
in human cognition, consisting of densely connected areas such
as the posterior cingulate, precuneus, inferior parietal, middle
temporal, and medial prefrontal cortices5,6. Comparative neu-
roimaging studies have shown default-mode activity in chim-
panzees11 and macaques12, but with potential subtle differences
in both the spatial and topological layout of this central
network13–changes that may relate to enhancement of cognitive
functions in humans compared to other primate species. The
DMN is central to social cognition, including aspects of mental
self-projection14, mental rehearsal of future actions15, and
understanding of another person’s mental perspective. These
advanced social abilities are likely to have been highly adaptive
during recent human evolution16, potentially enabling humans to
make more complex social inferences14.

Here, we studied the expansion and evolutionary genetics of
higher-order cognitive networks in recent human brain evolution,
with a particular focus on the evolutionarily genetic drive of the
DMN. Recent genome-wide studies comparing the human gen-
ome with that of the chimpanzee have identified a unique set of
loci that displayed accelerated divergence in the human
lineage17,18. Genes associated with these so-called human accel-
erated regions (HAR) have been linked to neuron development,
but also the development of brain disorders such as autism
spectrum disorder (ASD)19. We integrate genetic data with
comparative neuroimaging and present that regions of higher-
order cognitive networks are highly expanded in recent human
brain evolution. We show that HAR genes likely have played a
crucial role in this, being highly expressed in expanded cognitive
networks (and in particular the DMN) and being differentially
expressed in the human brain compared to chimpanzees and
macaques. We provide further evidence of HAR and DMN genes
to be important in human cognitive functioning, social behavior,
and mental disorders, such as autism and schizophrenia.

Results
Human cortical expansion. We started by mapping the expan-
sion of the human cortex (Homo sapiens) compared to the cortex
of the chimpanzee (Pan troglodytes), one of our closest living
evolutionary relatives along with the bonobo (Pan paniscus).
Cortical morphometry of the chimpanzee and human cortex was
assessed using a surface-to-surface mapping of 3D reconstruc-
tions of the cortical mantle across both species, based on in vivo
T1-weighted MRI (29 chimpanzees, 30 humans; Fig. 1a). The
largest expansion of the human cortex was found in areas of
bilateral orbital inferior frontal gyrus (×4.0 expansion), rostral
middle frontal lobe (×3.8 expansion), inferior/middle temporal

lobe (×3.0/2.9 expansion), lingual gyrus (×2.9 expansion), right
inferior parietal lobe (×3.7 expansion), and left precuneus (×2.7
expansion; two-sample t-test on the normalized expansion, q <
0.001, false discovery rate [FDR] corrected; Cohens’d > 0.989;
Fig. 2a). The lowest expansion was found in primary areas,
including bilateral precentral gyrus (×1.3 expansion), postcentral
gyrus (×1.4 expansion), and paracentral lobe (×1.2 expansion; q <
0.001, FDR corrected; Cohens’d <−1.047; Fig. 2a and Supple-
mentary Data 1).

We next grouped cortical areas into the visual (VN),
somatomotor (SMN), dorsal-attention (DAN), limbic (LN),
ventral-attention (VAN, also commonly referred to as the
salience network), frontoparietal (FPN), and default-mode
network (DMN) (Fig. 2b and Supplementary Methods)20.
Higher-order cognitive networks (i.e., DMN, FPN, VAN)
displayed particularly high levels of cortical expansion as
compared to the SMN/VN (×1.2 larger expansion in regions of
higher-order cognitive networks combined compared to the
regions of the SMN/VN combined, two-sample t-test, t(86)=
3.257, p= 0.002; Fig. 2d). FPN showed the largest expansion
(mean: × 2.9 expansion), with the DMN in second place (mean:
×2.4 expansion), showing both significantly higher expansion
when comparing each of them with the rest of the brain (FPN:
t(108)= 3.360, p= 0.001; DMN: t(108)= 2.621, p= 0.010; FDR
corrected; Supplementary Table 1). In contrast, separately
examining the other five networks did not show significant
increases in the expansion of these networks compared to the
rest of the cortex.

HAR gene expression. We then examined this distinct pattern of
human cortical expansion across the seven resting-state func-
tional networks in relation to cortical gene expression patterns
relevant to human evolution. Microarray data on gene expression
across cortical regions were obtained from the Allen Human
Brain Atlas (AHBA) (http://human.brain-map.org/), containing
transcriptional profiles of 20,734 genes across 57 areas of the left
cortical mantle (Fig. 1c). Genes relevant to human evolution were
taken as the list of 2143 genes associated with HAR as presented
previously by Doan and colleagues19, selected based on positional
mapping. Alternative selection and allocation of HAR-associated
genes are possible (e.g., using chromatin interactions) and we
examined such alternatives to validate our results (Supplementary
Note 1).

Transcription data of 1711 HAR-associated genes were present
in AHBA (referred to as HAR genes; Supplementary Data 2), and
we further examined their cortical gene expression levels in
comparison to the cortical expansion. The expression profile of
HAR genes was positively correlated to the pattern of human
cortical expansion (Pearson’s r(53)= 0.360, p= 0.007; Supple-
mentary Fig. 1a), indicating the highest HAR gene expression in
highly expanded areas of the human cortex. This association
significantly exceeded the null condition of correlations between
cortical expansion and expression of random gene sets (i.e., 1711
random genes) selected from a pool of 8686 genes related to
general evolutionarily conserved genetic elements (ECE genes;21

p < 0.001, permutation test, 10,000 permutations; Supplementary
Fig. 1a). Cortical regions of cognitive networks also showed
significantly higher expression of HAR genes compared to regions
of the SMN/VN (t(44)= 2.742, p= 0.009; FDR corrected;
Supplementary Fig. 1b), with regions of the DMN showing the
highest HAR gene expression (t(55)= 2.274, p= 0.027, uncor-
rected, comparing the DMN to all other networks combined;
Supplementary Fig. 1c). These effects again significantly exceeded
the null conditions of effects of random ECE genes (all p < 0.001,
10,000 permutations). Furthermore, examining the other six
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functional networks separately did not show a significant
enhancement of HAR gene expression (Supplementary Table 2).

HAR-BRAIN gene expression. With the set of HAR genes
describing genes involved in all sorts of functions across the entire
human body (and thus not specific to ‘brain’), we continued by
examining whether HAR genes related to brain processes may
have played a specific role in the large cortical expansion of
cognitive functional networks in human evolution. We identified
genes commonly expressed in brain areas using the GTEx data-
base (https://www.gtexportal.org/), selecting 2979 genes sig-
nificantly more expressed in brain tissues compared to other
available body sites (q < 0.05, FDR corrected; one-sided two-
sample t-test; referred to as BRAIN genes); 415 genes (24.3%) out
of the full set of 1711 HAR genes were observed to be significantly
more expressed in brain tissues, a set from now on referred to as

HAR-BRAIN genes (in contrast to HAR-nonBRAIN genes;
Supplementary Data 2).

