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Abstract

Inflammation is the body’s response to injury and infection, involving a complex biological 

response of the somatosensory, immune, autonomic, and vascular systems. Inflammatory 

mediators such as prostaglandin, pro-inflammatory cytokines, and chemokines induce pain via 

direct activation of nociceptors, the primary sensory neurons that detect noxious stimuli. 

Neurogenic inflammation is triggered by nerve activation and results in neuropeptide release and 

rapid plasma extravasation and edema, contributing to pain conditions such as headache. 

Neuroinflammation is a localized inflammation in the peripheral nervous system (PNS) and 

central nervous system (CNS). A characteristic feature of neuroinflammation is the activation of 

glial cells in dorsal root ganglia, spinal cord, and brain which leads to the production of 

proinflammatory cytokines and chemokines in the PNS and CNS that drives peripheral 

sensitization and central sensitization. Here, we discuss the distinct roles of inflammation, 

neurogenic inflammation, and neuroinflammation in the regulation of different types of pain 

conditions, with a special focus on neuroinflammation in postoperative pain and opioid-induced 

hyperalgesia.

Introduction

The biological significance of acute pain is to avoid potential damage and protect wounded 

tissue. In contrast, chronic pain is maladaptive and has no beneficial biological significance. 

Chronic pain has long been recognized as a pain state that continues beyond normal healing 

time, thus lacking the acute warning function of physiological nociception. According to the 

International Classification of Diseases (ICD), chronic pain is defined as pain that persists or 

recurs for more than three months and has been further delineated by the IASP Task Force 

for the Classification of Chronic Pain (2016).
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Chronic pain is a major health concern in the world. It is estimated that chronic pain affects 

one in three Americans and with an annual cost over $600 billion dollars1,2. As shown in 

Table-1, the incidence of chronic pain in Japan ranges from 13.4% to 47%3–10. The largest 

internet survey of 41,597 Japanese residents by Yubuki et al. (2012) reported a chronic pain 

(>3 months) incidence of 22.5%6.

In particular, major surgeries result in high incidence of chronic postsurgical pain (CPSP). 

The prevalence of CPSP occurs in 20-50% patients after thoracic and breast surgeries 

(thoracotomies and mastectomies) and up to 80% of patients following amputations, with 5 

to 10% patients suffering from severe chronic pain 11–13. The prevalence of CPSP in Japan 

at 3 and 6 months is 18% and 12% after lung surgery and 49% and 33% after total knee 

arthroplasty14.

Chronic pain is maladaptive and characterized by spontaneous pain (e.g., burning) as well as 

evoked pain in response to noxious (hyperalgesia) or non-noxious (allodynia) stimuli. It is 

well understood in the pain research community that neuronal and synaptic plasticity, i.e. 

neural plasticity in pain coding pathways and circuits results in chronic pain. Neuronal 

plasticity occurs in primary sensory neurons of dorsal root ganglia (DRG) and trigeminal 

ganglia (peripheral sensitization) as well as in pain-processing neurons in the spinal cord and 

brain (central sensitization)15,16.

Inflammation and pain

A complex interplay between various biological responses of the immune system, the 

autonomic nervous system, vascular regulation, and the central and peripheral nervous 

systems in response to the insults of tissue injury, pathogens, and irritants comprises the 

sensation of pain by the body. Pain can serve a vital protective role for an organism, as is the 

case with acute inflammation that results in the perception of pain, leading to avoidance of 

harmful stimulus and encouraging healing of damaged tissue17. Inflammatory mediators, 

produced during inflammation, evokes pain via direct activation and sensitization of 

nociceptors18,19. Nociceptors are a subset of primary afferent neurons, with cell bodies 

located in the DRG and trigeminal ganglia, that respond to tissue injury, and are made up of 

both unmyelinated C-fibers and myelinated Aδ-fibers innervating skin, muscle, joint, and 

visceral organs. These tissue-injury sensitive neurons signal through the activation or 

sensitization of G-protein coupled receptors (GPCRs), ionotropic receptors, and tyrosine 

kinase receptors located on nerve terminals and cell bodies. These receptors are directly 

bound and activated by a variety of inflammatory mediators, including but not restricted to, 

bradykinin, prostaglandins (e.g., PGE2), H+, ATP, nerve growth factor (NGF), as well as 

proinflammatory cytokines and chemokines such as tumor necrosis factor-α (TNF-α), 

interleukin-1β (IL-1β), and CCL2 17,19–22.

