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Abstract

Understanding how microbial communities develop is essential for predicting and directing their 

future states. Ecological theory suggests that community development is often influenced by 

priority effects, in which the order and timing of species arrival determine how species affect one 

another. Priority effects can have long-lasting consequences, particularly if species arrival history 

varies during the early stage of community development, but their importance to the human gut 

microbiota and host health remains largely unknown. Here, we explore how priority effects might 

influence microbial communities in the gastrointestinal tract during early childhood and how the 

strength of priority effects can be estimated from the composition of the microbial species pool. 

We also discuss factors that alter microbial transmission, such as delivery mode, diet and parenting 

behaviours such as breastfeeding, which can influence the likelihood of priority effects. An 

improved knowledge of priority effects has the potential to inform microorganism-based therapies, 

such as prebiotics and probiotics, which are aimed at guiding the microbiota towards a healthy 

state.

It is now widely recognized that the human body is colonized by many species of 

microorganisms that can influence a range of metabolic, developmental and physiological 

processes affecting host health. These microorganisms, especially those of the gut, help 

liberate and make available to their host otherwise inaccessible components of the diet1, 

stimulate development of the host immune system2 and protect against pathogen invasion3, 

among other functions beneficial to the host. The gut microbiota has also been implicated in 
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several chronic gastrointestinal inflammatory disorders, including Crohn’s disease4,5, 

ulcerative colitis6,7, primary sclerosing cholangitis8, NAFLD9 and environmental 

enteropathy10,11 as well as other chronic disorders such as obesity12–14, chronic 

periodontitis15,16 and cardiovascular disease17.

Clinical studies correlating specific taxonomic groups with disease states have yielded 

valuable insight but have often assumed that host–microorganism interactions occur 

independently of the rest of the microbial community. Under this assumption, multispecies 

interactions that modulate the effect of specific taxa on health of the host would be 

overlooked. In community ecology, the field that focuses on multispecies interactions18, one 

phenomenon that is receiving increasing interest is priority effects, or the effects that the 

history of species arrival has on how species affect one another in communities19. Through 

this lens, human health can be viewed as the net result of dynamic interactions that involve 

both the host and its microbiota20. In this Review, we apply the concept of priority effects to 

the infant gut and explore how knowledge of the order and timing of microbial colonization 

of the infant gut might help predict the development of the early-life microbiota and guide it 

towards a healthy state. We focus on bacteria because more data are available for them than 

for other components of the microbiota, but the same concepts might apply to fungal, viral 

and other microbial components.

Gut microbiota assembly in early life

Community ecologists have proposed different concepts over the past century to explain 

observed patterns of species distribution and abundance. Mark Vellend synthesized these 

concepts by categorizing the processes that affect community assembly into four groups: 

dispersal, selection, drift and diversification21,22 (FIG. 1). Taxa are added to local sites 

through dispersal from the regional species pool and through in situ diversification, and the 

relative abundances of taxa are further shaped by selection and drift. In this section, we 

describe each process in reference to the infant gut to provide a context for discussing 

priority effects in the next section.

Dispersal.

The gastrointestinal tract of a newborn baby represents a large suite of physical and 

metabolic niches that microorganisms can colonize via dispersal23,24. Stool samples 

collected within the first 8 days of life suggest that initial colonizers largely originate from 

the maternal microbiota25. For example, the microbiota of vaginally delivered infants are 

dominated by taxa found in their mother’s vagina (Lactobacillus spp., Prevotella spp., 

Atopobium spp. or Sneathia spp.), whereas those of infants delivered by caesarian section 

are enriched for taxa found on human skin (Staphylococcus spp., Corynebacterium spp. and 