We then aimed to examine (1) whether HAR-BRAIN genes
were more expressed particularly in regions of higher-order
cognitive networks compared to the total set of HAR genes, and
(2) to what extent HAR-BRAIN genes were more expressed in
regions of higher-order cognitive networks, more than an average
set of genes related to general brain processes (i.e., BRAIN genes).
First, the cortical expression pattern of HAR-BRAIN genes was
significantly correlated with the pattern of human cortical
expansion (r(53)= 0.488, p < 0.001; Fig. 3c). Furthermore,
HAR-BRAIN genes showed significantly higher expression in
regions of cognitive networks as compared to the SMN/VN
(t(44)= 5.136, p < 0.001, FDR corrected; Fig. 3e), with the highest
expression levels again observed in the DMN (t(55)= 3.267, p=
0.002, FDR corrected, DMN versus the rest of the cortex; Fig. 3f).
These effects were, respectively, ×3.2 and ×2.7 larger than the

Human
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Fig. 1 Methods overview. a The human and chimpanzee cortex were constructed using MRI data, with chimpanzee-to-human cortical expansion computed
based on the reconstructed cortical maps. b Genes associated with human accelerated regions (HAR), which represent genomic loci with accelerated
divergence in humans, were examined. c Cortical gene expression of HAR genes and HAR-BRAIN genes were examined using human transcription data
from the Allen Human Brain Atlas (AHBA) and comparative transcription data of the human, chimpanzee, and macaque from the PsychENCODE database
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provided as Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12764-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4839 | https://doi.org/10.1038/s41467-019-12764-8 | www.nature.com/naturecommunications 3

https://www.gtexportal.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


effect obtained by HAR-nonBRAIN genes (t(55)= 1.028, p=
0.309 and t(55)= 1.212, p= 0.232, separately, Supplementary
Fig. 2). Notably, examining the other six functional networks
separately did not show any significant elevations of HAR-BRAIN
gene expression (Supplementary Table 3), suggesting the highest
expression level in the DMN.

Second, we compared HAR-BRAIN gene expression with two
types of null-distributions of expression differences generated by
randomly selecting the same number of genes (i.e., 415) from the
pool of 2979 BRAIN genes (referred to as NULL1) and 8686 ECE

genes (referred to as NULL2). The elevated expression of HAR-
BRAIN genes in regions of higher-order cognitive networks was
significantly larger than both null distributions (p= 0.006 and
p < 0.001 for NULL1 and NULL2, respectively; 10,000 permuta-
tions; Fig. 3e). The same result was observed when examining
DMN regions specifically (p < 0.001 for both NULL1 and NULL2;
10,000 permutations; Fig. 3f), suggesting a specific role of HAR-
BRAIN genes in differentiating DMN regions from the rest of the
brain. Permutation testing based on randomly shuffling cortical
areas showed similar results (Supplementary Fig. 3). An
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Fig. 3 HAR-BRAIN gene expression. a Cortical gene expression of HAR-BRAIN genes. b Cortical maps of the significance level obtained by permutation
tests, comparing expressions of HAR-BRAIN genes to equally sized random gene-sets taken from BRAIN (NULL1) and ECE genes (NULL2). c Association
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of the seven functional networks ranked in descending order of the mean expression. Asterisks (*) indicates significantly upregulated regions as in panel
b. e HAR-BRAIN gene expression in cognitive networks (DMN, FPN, and VAN) versus the SMN and VN (left), with permutation results demonstrated in
the right panel (two-sided p= 0.003 and p < 0.001 for NULL1 and NULL2, respectively). f HAR-BRAIN gene expression in the DMN versus the rest of the
cortex (left), with permutation results demonstrated in the right panel (two-sided p < 0.001 for both NULL1 and NULL2). g Species-homologous brain areas
as presented in the PsychENCODE dataset for the human (left), chimpanzee (upper right), and macaque (lower right). h Normalized expression levels of
HAR-BRAIN genes in regions of higher-order networks compared to areas of the SMN/VN in humans (p < 0.001, two-sample t test). Largest differences in
gene expression are found in humans, with chimpanzees in second place, followed by macaques (p= 0.002, Jonckheere-Terpstra test). Asterisks (*)
indicates two-sided p < 0.05, FDR corrected. Central marks denote the mean gene expression. Boxplot center, median; box= 1st−3rd quartiles (Q); lower
whisker, Q1–1.5 × interquartile range (IQR); upper whisker, Q3+ 1.5 × IQR. Colors indicate the assignment of functional networks, as in Fig. 2b. M1C
primary motor cortex, S1C primary sensory cortex, IPC inferior parietal cortex, STC superior temporal cortex, ITC inferior temporal cortex, A1C primary
auditory cortex, OFC orbital frontal cortex, VFC ventral frontal cortex, DFC dorsal frontal cortex, V1C primary visual cortex, MFC medial frontal cortex.
Source data provided as Source Data file
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exploratory examination on gene expression in each individual
further demonstrated that the differentiation of HAR-BRAIN
gene expression between the DMN and the rest of the cortex
significantly correlated with the ratio of brain volume of the
DMN regions (r(4)= 0.839, p= 0.037; Supplementary Fig. 4).

We then examined HAR-BRAIN expression for each of the
cortical regions of the 7 functional networks separately; 10
cortical areas showed significantly high expression of HAR-
BRAIN genes compared to a random selection of genes out of
both BRAIN (NULL1) and ECE genes (NULL2) (FDR corrected,
q < 0.05; 10,000 permutations; Fig. 3b). Importantly, 7 out of
these 10 regions described regions of the higher cognitive
networks and 6 out of these 7 regions described DMN regions
(p= 0.034 and 0.008, respectively; hypergeometric test). These
findings together suggest a specific role of HAR-BRAIN genes in
the architecture of cognitive functional brain networks, beyond
effects of general evolutionary conserved genes and general
BRAIN genes.

Chimpanzee-human comparative gene expression. Our analyses
so far suggested that HAR-BRAIN genes were more expressed in
highly expanded regions of higher-order cognitive networks, but
did not yet provide direct information on whether HAR-BRAIN
gene expression is upregulated in the human brain compared to
that of other primate species. To examine this, we used gene
expression data from the PsychENCODE database (http://
evolution.psychencode.org/)22, which describes gene expression
of 11 comparable cortical regions across the human, chimpanzee,
and macaque. Due to the lower spatial sampling of cortical
regions (data of 3 DMN regions available, Fig. 3g), we limited our
examination to a comparison between cognitive networks and
the SMN/VN. First, we replicated the observation of high
expression of HAR-BRAIN genes in regions of higher-order
cognitive networks compared to regions of the SMN/VN in
humans (t(8)= 7.135, p < 0.001; Fig. 3h), with this effect sig-
nificantly exceeding both NULL1 and NULL2 (both p < 0.001,
10,000 permutations). This confirmed our AHBA-based findings
of high HAR-BRAIN gene expression in cognitive networks in
the human brain. Second, the differentiating level of HAR-
BRAIN gene expression between cognitive and primary areas
observed in humans (Cohen’s d= 4.605) was found to be ×2.7
larger than the effects found in chimpanzees (Cohen’s d= 1.695)
and ×2.8 larger compared to macaques (Cohen’s d= 1.616).
Chimpanzees and macaques showed only marginally higher
HAR-BRAIN gene expression in regions of higher-order cogni-
tive networks as compared to the SMN/VN (chimpanzees: t(8)=
2.626, p= 0.030; macaques: t(8)= 2.504, p= 0.037). Further-
more, the difference in effect size between humans and chim-
panzees was larger than expected based on NULL1 and NULL2
(both p < 0.001; human-macaque: NULL1, p= 0.026 and NULL
2, p= 0.090, only trend-level, not significant [n.s.]; 10,000 per-
mutations; Supplementary Fig. 5).