The phenomenon of peripheral sensitization, which is marked by a state of hypersensitivity 

and hyperexcitability of nociceptors as a result of tissue injury and inflammation, is caused 

by the activation of a varied collection of ion channels including the transient receptor 

potential ion channels (i.e. TRPA1, TRPV1, and TRPV4)23,24, sodium channels (i.e. Nav1.7, 

Nav1.8, and Nav1.9)25,26, and mechanosensitive piezo ion channels27. Protein kinases 

including MAP kinases, protein kinase A (PKA), and protein kinase C (PKC) are critical 
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activating links in the receptor signaling pathways of nociceptors, leading to peripheral 

sensitization induction and maintenance28–31. It has been found that peripheral sensitization 

is marked by increased TRPV1 activity in response to TNF32 and increased Nav1.8 activity 

in response to IL-1β33, with both of these increased ion channel responses resulting from 

p38 MAP kinase activation in DRG neurons34–36. Continued elevated TRPV1 expression 

maintains the state of peripheral sensitization and consequently transition from acute to 

chronic pain34,37,38. In addition to inflammatory and neuropathic pain34,39, activation of p38 

MAP kinase in DRG neurons with C- and Aδ-fibers also contributes to pain hypersensitivity 

after plantar incision40.

Nociceptor priming or hyperalgesic priming is a unique form of peripheral sensitization41. 

The inflammatory mediator PGE2 normally produces a transient hyperalgesia for hours in 

naïve animals. However, when preceded by a prior insult (e.g., IL-6 or carrageenan ), a 

peripheral injection of PGE2 results in sustained hyperalgesia for weeks41. Interestingly, 

PGE2 also produces long-lasting hyperalgesia after priming with plantar incision36. This 

sustained post-incisional nociception is mediated by an upregulation of exchange protein 

directly activated by cyclic adenosine monophosphate (EPAC) in DRG. Of note, treatment 

with FR167653 42,43, a selective p38 MAP kinase inhibitor, prior to the incision, prevented 

the development of nociceptor priming and incision-induced EPAC expression in DRG 

neurons, presumably nociceptors36.

Interestingly, nociceptors and immune cells are involved in neuroimmune communication 

involving a common repertoire of inflammatory mediators including cytokines, chemokines, 

and TLRs44,45. Thus, in the context of inflammation and pain, neuroimmune interactions 

enable the modulation of both nociceptor and immune response to injury by regulating both 

resident immune cells as well as recruitment of immune cell populations to the area of local 

inflammation, primary afferents, and DRG46. A particular example is the role of neuronal 

TLR signaling in regulating macrophage activation in the vicinity of DRG by producing 

CCL2 chemokine in nociceptors44,47. In 2010, Amaya and coworkers first demonstrated that 

an induction of high mobility group box-1 (HMGB-1), an endogenous ligand of TLR2/4, in 

DRG neurons occurs after peripheral nerve injury, and this process is critical for the 

induction of neuropathic pain48.

It is important to point out that acute inflammation not only induces pain but also promotes 

the resolution of pain by producing specialized pro-resolving mediators (SPMs), including 

resolvins (RvD1, RvD2, RvD5, RvE1), protectin or neuroprotectin (PD1/NPD1), and 

maresin (MaR1) derived from fish oil. SPMs, produced during the resolution phase of 

inflammation, exhibit potent anti-inflammatory actions in various animal models of 

inflammation49,50. Notably, SPMs are also potent analgesics that inhibit and resolve 

inflammatory pain and postoperative pain51,52.

Peripheral inflammation also results in hyperactivity of the central nervous system (CNS), 

including the spinal cord and brain as well as primary afferent central terminals in the spinal 

cord and trigeminal nucleus. The CNS exhibits increases in the production and release of 

neurotransmitters and/or neuromodulators involved in inflammation including glutamate, the 

neuropeptides substance P and CGRP, as well as the neurotrophic factor BDNF, when 
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persistently activated by inflammatory input from peripheral nociceptors39,53. Persistent 

nociceptive input in turn results in the development of central sensitization, marked by the 

hyperactivity and hyperexcitability of neurons in the brain and spinal cord15,16. Furthermore, 

there is particular involvement of postsynaptic glutamate NMDA receptors and insertion of 

AMPA receptors in the plasma membrane, as well as activation of ERK in postsynaptic 

neurons54, to initiate and maintain central sensitization15,16. Loss of inhibitory control (e.g., 

inhibitory synaptic transmission55) and inhibitory signal molecules (e.g., β-arrestin-256) is 

sufficient to drive central sensitization and pain hypersensitivity.