Propionibacterium spp.)25,26. The mother’s gut can also be a source of the initial microbial 

inoculum27–30, and the sharing of strains between mothers and newborn babies is commonly 

observed. Maternal strains of Helicobacter pylori 31,32, Escherichia coli33,34, Bacteroides 
vulgatus34 and Parabacteroides distasonis34 have been found to colonize the gastrointestinal 

tract of infants, as have Bifidobacterium longum subsp. longum and other Bifidobacterium 
spp.34–36. While species-level similarities between mothers and their children tend to 
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increase over the first several years of life, strain-level sharing decreases over time. For 

example, one study found that 91% of strains were shared between the stool of mothers and 

their newborn babies 4 days after birth, yet that figure dropped to 55% 1 year later34. In 

addition, healthy, full-term infants can be influenced by their mother’s microbiota even 

before the rupture of amniotic membranes37. Although the existence of a persistent, 

metabolically active microbial community in the placenta remains controversial38,39, 

microbial DNA has been reported in the placenta40,41, amniotic fluid41,42 and 

meconium43–45. Microorganisms or microbial components can arrive in the prenatal 

intrauterine environment by ascending from the vagina46 or by spreading haematogenously 

from the oral cavity or gut47. It has also been postulated that dendritic cells or lymphoid 

tissues can translocate bacteria or bacterial DNA to the placenta48. However, we do not yet 

have enough information about the potential role of these events in healthy human 

pregnancies to assess how they might influence priority effects. Even if there were a 

microbial community in the placenta or amniotic sac, its contributions to the membership of 

the postnatal infant microbiota are likely overwhelmed by the vast numbers of 

microorganisms to which the infant is exposed at birth. Overall, specific taxa from the 

mother’s microbiota are commonly transmitted to the infant’s gut in early life. Variation in 

microbiota among mothers should therefore result in variation in dispersal among their 

infants. In addition to the mother, there are many other origins of microbial dispersal to the 

infant, which we will discuss later.

Selection.

Selection occurs when fitness and niche differences among taxa cause them to reproduce or 

die at different rates. In the infant gut, two primary sources of selection are the immune 

system and the diet. For instance, commensal E. coli strains colonizing the gastrointestinal 

tract of Rag2−/− mice, which lack B cells and T cells, adapted more slowly than strains 

colonizing mice with an intact adaptive immune system49. In gnotobiotic zebrafish, a 

statistical model that assumed that species are identical to one another in their birth and 

death rates predicted microbiota composition well in early life, but selection became more 

important as the adaptive immune system of the fish became active50. Similarly, as an 

infant’s immune system matures, it might exert increasing selection on the microbiota, 

causing largely homogeneous communities to become increasingly body-site-specific23,51.

Drift.

After a microorganism colonizes the infant gut, its growth rate and abundance can be shaped 

not just through deterministic forces such as selection but also via stochastic processes such 

as ecological drift. Drift is the random changes in population size that occur regardless of 

species identity52. The effect of drift is stronger on low-abundance species because they are 

more likely to be stochastically pushed to local extinction. Some species are at low 

abundance in the gut because they arrive infrequently as a small population or because they 

experience large reductions in number by a major perturbation such as diarrhoea53 or 

antibiotic treatment54. These species can be affected by drift more strongly than by 

selection. However, the effect of drift on gut microbiota assembly has not been well 

characterized, in part because factors that cause drift often alter selection as well, making it 

difficult to tease apart the two processes.
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Diversification.

Microorganisms, with their large population sizes, high growth rates and high mutation and 

recombination rates, are able to rapidly diversify and adapt when faced with the strong 

selective regimes found in the human body. One example is the diversification of 

Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Several adaptations 

were observed over a decade of mostly constant selective pressures inside the cystic fibrosis 

lung55,56. By comparison, communities that assemble in the infant gut experience frequently 

shifting selective regimes related to immune system development, the addition of 

complementary foods, the cessation of breastfeeding and increasing competition resulting 

from increased taxonomic diversity. Because diversification often requires persistent 

selective pressure, the extent of diversification in the infant gut during assembly remains 

uncertain.

Some factors affect more than one of the four processes simultaneously. For example, breast 

milk affects both dispersal and selection because it is both a source of microorganisms 

dispersing to the gut and the primary nutrient source for the infant and their microbiota57. 