Further evaluation of this cross-species effect showed a
significantly decreasing step-wise relationship of differences in
HAR-BRAIN gene expression between regions of higher-order
networks and the SMN/VN from humans (highest) to chimpan-
zees and macaques (lowest differentiating expression,
Jonckheere–Terpstra test, p= 0.002). To reduce the influence of
a relatively large variance of expression levels within chimpanzees
and macaques (Fig. 3h), we performed a leave-one-out analysis
(iteratively leaving out one region at a time) and confirmed a
larger mean gene expression difference between cognitive
network regions and primary regions in humans in comparison
to chimpanzees and macaques (Supplementary Fig. 6). These
findings thus suggest that humans display upregulated expression

of HAR-BRAIN genes in brain areas involved in cognitive brain
function as compared to other primates.

Top strongest differentiating DMN genes. We continued by
investigating the biological properties of genes showing the
highest levels of expression in DMN regions out of all genes. For
each gene in AHBA, we computed the upregulated level of gene
expression in regions of the DMN by calculating the t-score for
expressions of the selected gene in regions of the DMN against
the rest of the brain. The top 200 highly expressed genes (i.e.,
genes showing the highest positive t-scores, referred to as DMN
genes; all p < 0.004) were taken as the DMN’s most differentiating
genes (Supplementary Data 3). Out of the top 200 DMN genes,
we identified 37 to be HAR genes, particularly including 18 HAR-
BRAIN genes, which greatly exceeded the chance level of ran-
domly selecting 37 or 18 out of 20,734 genes (both p < 0.001,
hypergeometric test). We also examined the top 53 genes with
p < 0.0014 (partial Bonferroni corrected, see Supplementary
Methods) and top 469 genes with p < 0.01 (uncorrected), which
revealed comparable findings (Supplementary Note 2).

To investigate whether the observed effect was restricted to the
DMN, an additional permutation analysis was performed by
shuffling region labels and re-computing the top genes for each of
these random network assignments. We found the ratio of HAR
genes in the set of top DMN genes to be significantly higher than
the null condition (p < 0.001, 10,000 permutations), which
confirmed a dominant role of HAR genes in DMN organization.
To further examine potential DMN specificity, we also selected
the top 200 genes showing the largest differentiating gene
expression in each of the other functional networks compared
to the SMN/VN. In contrast to the DMN (revealing 18
overlapping genes with the set of HAR-BRAIN genes), the top
200 gene sets identified by the VAN, DAN, FPN, and LN,
comprised, respectively, only 12,8,7 and 7 HAR-BRAIN genes.

Gene-set enrichment analysis on the set of DMN genes using
hypergeometric testing in the web-based platform FUMA23

showed significant over-representation of DMN genes in Gene
Ontology (GO) terms related to cellular components of dendrite
(p= 2.60 × 10–5), somatodendritic compartment (p= 4.49 ×
10–5), synapse (p= 2.15 × 10–4), perikaryon (p= 7.45 × 10–5)
and neuron projection terminus (p= 2.26 × 10–4), as well as
molecular functions of neuropeptide hormone activity and
calcium activated potassium/cation channel activity (p= 1.66 ×
10–5 and 1.32 × 10–4; FDR corrected; Supplementary Table 4).

GWAS on DMN functional activity. We then wanted to
examine whether HAR/HAR-BRAIN genes played a role in
inter-subject variation in default-mode functional activity in
today’s human population. We performed a GWAS on 6,899
participants from the UK Biobank24 (see Supplementary Meth-
ods) with the amplitude of fMRI time series of the independent
component analysis (ICA)-based resting-state networks (“NET-
MAT amplitudes 25”25 as described in https://www.fmrib.ox.ac.
uk/ukbiobank/) as the phenotypes of interest. Particularly, we
focused on the amplitude of the ICA component #1 that
resembles the DMN (referred to as DMN amplitude, Fig. 4a).
GWAS results for all single-nucleotide polymorphisms (SNP)
with minor allele frequency (MAF) > 0.005 were assessed
(Fig. 4b). The quantile-quantile plot showed a linkage dis-
equilibrium score regression [LDSC] intercept of 0.999 (standard
error [s.e.]= 0.006), with an inflation level of λGC= 1.005 and
mean χ2 statistic= 1.012. LDSC-based SNP heritability [h2SNP]
was 0.09 [s.e.= 0.06]. We observed 3 independent (r2 < 0.1)
genome-wide significant SNPs (p < 5 × 10−8; using linear
regression model; Fig. 4b) across 2 genomic loci (Fig. 4c).
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Furthermore, we annotated 19 significant SNPs (p < 5 × 10−8)
with high LD (r2 ≥ 0.6) to the 3 independent SNPs using gene-
mapping functions in FUMA23 (see Methods section), which
resulted in a set of 12 genes (Supplementary Table 5; three genes
[PLCE1, NOC3L, and SLC35G1] annotated using brain-related
eQTL and Hi-C mappings). Hypergeometric testing23 showed
significant enrichment of the 12 genes in the GWAS catalog26

reported gene-set “plasma clozapine-norclozapine ratio in
treatment-resistant schizophrenia” (p= 1.26 × 10–12; Supple-
mentary Table 6). None of the genes overlapped with HAR-
BRAIN genes or the top 200 DMN. One gene (INPP5A) denoted
as a HAR gene.

We further investigated the potential association of HAR/
HAR-BRAIN genes with variations in DMN amplitude using
MAGMA linear-regression-based gene-set analysis27. We found
HAR-BRAIN genes to be significantly associated with the
phenotypic variation in DMN amplitude (β= 0.015, p= 0.016,

FDR corrected). No significant effect was found for the set of
HAR genes (β= 0.011, p= 0.051; Supplementary Table 7) or
DMN genes (β= 0.005, p= 0.219). An additional conditional
gene-set analysis28 including the set of BRAIN genes as a
covariate, further showed a significant association of HAR-
BRAIN genes with variations in DMN amplitude (β= 0.014, p=
0.022; HAR genes: β= 0.011, p= 0.055; Fig. 4e). Furthermore, no
significant effect was observed when we examined the association
between HAR-BRAIN genes and amplitude of other ICA
components resembling the rest of the functional networks (p >
0.09; Fig. 4f and Supplementary Table 8), implicating a specific
role of HAR-BRAIN genes in genetic variations of DMN
functional activity. Using the normalized DMN amplitude
(corrected for the mean amplitude across all networks) as the
phenotype of interest showed similar results (HAR genes: β=
0.018, p= 0.003; HAR-BRAIN genes: β= 0.020, p= 0.002;
Supplementary Fig. 7).
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Stratified LDSC analysis29 did not result in findings of
significant enrichment of genetic variance of DMN functional
activity explained by SNPs overlapping with HAR regions. This is
likely related to HARs occupying relatively small regions in the
whole genome with a mean length of only 256 base pairs
(Supplementary Fig. 8), which limits statistical power to perform
such post-hoc analyses. The relatively large s.e. of the SNP
heritability might be related to the limited sample size.