Neurogenic inflammation and pain

Neurogenic inflammation results from nociceptor activation and can be experimentally 

caused with immediate onset by intradermal administration of capsaicin, which activates 

TRPV1, or mustard oil, which activates TRPA157. The activated nociceptors, notably C-

fibers, release a host of neuropeptides such as substance P, CGRP, and prostanoids. 

Following the activation of nociceptors, rapid plasma extravasation and edema occurs at a 

timescale faster than that of immune cell infiltration. Among clinical conditions, neurogenic 

inflammation has been found to be particularly involved in inflammatory diseases including 

asthma and psoriasis18. Additionally, neurogenic inflammation is a major component of pain 

caused by migraines as well as complex regional pain syndrome (CRPS) due to bone 

fracture58. Although the ablation of nociceptors can decrease neurogenic inflammation, it 

must be noted that nociceptors can play a modulatory role that can be beneficial in other 

scenarios, for example the release of CGRP by nociceptors which has been found to regulate 

inflammation in bacterial infections59,60.

The generation of neurogenic inflammation is not only limited to activation of peripheral C-

fibers but can also be caused by local inflammation events or even by CNS activation of 

primary afferents in the case of dorsal root reflex resulting from orthograde or anterograde 

neuronal activation61. The CNS itself can also be subject to neurogenic inflammation 

following neuroinflammation events in the brain or spinal cord18,61.

Neuroinflammation and pain

Neuroinflammation is a localized form of inflammation occurring in both the PNS and CNS 
17. Four features of neuroinflammation include increased vascular permeability, leukocyte 

infiltration, glial cell activation, and increased production of inflammatory mediators such as 

cytokines and chemokines17. In the state of neuroinflammation, the blood brain barrier is 

subject to an increased level of permeability, exposing the CNS to increased infiltration by 

peripheral immune cells. Accordingly, neuroinflammation is increasingly being implicated 

in chronic pain disorders including postsurgical pain following major surgeries such as 

amputation, thoracotomy, and mastectomy, and postoperative complications such as 

delirium18,62.

Although chronic pain is observed as a condition that continues beyond the resolution of 

observable clinical signs and symptoms of inflammation, neuroinflammation actually 

maintains a close association with chronic pain states and may be responsible for the 

mediation and continuation of pain in human patients63. Of note, chronic pain is correlated 
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differently with inflammation and neuroinflammation. Chronic neuroinflammation has been 

observed in patients of HIV-neuropathy and also in patients with fibromyalgia63,64. The 

involvement of different neuroinflammatory mediators in modulating pain sensitivity in the 

pain neurocircuitry will be a particularly interesting area of inquiry.

Glial activation and neuroinflammation after surgery and opioid treatment

Peripheral glia (i.e. Schwann cells and satellite glial cells (SGCs) and central glia (i.e. 

microglia, astrocytes and oligodendrocytes) are activated during neuroinflammation65,66. In 

DRG, nerve injury not only causes neuronal changes leading to peripheral sensitization but 

also results in activation of SGCs, which contributes to peripheral neuroinflammation and 

neuropathic pain via SGC-neuron interactions (Fig. 1)65,67,68. Notably, opioids produce not 

only analgesia but also paradoxical hyperalgesia, which could be conveyed by SGCs. 

Strikingly, a single intraperitoneal injection of morphine is sufficient to activate SGCs69. 

This activation requires the upregulation of matrix metalloprotease-9 (MMP-9) in DRG 

neurons, which causes IL-1β cleavage and release to activate SGCs69. As a result, opioid 

analgesia is suppressed by MMP-9/IL-1β-mediated SGC activation but enhanced in mice 

lacking Mmp969,70. Plantar incision produced a rapid activation (within one hour) of ERK 

not only in large-size DRG neurons but also in surrounding SGCs. Blocking the coupling of 

neuron-SGC with the gap junction blocker carbenoxolone inhibited neuronal ERK activation 

and postsurgical pain71, supporting an essential role of neuron-SGC interactions in the 

initiation of postsurgical pain. It remains to be investigated if MMP-9 and IL-1β are 

involved in ERK activation in SGCs after plantar incision.