Breast milk commonly harbours Bifidobacterium spp.57–60, Lactobacillus spp.57,59–61, 

Staphylococcus spp.57,62 and Streptococcus spp.59,60,62 and is composed of a rich mix of 

proteins, fats and human milk oligosaccharides (HMOs), which are a diverse set of 

unconjugated glycans that cannot be digested by the host and can be digested by only a 

subset of the microbiota63. The complex composition of breast milk selects for both HMO 

specialists and mucus-adapted species with a wide range of glycoside hydrolases capable of 

metabolizing diverse carbon sources that become abundant after complementary foods are 

introduced into the infant’s diet64. Breast milk also contains many antimicrobial factors such 

as lysozyme, lactoferrin and secretory immunoglobulin A (IgA)65,66, which impose 

additional selection on the gut microbial community. Formula milk, by contrast, lacks many 

of these bioactive compounds as well as the microorganisms that are adapted to the milk 

environment, which might result in altered dispersal and selection compared with those 

related to breast milk, although the effects of these foods remain unclear.

What makes the four processes interesting and challenging to understand is that they do not 

always have simple additive effects but can instead exert complex interacting effects on 

community assembly67. Priority effects are an example of such interactive effects in which 

dispersal history modulates how selection, drift and diversification influence community 

structure.

Priority effects in the infant gut

Each local microbial community can be viewed as a subsample of the regional pool of 

species that passed through a set of biotic and abiotic filters. From this perspective, it might 

seem that species composition at equilibrium is predictable from the local environmental 

conditions and the list of species that are available to colonize the local habitat. However, the 

order and timing of dispersal can have large effects on final species composition, even if 

environmental conditions and regional species pools are identical19. It is these effects of the 

order and timing of past species immigrations on interspecies interactions that are known as 

priority effects (FIG. 2).
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Little is known about how priority effects shape microbial community assembly in early 

childhood because few studies report the timing and order of colonization, but indirect 

evidence suggests that priority effects are plausible. For example, in a 2016 study, Yassour et 
al.68 classified infant gut microbiota into two groups based on the abundance of Bacteroides 
spp. present in the first 6 months of life. Of the 35 infants in their cohort, 11 were 

characterized as having low levels of Bacteroides spp. and were instead dominated by either 

Proteobacteria or Actinobacteria (especially Bifidobacterium spp.)68. These ‘low-

Bacteroides’ microbiota remained less diverse than the ‘high-Bacteroides’ group for at least 

the first 36 months of life, well after Bacteroides spp. membership expanded in relative 

abundance68. In other work, facultative anaerobes such as Enterobacteriaceae (for example, 

Escherichia spp.) have been found in high abundance in meconium or early stools but 

gradually yield to strict anaerobes such as Bifidobacterium spp., Bacteroides spp. and 

Clostridium spp. over the first few months of life28,69. Collectively, these findings suggest a 

degree of mutual exclusion between Bacteroides spp., Escherichia spp. and lactic acid 

producers such as Bifidobacterium spp. and Lactobacillus spp. that might be partially 

mediated by the infant’s exposure history and the patterns of dispersal from various sites in 

or on their mother.

Priority effects occur when microorganisms either pre-empt or modify a given ecological 

niche and thereby alter the ability of subsequent microbial immigrants to colonize. For 

example, Bifidobacterium spp. consume a wide range of HMOs found in breast milk60,70. 

Their arrival soon after birth likely depletes the intestinal lumen of these carbon sources, 

thereby limiting the ability of later species to colonize60,64,70–72. Niche pre-emption 

necessarily results in the inhibition of later immigrants, but taxa that modify niches can 

either inhibit or facilitate later immigrants. For example, the gut commensal Bacteroides 
thetaiotaomicron liberates mucus-derived sugars such as fucose and sialic acid, which 

provide efficient carbon sources for late-arriving pathogens such as Clostridium difficile and 

Salmonella enterica subsp. enterica serovar Typhimurium73. Similarly, some early colonizers 

such as E. coli deplete oxygen in the infant gut, facilitating subsequent colonization by 

obligate anaerobes such as Bacteroides spp.69 while making the environment less hospitable 

to facultative anaerobes.

Newly arriving microbial taxa vary in both the effect they have on the local environment and 

the resources that they must acquire from it for survival and reproduction. Strong priority 

effects can occur when early-arriving species have a large effect on the local environment or 

when late-arriving species have high environmental requirements19 (FIG. 3a,b). 