HAR genes, cognitive abilities, and psychiatric disorders. We
then examined the potential role of HAR/HAR-BRAIN and
DMN genes in human cognition by cross-referencing these genes
with a recent GWAS meta-analysis on intelligence (h2SNP= 0.184
[s.e.= 0.008]) performed on 269,867 individuals30. Gene-set
analysis27 revealed both sets of HAR and HAR-BRAIN genes to
be significantly associated with individual variations in intelli-
gence (HAR: β= 0.058, p= 5.43 × 10–10; HAR-BRAIN: β=
0.075, p= 1.22 × 10–15; Supplementary Table 7). Conditional
gene-set analysis28 including BRAIN genes as a covariate further
confirmed a significant association of both HAR and HAR-
BRAIN genes with intelligence (HAR: β= 0.056, p= 1.60 × 10–9;
HAR-BRAIN: β= 0.060, p= 6.34 × 10–10). Intelligence was not
found to be specifically associated with the total set of DMN
genes (β= 0.012, p= 0.061), but a significant effect was observed
for the subset of 37 intersected HAR-DMN genes (β= 0.022, p=
0.009, FDR corrected).

We next linked HAR/HAR-BRAIN and DMN genes to genetic
effects on social behavior, which is thought to be more advanced
in humans than in other primate species16. Summary statistics of
the trait “Frequency of friend/family visits” (h2SNP= 0.035 [s.e.=
0.002]) based on a GWAS analysis on 383,941 individuals in the
UK Biobank were obtained from the GWAS ATLAS web tool31

(http://atlas.ctglab.nl, ID 3216). HAR/HAR-BRAIN genes were
found to be significantly associated with this trait (HAR: β=
0.037, p= 1.24 × 10–7; HAR-BRAIN: β= 0.039, p= 1.01 × 10–7;
Supplementary Table 7), with effects unrelated to the set of
BRAIN genes (HAR: β= 0.037, p= 1.73 × 10–7; HAR-BRAIN:
β= 0.036, p= 2.63 × 10–6). Furthermore, DMN genes were also
significantly associated with individual variation in sociability
(β= 0.012, p= 0.024; HAR-DMN genes: β= 0.014, p= 0.022,
FDR corrected).

We also examined the potential association of HAR/HAR-
BRAIN and DMN genes with schizophrenia, a disorder hypothe-
sized to relate to human brain evolution32,33. We used the summary
statistics of a GWAS in 33,426 schizophrenia patients and 54,065
healthy controls (h2SNP= 0.187 [0.008])34 provided by the
Psychiatric Genomics Consortium (http://www.med.unc.edu/pgc/).

We observed HAR/HAR-BRAIN genes to be significantly asso-
ciated with genetic variants in schizophrenia (HAR: β= 0.019, p=
0.013; HAR-BRAIN: β= 0.043, p= 5.06 × 10–7; Supplementary
Table 7). These results remained significant in the conditional
gene-set analysis with BRAIN genes taken as a covariate (HAR: β=
0.017, p= 0.023; HAR-BRAIN: β= 0.028, p= 0.001). DMN genes
were not found to be significantly associated with schizophrenia
(β= 0.011, p= 0.067; HAR-DMN genes: β= 0.005, p= 0.261). In
addition to common variations indicated by GWAS, we further
examined the enrichment of HAR/HAR-BRAIN and DMN genes
in rare variants of brain disorders using the NPdenovo database
(http://www.wzgenomics.cn/NPdenovo/)35. Hypergeometric testing
showed HAR and HAR-BRAIN genes to be significantly enriched
in risk genes of ASD (p < 0.001 and p= 0.005, separately) and
schizophrenia (p < 0.001 and p= 0.008, separately; FDR corrected).
DMN genes also showed significant enrichment in risk genes of
ASD (p= 0.004), but not schizophrenia (p= 0.264; Supplementary
Fig. 9).

We also examined a potential association of HAR-BRAIN
genes with brain changes related to psychiatric disorders. We
used data from voxel-based morphometry (VBM) studies in five
psychiatric brain disorders (schizophrenia, bipolar disorder, ASD,
major depressive disorder [MDD] and obsessive-compulsive
disorder [OCD]) and created a cortical map describing the
distribution of cortical volume changes of these five psychiatric
disorders (including in total of 260 VBM studies). The spatial
pattern of disorder involvement across the cortex was signifi-
cantly associated with the gene expression pattern of HAR-
BRAIN genes (r(55)= 0.437, p < 0.001, with the cortical volume
controlled; Fig. 5; r(55)= 0.221, p= 0.098 for HAR genes), an
effect significantly exceeding the effect obtained by BRAIN genes
(p= 0.022) and ECE genes (p < 0.001, 10,000 permutations). For
an out-group analysis, the cortical pattern of HAR-BRAIN gene
expression did not correlate to the disease map of five alternative,
non-psychiatric disorders (amyotrophic lateral sclerosis, stroke,
alcoholism, insomnia, fibromyalgia; r= 0.141, p= 0.302).

Discussion
Our combined comparative neuroimaging and genetic findings
provide evidence of evolutionary changes in the human genome
to have played a central function in the expansion and cortical
organization of cognitive functional networks in the human
brain, potentially in service of specialization of higher-order
cognitive function in human evolution.

Our results show high levels of cortical expansion in regions of
both the FPN and DMN in humans. This is compatible with prior
observations of cortical expansion between macaque and
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human36, showing large expansion of associative prefrontal,
temporal, and parietal areas in the human brain36,37. This evo-
lutionary expansion pattern has been suggested to overlap with
the pattern of cortical variation in today’s human population38,
suggesting larger brains to display relatively larger multi-modal
associative areas, variation further linked to inter-subject varia-
tion in cognitive abilities38. Our observations of high expression
of HAR genes in these brain areas now suggest that genes linked
to hominization may have had a special role in the process of
cortical development of these multimodal association areas.

Our comparative analyses further show that genes associated
with human brain evolution (HAR-BRAIN genes) are not equally
expressed in all cortical areas but rather are more expressed in
areas related to higher-order cognitive processing. HAR genes,
representing conserved loci with elevated divergence in
humans17,19, have been argued to function as important neuronal
enhancers39 and to be key players in biological processes of
nervous system development and neurogenesis, amongst others
(Supplementary Table 9). HAR genes are enriched in human-
evolved elements that converge on specific cell types and laminae
involved in brain development and cerebral cortical expansion in
the primate lineage40 and are suggested to be particularly
expressed in supragranular cortical layers important for forming
cortico-cortical connectivity40. Our findings of high expression of
HAR genes in central cognitive networks, and most pronounced
in the DMN, may thus reflect enhanced complexity of cognitive
cortical areas and circuits in human brain evolution41,42.

Our results corroborate previous observations of a strong link
between aspects of cellular and macroscale connectivity43,44.
Association areas show transcriptional profiles enriched for genes
specific to the organization of supragranular layers45, with the
spatial layout of functional networks captured by coupled tran-
scription profiles of genes enriched in supragranular layers46 and
genes related to ion channel activity and synaptic function47.
These observations are further in line with the notion of genes
related to the resting-state brain activity of the DMN to display
greater expression in neurons10. Moreover, our observation of
upregulated HAR-BRAIN gene expression in cognitive networks
in humans implicates an evolutionarily enhanced complexity of
neuronal connectivity in cognitive networks. This might be
potentially further related to humans having a longer period of
neuronal progenitor expansion compared with chimpanzees and
macaques contributing to a differentiated neuronal number and
cortical size48.