With regard to the central glia, which are the focus of the majority of glial studies on pain, 

the mediators and actions produced by these cells serve major modulatory roles in the 

processes of synaptic plasticity and central sensitization18. Notably, the phenomenon of glial 

activation has emerged in recent literature as a potent mechanism in chronic pain, and the 

resulting dysfunction of glia in chronic pain has been referred to as “gliopathy”65. Nerve 

injury results in remarkable microgliosis and astrogliosis in the spinal cord65,72,73. Spinal 

microgliosis was also reported after plantar incision43. Multiple receptors, such as ATP 

receptors (e.g., P2X4, P2X7, P2Y12)73–75, chemokine receptors (e.g., CX3CR1, 

CXCR5)76,77, and Toll-like receptors (e.g., TLR4)78, along with proteases such as matrix 

metalloproteases (MMP-9 and MMP-2) and cathepsin S (CatS)79–81 have been shown to 

regulate glial activation and neuropathic pain.

In particular, following nerve injury, surgery (e.g. plantar incision), and chronic opioid 

exposure, p38 MAP kinase is not only activated in DRG neurons during peripheral 

sensitization but also activated in spinal microglia during central sensitization43,75,82,83. 

Thus, activation of p38 MAP kinase plays an important role in neuropathic pain, 

postsurgical pain, and opioid tolerance via regulating neuroinflammation84. p38 MAP kinase 

regulates microglial secretion of TNF, IL-1β, and BDNF, all of which are powerful 

regulators of central sensitization85,86 (Fig. 2). Interestingly, blockade of both A-fibers and 

C-fibers together, but not C-fibers alone, can prevent microglial activation in the spinal cord 

after nerve injury87. Consistently, blocking large A-beta fibers but not small C-fibers 

alleviated mechanical allodynia, a cardinal feature of chronic pain after chemotherapy and 
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nerve injury88. Nerve injury, surgery, and chronic opioid exposure also activate spinal cord 

astrocytes, and persistent astrocyte activation maintains neuropathic pain via sustained 

neuroinflammation65,89. Mechanistically, astrocyte-produced chemokines such as CCL2 and 

CXCL1, as well as cytokines (e.g., IL-1β), powerfully regulate central sensitization90,91 

(Fig. 2).

Surgical incisions and resulting nerve injury have been shown to cause increased expression 

of COX-1 in spinal glial cells which can lead to postsurgical pain and neuropathic pain 

development following a surgery92,93. P2X7 receptors and spinal glial cells also contribute 

to the development of chronic postsurgical pain induced by incision and retraction of skin 

and muscle tissue94. Furthermore, discrepancies between inflammation in peripheral tissues 

and central neuroinflammation in acute versus chronic pain support the notion that central 

neuroinflammation maintains chronic pain states18,95. This was suggested from a study of a 

rat model of complex regional pain syndrome (CRPS), where levels of IL-1β were elevated 

in peripheral and spinal samples at the acute phase 4-week time point, but at the chronic 

phase 16-week time point only spinal levels of IL-1β remain elevated. Furthermore, efficacy 

of anakinra treatment to antagonize IL-1 was delineated along the same peripheral versus 

central compartments, as peripheral anakinra treatment was effective at inhibiting 

nociceptive behavior measurements at only the 4-week time point, whereas intrathecal 

anakinra treatment was able to inhibit nociception at both the 4-week and 16-week time 

points96. Thus neuroinflammation, especially central neuroinflammation, plays an essential 

role in maintaining chronic pain. Notably, central neuropathic pain after spinal cord injury is 

associated with peripheral sensitization in DRG neurons97. It was recently proposed that 

central neuroinflammation and central sensitization could maintain chronic pain in part by 

driving peripheral sensitization via diffusion and retrograde signaling18.

Clinical significance and future perspectives

As detailed in the preceding sections, there are different types of inflammation, namely 

classic inflammation (referred to as “inflammation” in this review), neurogenic 

inflammation, and neuroinflammation. Although all three types of inflammation play active 

roles in pain and anti-inflammatory drugs are partially effective in treating acute pain and 

pain, it is important to make distinctions among different types of inflammation from a 

therapeutic perspective. For example, inhibiting neurogenic inflammation with nerve block 

such as by Botox (Botulinum neurotoxin A) or anti-CGRP antibody show great efficacy in 

reducing bacterial infection, inflammatory pain, and headache57,98–100. Given the important 

role of central neuroinflammation in maintaining chronic pain, delivery of anti-inflammatory 

drugs to the CNS is critical. Thus, intrathecal but not peripheral administration of anakinra, 

an FDA-approved anti-IL-1β treatment, can alleviate CPSP in rodents in the late phase ( 16-

weeks) after bone fracture96.