Furthermore, for an early-arriving species to pre-empt a niche from a late-arriving species, 

the two must have a high degree of niche overlap19,74 (FIG. 3c). This condition has been 

demonstrated in mouse colonization models in which isogenic strains with complete niche 

overlap exhibit strong priority effects over one another75,76. Although the mechanisms of 

priority effects are usually unknown, Lee et al. identified a bacterial genetic locus, 

commensal colonization factor (ccf), that mediates priority effects in host-associated 

Bacteroides spp.77. Consistent with the niche overlap expectation (FIG. 3c), gnotobiotic 

mice that are colonized with a single Bacteroides sp. are resistant to colonization by the 

same, but not different, species77. The ccf locus enables Bacteroides spp. to associate with 

colonic crypts, thereby excluding later immigrants77. In fact, non-toxin-producing 
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Bacteroides fragilis can limit the colonization of enterotoxigenic B. fragilis in specific 

pathogen-free (SPF) mice, demonstrating that priority effects through niche pre-emption 

could be a powerful tool in the design of probiotic-based prophylaxis78.

Microorganisms can also modify niches found in the human body through interactions with 

the host immune system. For example, Bacteroides spp. colonization can affect innate 

immune signalling79, endotoxin tolerance79 and T helper 1 (TH1) cell immune responses27, 

and Bifidobacterium spp. can modulate vaccine response80 and increase cytokine production 

in vitro81. These immune-mediated effects can occur even as the result of prenatal microbial 

exposure. Colonization of pregnant mice with the HA107 strain of E. coli, which was 

genetically engineered to be unable to persist in the intestine, demonstrated that microbial 

metabolites, independent of the microorganisms themselves, can increase both intestinal 

group 3 innate lymphoid cells and F4/80+ CD11c+ mononuclear cells in neonate pups while 

also decreasing bacterial translocation to the mesenteric lymph nodes82. The transient 

gestational colonization affecting both immune development and microbiota structure in 

offspring suggests that priority effects can occur before microorganisms even have the 

opportunity to colonize82.

Species pools in early life

The role that priority effects play during community assembly is determined by the 

characteristics of the microbial taxa contained in the pool of potential colonizers19. For 

example, a species pool that is taxonomically and functionally more diverse might be more 

likely to contain taxa that yield priority effects19. Therefore, to understand whether priority 

effects influence community assembly, it is helpful to characterize the set of microorganisms 

that have the potential to colonize the infant gut in early life, including those originating 

from host-associated, environmental and yet unknown sources (FIG. 4). However, defining a 

species pool is often challenging, and few investigations of early-life colonization have 

attempted to characterize all sources of microorganisms that are capable of colonizing an 

infant.

The microbiota of family members, medical personnel, birth attendants and other caretakers 

can all contribute to the species pool of an infant’s gut (FIG. 4). The first site with which 

many infants come into contact is the maternal birth canal. Vaginal communities have been 

classified into five distinct community state types (CSTs), with four of the five exhibiting 

somewhat low diversity and domination by a distinct Lactobacillus spp.83. If delivered via 

caesarian section, infants can instead first come into contact with the mother’s skin26, which 

harbours more diverse communities than the vagina and therefore might contain more 

species capable of causing priority effects. Although delivery mode is correlated with 

differences in early postnatal microbiota structure, mothers who deliver via caesarian section 

(both planned and emergency) are commonly prescribed antibiotics84 and are often not able 

to breastfeed as early as those who deliver vaginally85, confounding the effect of delivery 

mode on microbiome assembly. Nonetheless, some mothers intentionally wipe their 

caesarian-delivered infants with their vaginal secretions in an attempt to simulate the priority 

effects that occur following vaginal delivery, although the health benefits remain 

unproven86.
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The skin microbiota has ample opportunity to disperse while the infant is in contact with 

their mother during sleep or feeding23,87,88. Kangaroo mother care, or immediate and 

continual skin-to-skin contact between mothers and newborn babies immediately following 

birth, is commonly recommended for pre-term infants because it decreases the risk of sepsis 

and increases breastfeeding rates89, effects that could be partially mediated by increased 

transmission of commensal bacteria90. As discussed earlier, breast milk contains bacteria, 

although its composition varies with lactational stage, delivery mode and the mother’s 

health59,91. Microbial diversity and abundance are several orders of magnitude higher in the 

gastrointestinal tract, and transmission of the mother’s gut microbiota to the newborn baby 

has been observed in many studies28,35,36,68. A mother’s diet affects both the structure of her 

gut microbiota and the nutritional and microbial composition of her breastmilk92,93. In 

addition to mothers, studies have reported an effect of fathers25,94, older siblings95,96, furry 

pets97 and day care attendance92 on microbiota assembly.

In addition to microbiota found on the mother’s body or other family members’ bodies, a 

newborn infant is exposed to a myriad of other microorganisms in their environment, each 

with their own habitat-specific features (FIG. 4). Experiments with gnotobiotic mice 

demonstrate that microorganisms from many diverse environmental and host-associated 

habitats can colonize the mouse gut98. Competitive invasion assays showed that a soil-

derived Ruminococcus sp. was able to invade gut-adapted microbial communities98. 

Furthermore, bacteria from the human gut colonize co-housed germ-free mice via 

coprophagy even faster than microorganisms from conventionally raised mice98. This 

counterintuitive result can be explained in part by priority effects because well-adapted 

species are limited in their ability to diversify. Specifically, it is possible that well-adapted 

species can outcompete less-adapted mutants and dominate regardless of their colonization 

order, while nonadapted strains are able to diversify rapidly and exert priority effects, but 

this occurs only if they arrive early enough to pre-emptively exploit the resources in that 

niche19.

The role of microorganisms from the built environment might be underappreciated during 

host-associated assembly. Infants born at home are less frequently colonized by E. coli and 

C. difficile than those born in a hospital95, although these environmentally acquired 

microorganisms can also vary between hospitals99. This effect is especially apparent in 

premature infants that lack normal immune development and might therefore be more 

susceptible to priority effects owing to reduced host selection100.

Infant-care-associated behaviours (ICABs) that affect microbial dispersal have evolved 

owing to changes in societal and family structures, diets, medical practices, travel, migration 

patterns, urbanization and housing environments. Parents can transmit oral microorganisms 

to their infants by kissing101, premasticating solid foods102, cleaning pacifiers with their 

mouths103 or other ICABs that place newborn babies in contact with an adult’s microbiota 

(FIG. 4). ICABs are variable across cultures. For example, anointing newborn babies with 

oil or other emollients104 is a common practice across southeast Asia. In many parts of 

India, it is customary to not breastfeed for the first several days of an infant’s life and instead 

administer prelacteal foods that include honey, ghee (clarified butter), water, tea, jaggery 

(brown sugar) and ghutti (a herbal paste)105–107. Infants themselves instinctively explore 
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their local environment with their hands and put their hands and other nonfood items in their 

mouth, which when persistent is characterized as a psychological disorder known as pica108. 

A large comparative study found that the gut microbiota of Guahibo Amerindian mothers 

living in Venezuela were more similar to those of their own child than to those of unrelated 

children, while mother–child dyads from Malawi were not more similar than unrelated 

pairs109. Differences in the occurrence and timing of ICABs among cultures could explain 

some of the observed differences in microorganisms that are shared between mothers and 

their infants. If priority effects are a major driver of gut microbiota assembly, it might be 

possible to steer the trajectory of microbiome assembly towards a healthy adult-like state by 

modifying ICABs related to parturition and early life.

Consequences of priority effects

Priority effects could explain some puzzling observations of microbiota assembly and 

consequences for the host. For example, one study based on the use of an SPF porcine model 

of microbiota assembly discovered strong batch effects during efforts to replicate the 

findings110. Two groups of identical animals housed in the same SPF animal facility ended 

up with divergent communities. The investigators found that stochastic variation in 

Clostridia colonization in the first day of life caused sustained, broad colonization 

differences at day 35 (REF. 110). Priority effects driving the communities towards 

alternative states might have been responsible for this finding. Priority effects can also cause 

a community to enter an oscillating compositional cycle or cause more complex patterns, 

such as those arising from nontransitive or ‘rock-paper-scissors’ types of interactions111. 

Examples of compositional cycles include predator–prey dynamics, such as those that have 

been observed during infant gut assembly between strains of Staphylococcus epidermidis 
and their bacteriophages112. The population dynamics of these communities are historically 

contingent because their composition is dependent on the specific sequences of species 

arrival.

Broad-spectrum antibiotics are commonly used in early life in humans, often with little 

regard for potential long-term consequences of priority effects for microbiota assembly113. 

Broad-spectrum antibiotics cause a strong perturbation of the microbial communities in the 

infant gut, possibly altering its maturational trajectory68,69,95,114–117. Antibiotic use by 

mothers can also alter the regional species pool of the infant118. These perturbations can 

have lasting effects on host metabolism, immune development and health, especially if they 

occur during critical immune developmental windows early in life117,119. Realizing the 

benefits of probiotics in mitigating these adverse effects requires an understanding of 

possible priority effects and the consequences of alternative assembly patterns. Priority 

effects can be particularly important to consider when they involve catalytic species, which, 

given the right timing, invade a community, change its composition and then go locally 

extinct120. These species create ‘Humpty-Dumpty’ communities; that is, communities that 

cannot be reassembled just from the set of species that they contain120. Such circumstances 

underscore the need for detailed records of colonization history.

Sprockett et al. Page 8

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Future research needs

Perhaps the greatest challenge for investigating factors that influence gut microbiota 

assembly is the limited set of opportunities for experiments with humans. Experimental 

manipulation of bacterial colonization history, which is necessary to rigorously evaluate 

priority effects, might pose health risks to the developing infant and therefore should not be 

implemented without careful review. Nevertheless, some clinical situations might be 

amenable to interventional studies in which bacterial exposure is intentionally altered 

through the use of antibiotics, probiotics or techniques such as vaginal microbiota transfer86. 

For example, when populations of comparable infants vary in the timing of probiotic 

supplementation relative to antibiotic use, this variation could be used to test for priority 

effects and clinical consequences for the host. In fact, the results of probiotic interventions 

might depend on the specific organism and the timing and dosage of its administration, 

which might be in part caused by priority effects in the microbiota. One study found that 

Bifidobacterium breve BBG-001 administered within the first 48 hours of life had no effect 

on necrotizing enterocolitis or late-onset sepsis121, while another found that use of 

Lactobacillus plantarum ATCC-202195 in conjunction with a prebiotic 

fructooligosaccharide in the first week of life reduced neonatal sepsis by 40%122. Broad 

conclusions, such as the suggestion in a 2014 Cochrane review that probiotics can help 

prevent necrotizing enterocolitis in preterm infants123, seem premature at this stage. This 

meta-analysis pooled results from 24 randomized trials using a range of organisms, 

including Saccharomyces boulardii, Lactobacillus spp., Bifidobacterium spp. or a mixture of 

several bacteria and/or fungal taxa, administered at different time points and for different 

durations. The effects of specific strains and the timing of their administration on priority 

effects and subsequent microbiota beneficial services should be examined carefully before 

this practice is widely endorsed.

Other opportunities to observe and investigate priority effects with limited additional risk to 

the infant include cases in which there is natural variation in microbial colonization or in the 

species pools, such as during cross-cultural comparisons of ICABs, although confounding 

variables make inference complicated. Moreover, stool provides only a limited view of the 

microbial interactions that occur throughout the lumen of the gut and poorly reflects 

interactions among mucosa-associated microorganisms, especially those that take place in 

more proximal regions of the gastrointestinal tract4,124. Endoscopic biopsies, mucosal 

brushings and other sampling approaches are likely necessary to observe these fine-scale 

interactions. In addition, studying how communities assemble at other body sites that are 

more amenable to experimental intervention, such as transplant experiments among skin or 

oral communities125, might yield insight into the factors that shape community assembly in 

the gut. In concert with experimental and clinical data collection, statistical techniques for 

analysing the data should be improved, and methods developed in the ecological 

literature126 should be helpful.

We have focused primarily on bacteria, but priority effects are also possible across domains 

of life (that is, between bacteria and archaea and/or eukaryotic microorganisms)127–130. In 

particular, diverse fungal communities are present in infants131. Fungi are transmitted from 

mother to infant in early life, their dispersal history can be highly variable among infants, 
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and once immigrated, they can interact strongly with bacteria87. Yet we have little 

understanding of how they affect microbial community assembly via priority effects. Studies 

on the infant gut should consider the broadly defined microbial community.

Conclusions

We have discussed the mechanisms, conditions and consequences of priority effects that 

might affect microorganisms in the gastrointestinal tract. Ecological theory and 

circumstantial evidence strongly suggest that priority effects are important to infant health, 

but definitive direct evidence is largely lacking. Given that we now have the foundational 

concepts from community ecology and many of the molecular and computational tools 

needed to study the microbiome, we believe the time is ripe for studying priority effects by 

use of clinically relevant data to improve microbiome management.
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Community assembly

The construction and maintenance of local communities through sequential, repeated 

immigration of species from a regional species pool.

Regional species pool

The set of species that could potentially colonize and establish within a community.

Niche pre-emption

Occurs when the first species to arrive in a given habitat uses or otherwise sequesters 

resources and, as a consequence, inhibits the colonization of later species.

Community state types

(CSTs). Categories of stereotypical microbial communities that are typically defined by 

their dominant taxa and found at a given body site.
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Key points

• Infant gut microbiota assembly is driven by four ecological processes — 

dispersal, diversification, drift and selection — and can be understood by 

resolving their relative contributions, mechanisms and interactive effects

• Priority effects, whereby the order and timing of dispersal alters how 

diversification, drift and selection affect infant gut microbiota assembly, could 

have long-lasting consequences for host health

• Priority effects in the infant gut are influenced by the regional species pool, 

which is made up of numerous local communities, some of which are host-

associated, while others are not

• To understand the role of priority effects in the infant gut, future studies in 

model systems should intentionally vary dispersal order and timing

• In future studies, when intentional variation in dispersal order is not feasible, 

dispersal order should be carefully recorded along with relevant 

environmental variables

• An understanding of the processes that govern priority effects can be used to 

inform microorganism-based therapies and manage strategies aimed at 

guiding the microbiota towards a healthy state
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Figure 1 |. Four processes that affect ecological communities.
a | The arrow represents dispersal of an organism (orange circle) from Environment 1 

(orange shading) to Environment 2 (blue shading). b | Deterministic fitness differences 

between two species (orange circle, blue triangle) cause the orange environment to select for 

one (orange circle) and against the other (blue triangle). c | Stochastic changes in the relative 

abundances of two species (orange area and blue area) result in changes in community 

structure within one environment through time. As a result, one population (blue) has gone 

locally extinct by the end of the time period. d | Mutation and/or recombination within a 

population (blue and orange areas) results in new genetic variation through time, leading to 

new strains (as denoted by different shades).
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Figure 2 |. Contrasting hypothetical patterns of community assembly in the infant gut.
An illustration of how infant microbial communities assemble with deterministic host 

selection (top) or priority effects (bottom). The shapes represent different taxa, while the 

colours represent the community state. Under deterministic host selection, the state of the 

assembling community is determined by host features that select for the blue 

microorganisms regardless of colonization order. With priority effects, colonization order 

can matter more than species identity.
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Figure 3 |. Hypotheses on species features causing strong priority effects.
Both early-colonizing (Microorganism 1) and late-colonizing (Microorganism 2) 

microorganisms have their own set of requirements for colonizing a given environment as 

well as a distinct effect on that environment74. The width of the arrow denotes the strength 

of each microorganism’s effect niche and requirement niche. a | Microorganism 1 has a large 

effect on its environment, resulting in a modified niche that inhibits colonization by 

Microorganism 2. b | Microorganism 2 has a high niche requirement and is therefore more 

sensitive to smaller modifications to the niche that can inhibit its colonization. c | 

Microorganisms 1 and 2 have high niche overlap, meaning that Microorganism 1 is able to 

pre-empt the niche and inhibit colonization by Microorganism 2. Niche overlap is not 

necessary if the priority effects occur by way of the environment, as in parts a and b.
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Figure 4 |. Local species pools that contribute to the regional pool of microorganisms available 
for colonization of the infant gut.
Infants are colonized by microorganisms from host-associated communities, environmental 

communities that are not host adapted, and unknown microbial sources. The thickness of the 

arrows denotes the hypothesized relative contributions of microorganisms from different 

sources that disperse to and stably colonize the local community (infant gastrointestinal 

tract).
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