Some of the genes found at the intersection of HAR, BRAIN,
and DMN genes directly relate to the development of the human
central nervous system. For example, CDH8, CDH9, and CDH10
are involved in synaptic adhesion, axon outgrowth, and gui-
dance49, and play a role in ASD49. CBLN1 is important for
synapse integrity and synaptic plasticity together with NRXN1
and GRID250. CA10 is believed to be central in the development
of the central neural system by coordinating neurexins, which are
presynaptic cell-adhesion molecules that bind to diverse post-
synaptic ligands and who are linked to several neuropsychiatric
disorders51. KCNB2 is known to be essential in regulating neu-
rotransmitter release and neuronal excitability52.

Our findings show that genes highly expressed in the DMN
contain genetic variants related to human intellectual ability and
sociability. This is compatible with twin studies showing a genetic
correlation between IQ and gray matter morphology of DMN
regions like the medial frontal cortex and parahippocampal
gyrus53. The DMN has been argued to be important for human
self-projection abilities that include planning the future54, theory
of mind, and navigation14, of which humans show a higher
complexity compared to chimpanzees55. This central cognitive
system comprises highly connected network hubs like the

precuneus and inferior parietal lobule56, regions involved in
multimodal information integration57, a key aspect of higher-
order cognitive brain function. The observation of an association
between the spatial pattern of HAR expression and cortical
expansion on the one hand, and a significant involvement of
HAR genes in genetic variation related to intelligence and social
behavior on the other, suggests that the expansion of highly
connected hub areas in support of higher-order brain function
has been an important driving factor of human brain evolution.

Evolutionary pressure on cognitive networks subserving
higher-order brain functions may have been accompanied by an
increased risk of brain dysfunction32,33. Our comparative findings
provide evidence for this hypothesis, with genes important for
human brain evolution found to play a role in the development of
psychiatric disorders. The pattern of cortical expression of HAR-
BRAIN genes shows significant overlap with the pattern of cor-
tical involvement across mental disorders, with particular invol-
vement of lateral and medial prefrontal cortices. These are key
‘brain hubs’ and components of higher-order networks identified
to be generally implicated in the anatomy of a wide range of brain
disorders58. Our findings further suggest HAR and DMN genes to
significantly relate to the genetic architecture for schizophrenia
and autism, disorders that are often reported to involve disturbed
DMN functional connectivity59,60. These findings are consistent
with reported genetic associations between the DMN and psy-
chiatric disorders61 and support the notion of genes related to
evolutionary adaptations and brain development to potentially
contribute to default-mode network involvement in brain
disorders61.

Several methodological points have to be discussed. We used
predefined functional networks to link data from distinct mod-
alities. Network divisions may overlook functional heterogeneity
across cortical regions and participation of brain regions in
multiple networks, and several other spatial variations of net-
works are equally viable62 (see Supplementary Note 5 for alter-
native definitions of networks, Supplementary Fig. 10–11).
Second, the set of HAR genes as used in this study was selected
‘as-is’ from the study of Doan et al.19. HAR-associated genes were
labeled as those where HARs are within the introns, within or
near (less than 1 kb) 5′ and 3′ UTRs, or are the closest flanking
gene that was less than 2.1 mb away (with 70% being less than
500 kb away)19. Other mapping approaches can be used to
identify and further specify HAR gene sets linked to specific
functions. We examined alternative sets of 196 genes mapped
from HAR using brain-related Hi-C and eQTL datasets from the
PsychENCODE Consortium63, and a set of 396 genes related to
ASD-linked HAR mutations identified using massively parallel
reporter assays19. These alternative selections and allocations of
HAR genes revealed highly consistent findings (data presented in
detail in Supplementary Note 1).

Our comparative study shows that recent changes in our
genome have played a central role in the expansion and function
of higher-order cognitive networks in the human brain. Our
findings suggest that expansion of higher-order functional net-
works and their cognitive properties have potentially been an
important locus of change in recent human brain evolution.

Methods
Cortical expansion. In vivo MRI data from 29 adult chimpanzees and 50 adult
human subjects were analyzed (see Supplementary Methods for details). Data of
chimpanzees were acquired under protocols approved by the YNPRC and the
Emory University Institutional Animal Care and Use Committee (IACUC,
approval #: YER2001206) (see also Ethics statement). MRI data of humans were
obtained from the Human Connectome Project (https://www.humanconnectome.
org). T1-weighted scans of chimpanzees and humans were processed using Free-
Surfer (v5.3.0; https://surfer.nmr.mgh.harvard.edu/) for tissue classification, cor-
tical ribbon reconstruction, and brain parcellation. Pial surface reconstructions
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were used for vertex-to-vertex mapping across chimpanzee and humans and
subsequent computation of vertex-wise and region-wise expansion (114-region
subdivision of the Desikan-Killiany atlas [DK-114]64,65, 57 per hemisphere;
see Supplementary Methods and Supplementary Figs. 12–13). Vertex-wise and
region-wise expansion maps are available at https://www.connectomelab.nl/
downloads. Validation analysis was performed using the chimpanzee-human BB38
atlas that describes homologous cortical regions between two species33 (Supple-
mentary Fig. 14).

Gene expression. AHBA. Cortical gene expression patterns were taken from the
transcriptomic data of the Allen Human Brain Atlas (AHBA, http://human.brain-
map.org/static/download), including a detailed dataset of microarray gene
expression data from brain samples of six human donors (all without a history of
neuropsychiatric or neuropathological disorders, demographics tabulated in Sup-
plementary Table 10). Data included expression levels of 20,734 genes represented
by 58,692 probes for each cortical region of the left hemisphere4,66. Tissue samples
were spatially mapped to each of the cortical regions of the FreeSurfer DK-114
atlas64,65, based on their distance to the nearest voxel within the cortical ribbon of
MNI 152 template (and BB38 atlas for validation, see Supplementary Note 4).
Samples were normalized to Z scores and averaged across regions (see Supple-
mentary Methods), resulting in a subject × region × gene (6 × 57 × 20,734) data
matrix. Normalized gene expression data was averaged across individual datasets to
obtain a group level gene expression matrix of the size of 57 × 20,734.

PsychENCODE. Comparative cortical transcription data were obtained from the
PsychENCODE database (http://evolution.psychencode.org/)22, describing batch-
corrected, normalized expression levels of 16,463 genes for 11 comparable cortical
areas of the human (6 subjects), chimpanzee (5 subjects), and macaque brain
(5 subjects, all age and gender controlled and corrected for batch effects22,
see Supplementary Methods, Supplementary Table 11, and ref. 22 for details). Gene
expression data were normalized to Z scores across cortical regions within each
dataset, resulting in three gene expression matrices (one for each species) of the size
of n × 11 × 16,463 (n= 6/5/5 for human/chimpanzee/macaque). Data were
averaged across individual datasets to obtain a group level gene expression matrix
of the size of 11 × 16,463 for each species.

HAR genes. Genes located in human accelerated regions (HARs) of the genome
were taken as presented by comparative genome analysis representing genomic loci
with accelerated divergence in humans19. A total number of 2737 human
accelerated regions were identified, representing 2143 HAR-associated genes19.
One thousand seven hundred and eleven HAR-associated genes were described in
the AHBA dataset and used in our analyses, referred to as HAR genes.

BRAIN genes. BRAIN genes were selected as the set of genes commonly
expressed in human brain tissue using the Genotype-Tissue Expression (GTEx)
database (data source: GTEx Analysis Release V6p; https://www.gtexportal.org/).
The GTEx portal contains 56,238 gene expression profiles in 53 body sites collected
from 7333 postmortem samples in 449 individuals. From these 56,238 genes, a total
number of 2823 genes were identified as BRAIN genes showing significantly higher
expressions in brain sites than non-brain sites (one-sided t-test and an FDR
corrected q < 0.05 were used). Four hundred and five of these 2823 genes
overlapped with the set of HAR genes, referred to as HAR-BRAIN genes.

DMN genes. For each of the 20,734 AHBA genes, a two-sided two-sample t-test
was performed between expression levels of regions of the DMN and regions of the
other resting-state networks. Genes showing the top 200 largest t-scores (showing
p < 0.004, uncorrected) were selected and referred to as DMN genes (consistent
results were obtained for the set of genes reaching p < 0.05, corrected for multiple
comparisons and alternatively the set of genes reaching p < 0.01 without correction;
see Supplementary Note 2 and Supplementary Tables 12–13). Enrichment of HAR
genes in top DMN genes was statistically evaluated using hypergeometric test.
Gene-set analysis was performed for the set of DMN genes by means of the
hypergeometric test implemented in the GENE2FUNC function in FUMA (http://
fuma.ctglab.nl)23 (see Supplementary Methods).

DMN GWAS. GWAS was performed on 6899 participants from the UK Biobank
(July 2017 release; http://www.ukbiobank.ac.uk; including individuals of European
ancestry, relatives excluded). fMRI amplitude of seven ICA-based resting-state
networks (described as “NETMAT amplitudes 25” in http://big.stats.ox.ac.uk/; UK
Biobank field ID: 25754; for a detailed description, see refs. 25,67 and https://www.
fmrib.ox.ac.uk/ukbiobank) were taken as phenotypes of interest. We focused on the
phenotype “NETMAT amplitudes 25(01)”, describing ICA component #1 resem-
bling the DMN. In addition, ICA component #2, #3, #5, #6, #10, and #14 were
examined, respectively, reflecting the VN, VAN, FPN.R, FPN.L, SMN, and LN.
GWAS was conducted in PLINK v2.0068, using an additive linear regression model
controlling for covariates of age, sex, twenty European-based ancestry principal
components, genotyping array, and total brain volume (derived from the T1 image,
linearly transformed to mean zero and variance one). Stringent quality control
measures were applied to the summary statistics of the GWAS (see Supplementary
Methods and ref. 30 for a detailed description of the used procedures). SNP-based
results were mapped and annotated using positional mapping, eQTL mapping, and
chromatin interaction mapping as implemented in the SNP2GENE function in

FUMA23. MAGMA gene-set analysis was used to examine the association of HAR/
HAR-BRAIN/DMN genes with phenotypic variations27,28.

Gene-set analysis. SNP-based summary statistics of three GWAS were obtained,
including (1) a recent GWAS meta-analysis on intelligence in 269,867 individuals30

(https://ctg.cncr.nl/software/summary_statistics); (2) a GWAS of a social interac-
tion related trait, “Frequency of friend/family visits”, in 383,941 individuals in the
UK Biobank31 (field ID: 1031; GWAS ATLAS web tool, http://atlas.ctglab.nl/
traitDB/3216); (3) a GWAS in 33,426 schizophrenia patients and 54,065 healthy
controls34 as provided by the Psychiatric Genomics Consortium (http://www.med.
unc.edu/pgc/). Gene annotation was performed using MAGMA27, providing gene-
based p-values and effect sizes that are non-directional and reflect both positive and
negative direction given phenotypic variants. Gene-set analysis was performed
based on a linear regression model implemented in MAGMA27 to examine to what
extent HAR/HAR-BRAIN and DMN genes are associated with phenotypic varia-
tion. Results reaching an FDR corrected q < 0.05 were taken as statistically sig-
nificant (corrected for all 20 tested associations). Conditional gene-set analysis28

was used to control for the effect of BRAIN genes.

Cortical involvement in psychiatric disorders. The BrainMap database was used
to assess cortical involvement across five major psychiatric disorders (schizo-
phrenia, bipolar disorder, ASD, MDD, and OCD, including in total of 260 studies)
(http://www.brainmap.org). Disease voxel-based morphometry (VBM) data of 260
case-control studies present in BrainMap were extracted using the Sleuth toolbox69

and meta-analyses were conducted for each disorder using the GingerALE tool-
box70. Resulting brain maps of activation likelihood estimation (ALE) were
registered to the MNI 152 template and regional ALE was computed by averaging
ALEs of all voxels within each cortical region of the DK-114 atlas. Regional
averaged ALE scores were transformed to Z scores and averaged into a cross-
disorder cortical involvement map describing per region the level of involvement
across five major psychiatric disorders (see Supplementary Methods).

Statistical analysis. Pearson’s correlation was used to examine the association of
the profile of cortical gene expression with the pattern of chimpanzee-to-human
cortical expansion. Two-sided two-sample t-test was used to statistically test the
difference in evolutionary cortical expansion and mean gene expression of HAR
and HAR-BRAIN genes between regions of higher-order cognitive networks (e.g.,
the DMN, FPN, and VAN) and regions of the SMN/VN. Similar analysis was
conducted between each of the functional networks and the rest of the brain.
Results reaching an FDR corrected q < 0.05 were taken as statistically significant
(corrected for eight tests in each analysis). Cohen’s d was computed, as the dif-
ference between two means divided by a standard deviation, to indicate the effect
size. Permutation testing (10,000 permutations) was used to differentiate effects of
HAR-BRAIN genes from effects of general BRAIN genes (referred to as NULL1)
and genes associated with evolutionarily conserved elements of the human genome
(ECE genes, referred to as NULL2). ECE genes were obtained from evolutionarily
conserved elements in the human genome with length larger than 200 base pairs as
described in ref. 21 and were mapped to genes when they fall inside the genomic
location provided by the gene27, resulting in a set of 9125 genes. For each per-
mutation (for NULL1 and NULL2), 415 genes (the same size as the number of
HAR-BRAIN genes) were randomly selected from the pool of 2979 BRAIN genes
or 9125 ECE genes, separately, and the same statistics (e.g., Pearson’s correlation or
t-test) were computed for this random set to generate an empirical null-
distribution (i.e., noted as the NULL1 distribution for BRAIN genes and NULL2
distribution for ECE genes). The original effects were assigned a two-sided p-value
by comparing to the null-distributions, according to the proportion (P) of random
permutations that exceeded the original statistics of HAR-BRAIN genes (p= P × 2
if P < 0.5, otherwise p= (1−P) × 2).

Ethics statement. Data of chimpanzees were acquired under protocols approved
by the YNPRC and the Emory University Institutional Animal Care and Use
Committee (IACUC, approval #: YER2001206). No new chimpanzee MRI data was
acquired for this study; all chimpanzee MRIs were obtained from a data archive of
scans obtained prior to the 2015 implementation of U.S. Fish and Wildlife Service
and National Institutes of Health regulations governing research with chimpanzees.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Human gene expression data that support the findings of this study are available in the
Allen Brain Atlas (“Complete normalized microarray datasets”, http://human.brain-map.
org). Comparative gene expression data that support the findings of this study are
available in the PsychENCODE (Human Brain Evolution) (“Gene expression in RPKM
(batch correction by Combat)”, http://www.evolution.psychencode.org). The GTEx data
that support the findings of this study are available in the GTEx Portal V6p release (“The
median RPKM by tissue”, https://www.gtexportal.org). The human MRI data (in the part
of the cortical expansion) that support the findings of this study are available from the
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Human Connectome Project (Q3 release, https://www.humanconnectome.org). The
chimpanzee MRI data that support the findings of this study are available as part of the
National Chimpanzee Brain Resources (MRI database, https://www.chimpanzeebrain.
org). The chimpanzee-human expansion map is available at https://www.connectomelab.
nl/downloads. The genotype data used for the GWAS on DMN functional amplitude that
support the findings of this study are available in the UK Biobank (application 16406;
https://www.ukbiobank.ac.uk). The GWAS summary statistics for “intelligence” that
support the findings of this study are available from https://ctg.cncr.nl/software/
summary_statistics. The GWAS summary statistics for “Frequency of friend/family
visits” that support the findings of this study are available from the GWAS ATLAS
webtool (http://atlas.ctg.nl/traitDB/3216). The GWAS summary statistics for
“schizophrenia” that support the findings of this study are available from the Psychiatric
Genomics Consortium (http://www.med.unc.edu/pgc). The cross-disorder VBM data
that support the findings of this study are available in the BrainMap (Sleuth, http://www.
brainmap.org). The source data underlying Figs. 2c-d, 3a-f, 3h, and 5, and Supplementary
Figs 1, 2, 4, and 14 are provided as Source Data files.

Code availability
All code is available from the corresponding author upon reasonable request.

Received: 17 April 2019; Accepted: 24 September 2019;

References
1. Britten, R. J. Divergence between samples of chimpanzee and human DNA

sequences is 5%, counting indels. Proc. Natl Acad. Sci. USA 99, 13633–13635
(2002).

2. Buckner, R. L. & Krienen, F. M. The evolution of distributed association
networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).

3. Preuss, T. M. Chapter 8: The human brain: evolution and distinctive features.
In: On Human Nature.(Academic Press, 2017).

4. Ardesch, D. J., et al. Evolutionary expansion of connectivity between
multimodal association areas in the human brain compared with
chimpanzees. Proc. Natl Acad. Sci. USA (2019).

5. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default
network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci.
1124, 1–38 (2008).

6. Raichle, M. E. The brain’s default mode network. Annu Rev. Neurosci. 38,
433–447 (2015).

7. Uddin, L. Q. Salience processing and insular cortical function and dysfunction.
Nat. Rev. Neurosci. 16, 55–61 (2015).

8. Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R.
Heritability analysis with repeat measurements and its application to resting-
state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526
(2017).

9. Glahn, D. C. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci.
USA 107, 1223–1228 (2010).

10. Wang, G. Z. et al. Correspondence between resting-state activity and brain
gene expression. Neuron 88, 659–666 (2015).

11. Barks, S. K., Parr, L. A. & Rilling, J. K. The default mode network in
chimpanzees (Pan troglodytes) is similar to that of humans. Cereb. Cortex 25,
538–544 (2015).

12. Mantini, D. et al. Default mode of brain function in monkeys. J. Neurosci. 31,
12954–12962 (2011).

13. Miranda-Dominguez, O. et al. Bridging the gap between the human and
macaque connectome: a quantitative comparison of global interspecies
structure-function relationships and network topology. J. Neurosci. 34,
5552–5563 (2014).

14. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci.
11, 49–57 (2007).

15. Tulving, E. Episodic memory and autonoesis: uniquely human? In: The
missing link in cognition: Origins of self-reflective consciousness. (Oxford
University Press, 2005).

16. Tomasello, M. & Herrmann, E. Ape and human cognition: what’s the
difference? Curr. Dir. Psychol. Sci. 19, 3–8 (2010).

17. Pollard, K. S. et al. An RNA gene expressed during cortical development
evolved rapidly in humans. Nature 443, 167–172 (2006).

18. Pollard, K. S. et al. Forces shaping the fastest evolving regions in the human
genome. PLOS Genet. 2, 1599–1611 (2006).

19. Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition
and social behavior. Cell 167, 341–354 e312 (2016).

20. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

21. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary
constraint using 29 mammals. Nature 478, 476–482 (2011).

22. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits
in the human lineage. Science 358, 1027–1032 (2017).

23. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun.
8, 1826 (2017).

24. Sudlow, C. et al. UK Biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

25. Elliott, L. T. et al. Genome-wide association studies of brain imaging
phenotypes in UK Biobank. Nature 562, 210–216 (2018).

26. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide
association studies, targeted arrays and summary statistics 2019. Nucleic Acids
Res. 47, D1005–D1012 (2019).

27. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized
gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

28. de Leeuw, C. A., Stringer, S., Dekkers, I. A., Heskes, T. & Posthuma, D.
Conditional and interaction gene-set analysis reveals novel functional
pathways for blood pressure. Nat. Commun. 9, 3768 (2018).

29. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228 (2015).

30. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867
individuals identifies new genetic and functional links to intelligence. Nat.
Genet. 50, 912–919 (2018).

31. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in
complex traits. Nat. Genet. 51, 1339–1348 (2019).

32. Crow, T. J. Is schizophrenia the price that Homo sapiens pays for language?
Schizophr. Res 28, 127–141 (1997).

33. van den Heuvel, M. P. et al. Evolutionarily modifications of human brain
connectivity associated with schizophrenia. Brain, In press (2019).

34. Ruderfer, D. M. et al. Genomic dissection of bipolar disorder and
schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e1716
(2018).

35. Li, J. et al. Genes with de novo mutations are shared by four neuropsychiatric
disorders discovered from NPdenovo database. Mol. Psychiatry 21, 290–297
(2016).

36. Hill, J. et al. Similar patterns of cortical expansion during human development
and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

37. Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K. & Van Essen, D. C.
Quantitative assessment of prefrontal cortex in humans relative to nonhuman
primates. Proc. Natl Acad. Sci. USA 115, E5183–E5192 (2018).

38. Reardon, P. K. et al. Normative brain size variation and brain shape diversity
in humans. Science 360, 1222–1226 (2018).

39. Ryu H., et al. Massively parallel dissection of human accelerated regions in
human and chimpanzee neural progenitors. Preprint at https://www.biorxiv.
org/content/10.1101/256313v1 (2018).

40. Won, H., Huang, J., Opland, C. K., Hartl, C. L., Geschwind, D. H. Human
evolved regulatory elements modulate genes involved in cortical expansion
and neurodevelopmental disease susceptibility. Nat. Commun. 10, 2396
(2019).

41. Jacobs, B. et al. Regional dendritic and spine variation in human cerebral
cortex: a quantitative golgi study. Cereb. Cortex 11, 558–571 (2001).

42. Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in
cognition: a comparative study in human and monkey. J. Neurosci. 21, RC163
(2001).

43. van den Heuvel, M. P., Scholtens, L. H., Kahn, R. S. Multiscale neuroscience of
psychiatric disorders. Biol. Psychiatry 86, 512–522 (2019).

44. Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking
macroscale graph analytical organization to microscale neuroarchitectonics in
the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

45. Vertes, P. E. et al. Gene transcription profiles associated with inter-modular
hubs and connection distance in human functional magnetic resonance
imaging networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150362
(2016).

46. Krienen, F. M., Yeo, B. T., Ge, T., Buckner, R. L. & Sherwood, C. C.
Transcriptional profiles of supragranular-enriched genes associate with
corticocortical network architecture in the human brain. Proc. Natl Acad. Sci.
USA 113, E469–E478 (2016).

47. Richiardi, J. et al. BRAIN NETWORKS. Correlated gene expression supports
synchronous activity in brain networks. Science 348, 1241–1244 (2015).

48. Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and
3D stem cell models of primate cortical development identify species-specific
differences in progenitor behavior contributing to brain size. Cell Stem Cell 18,
467–480 (2016).

49. Redies, C., Hertel, N. & Hubner, C. A. Cadherins and neuropsychiatric
disorders. Brain Res. 1470, 130–144 (2012).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12764-8

10 NATURE COMMUNICATIONS |         (2019) 10:4839 | https://doi.org/10.1038/s41467-019-12764-8 | www.nature.com/naturecommunications

https://www.humanconnectome.org
https://www.chimpanzeebrain.org
https://www.chimpanzeebrain.org
https://www.connectomelab.nl/downloads
https://www.connectomelab.nl/downloads
https://www.ukbiobank.ac.uk
https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
http://atlas.ctg.nl/traitDB/3216
http://www.med.unc.edu/pgc
http://www.brainmap.org
http://www.brainmap.org
https://www.biorxiv.org/content/10.1101/256313v1
https://www.biorxiv.org/content/10.1101/256313v1
www.nature.com/naturecommunications


50. Hirai, H. et al. Cbln1 is essential for synaptic integrity and plasticity in the
cerebellum. Nat. Neurosci. 8, 1534–1541 (2005).

51. Sterky, F. H. et al. Carbonic anhydrase-related protein CA10 is an
evolutionarily conserved pan-neurexin ligand. Proc. Natl Acad. Sci. USA 114,
E1253–E1262 (2017).

52. Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. NY Acad. Sci.
868, 233–285 (1999).

53. Hulshoff Pol, H. E. et al. Genetic contributions to human brain morphology
and intelligence. J. Neurosci. 26, 10235–10242 (2006).

54. Suddendorf, T., Addis, D. R. & Corballis, M. C. Mental time travel and the
shaping of the human mind. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364,
1317–1324 (2009).

55. Corballis, M. C. Mental time travel: a case for evolutionary continuity. Trends
Cogn. Sci. 17, 5–6 (2013).

56. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends
Cogn. Sci. 17, 683–696 (2013).

57. Barbey, A. K. Network neuroscience theory of human intelligence. Trends
Cogn. Sci. 22, 8–20 (2018).

58. Crossley, N. A. et al. The hubs of the human connectome are generally
implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

59. Padmanabhan, A., Lynch, C. J., Schaer, M. & Menon, V. The default mode
network in autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 476–486
(2017).

60. de Lange, S. C. et al. Shared vulnerability for connectome alterations across
psychiatric and neurological brain disorders. Nat. Hum. Behav. 3, 1–11 (2019).

61. Meda, S. A. et al. Multivariate analysis reveals genetic associations of the
resting default mode network in psychotic bipolar disorder and schizophrenia.
Proc. Natl Acad. Sci. USA 111, E2066–E2075 (2014).

62. Smith, S. M. et al. Correspondence of the brain’s functional architecture
during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045
(2009).

63. Wang, D. F. et al. Comprehensive functional genomic resource and integrative
model for the human brain. Science 362, 1266 (2018). +.

64. Cammoun, L. et al. Mapping the human connectome at multiple scales with
diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

65. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage
31, 968–980 (2006).

66. Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M.
P. Connectome disconnectivity and cortical gene expression in patients with
schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

67. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank
prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

68. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

69. Fox, P. T. & Lancaster, J. L. Mapping context and content: the BrainMap
model. Nat. Rev. Neurosci. 3, 319–321 (2002).

70. Eickhoff, S. B. et al. Coordinate-based activation likelihood estimation meta-
analysis of neuroimaging data: a random-effects approach based on empirical
estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926 (2009).

Acknowledgements
The work of M.P.v.d.H. was supported by an ALW open (ALWOP.179) and VIDI (452-
16-015) grant from the Netherlands Organization for Scientific Research (NWO) and a
Fellowship of MQ. Y.W. was supported by the China Scholarship Council
(201506040039). P.R.J. was supported by the Sophia Foundation for Scientific Research
(SSWO, grant s14-27). L.L. was supported by the National Institute of Mental Health
(MH100029). D.P. was supported by The Netherlands Organization for Scientific
Research (NWO VICI 453-14-005). Primate work was supported by National Institutes

of Health Grants P01AG026423 and National Center for Research Resources P51RR165
(superseded by the Office of Research Infrastructure Programs/OD P51OD11132) to the
Yerkes National Primate Research Center, and by the National Chimpanzee Brain
Resource, R24NS092988. Human neuroimaging data was kindly provided by the Human
Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that
support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University. The Genotype-Tissue Expression
(GTEx) Project was supported by the Common Fund of the Office of the Director of the
National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.
The genetic analyses were carried out on the Genetic Cluster Computer, which is
financed by the Netherlands Scientific Organization (NWO: 480-05-003), Vrije Uni-
versiteit, Amsterdam, The Netherlands, and the Dutch Brain Foundation, and is hosted
by the Dutch National Computing and Networking Services SurfSARA. We would like to
thank Mats Nagel (VU Amsterdam) and Ting Qi (Max Planck Institute for Human
Cognitive and Brain Sciences) for helpful discussions and suggestions.

Author contributions
Y.W. and S.C.d.L. performed the analyses. M.P.v.d.H. conceived the idea of this study
and supervised analyses. L.L., T.M.P., and J.K.R. collected chimpanzee MRI data. L.H.S.
and D.J.A. contributed to chimpanzee data processing. P.R.J., J.E.S., and K.W. prepared
genetic data. D.P. supervised the genetic analysis pipeline. Y.W. and M.P.v.d.H. wrote the
paper with contributions from all coauthors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-12764-8.

Correspondence and requests for materials should be addressed to M.P.v.d.H.

Peer review information Nature Communications thanks Hyejung Won and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12764-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4839 | https://doi.org/10.1038/s41467-019-12764-8 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-12764-8
https://doi.org/10.1038/s41467-019-12764-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Genetic mapping and evolutionary analysis of human-expanded cognitive networks
	Results
	Human cortical expansion
	HAR gene expression
	HAR-BRAIN gene expression
	Chimpanzee-human comparative gene expression
	Top strongest differentiating DMN genes
	GWAS on DMN functional activity
	HAR genes, cognitive abilities, and psychiatric disorders

	Discussion
	Methods
	Cortical expansion
	Gene expression
	DMN genes
	DMN GWAS
	Gene-set analysis
	Cortical involvement in psychiatric disorders
	Statistical analysis
	Ethics statement
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