Neuroinflammation resulting from neuro-glial and neuro-immune interactions not only 

serves as a driving force for chronic pain, but is also implicated in other neurological and 

psychiatric diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, 

autism, major depression, and schizophrenia17, as well as in cognitive deficits after major 

surgeries62. Chronic pain is commonly associated with depression, anxiety, sleep disorders, 
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and cognitive decline, which are clinical sequelae of particular concern to the growing aging 

population which has increasingly high prevalence of chronic pain. Neuroinflammation and 

astrocyte reactivity is also associated with chronic pain in postmortem human spinal cord 

samples63. Glial activation can further be detected in patients with chronic low back pain 

using positron emission tomography (PET) imaging101. Thus, targeting excessive 

neuroinflammation will be a promising approach to alleviate chronic pain and control the 

progression of neurological and psychiatric diseases. Notably, there is ongoing opioid crisis 

in the United States with hundreds of Americans dying from opioid overdoses every day102. 

Therefore, the development of effective non-opioid treatments for the prevention and 

resolution of neuroinflammation and postoperative pain is of utmost urgency. Finally, it is 

worthy to mention that non-pharmacological alternative treatments, such as cellular therapy 

with bone marrow stem cells show promising long-term pain relief via powerful control of 

neuroinflammation103–105. Autologous conditioned serum and platelet-rich plasma contain 

high levels of anti-inflammatory cytokines and produce relief in patients with knee 

osteoarthritis 106–108. Neuromodulation via spinal cord stimulation and electroacupuncture 

also demonstrate the ability to control neuroinflammation for pain relief18,109,110. Further 

studies are warranted in the future to investigate how these alternative strategies control 

CPSP and neuroinflammation after surgery.
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Figure 1. 
Schematic illustration of peripheral sensitization induced by peripheral glial activation and 

neuroinflammation in dorsal root ganglia (DRG) following surgeries and opioid exposure. 

Activation of peripheral glia (i.e. SGCs: satellite glial cells) by surgery and/or opioid 

treatment results in secretion of glial mediators such as TNF and IL-1β, leading to peripheral 

sensitization, postsurgical pain, and opioid-induced hyperalgesia and tolerance.
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Figure 2. 
Schematic illustration of central sensitization induced by glial activation and 

neuroinflammation in the spinal cord following surgery and/or opioid exposure. Activation 

of central glia (microglia and astrocytes) in the spinal cord by surgery and/or opioids 

treatment results in secretion of glial mediators including TNF, IL-1β, CCL2, CXCL1, and 

BDNF. These factors can act as neuromodulators to induce central sensitization via the 

modulation of excitatory and inhibitory synaptic transmission. Central sensitization is a 

driving force of postsurgical pain as well as opioid-induced hyperalgesia and tolerance.
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Table 1:

Chronic pain prevalence in Japan

1st author Year Survey method Age (years) Participants (Response rate) Duration of Pain (months) Prevalence

Hattori (3) 2004 Internet ≥18 18,300 (72.2%) 6 13.4%

Matsudaira (4) 2011 Internet 20 - 80 20,044 (20.1%) 3 22.9%

Nakamura (5) 2011 Postal ≥18 11,507 (60%) 6 15.4%

Yabuki (6) 2012 Internet ≥20 41,597 (unknown) 3 22.5%

Ogawa (7) 2012 Internet 20 - 69 20,000 (unknown) 3 26.4%

Shibata (8) 2014 Interview ≥40 927 (46%) 6 47%

Inoue (9) 2015 Postal ≥20 2,628 (43.8%) 6 39.3%

Inoue (10) 2017 Postal ≥20 5,437 (54.4%) 6 16.6%

J Anesth. Author manuscript; available in PMC 2019 October 25.


	Abstract
	Introduction
	Inflammation and pain
	Neurogenic inflammation and pain
	Neuroinflammation and pain
	Glial activation and neuroinflammation after surgery and opioid treatment
	Clinical significance and future perspectives

	References
	Figure 1.
	Figure 2.
	Table 1:

