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Abstract

Some of the earliest reports of the effects of cannabis consumption on humans were related to 

endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 

cannabinoid receptor in the regulation of the following endocrine systems are discussed: the 

hypothalamic-pituitary-gonadal axis; prolactin and oxytocin; thyroid hormone and growth 

hormone; and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are 

presented.
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1. Introduction

Endocannabinoid signaling (ECS) plays a wide variety of modulatory roles throughout the 

central nervous system (CNS). The endocannabinoid system consists of two G protein 

coupled receptors, CB1 receptor (CB1R) and CB2 receptor (CB2R); the vanilloid subtype of 

transient potential receptor and members of the peroxisome proliferator activated receptor 

family. Two endocannabinoid (eCB) ligands have been identified: N-

arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Both are synthesized 

from phospholipid precursors in an “on demand” manner and are metabolized by hydrolysis. 

AEA is hydrolyzed by fatty acid amide hydrolase (FAAH), while 2-AG is hydrolyzed by 

monoacylglycerol lipase (MGL) and by alpha-beta hydrolase 6 (Marrs et al., 2010). Both 

AEA and 2-AG are also substrates for cyclooxygenase 2, which converts them to 

ethanolamide and glycerol substituted prostaglandins, respectively (Hermanson et al., 2014).

Within the CNS, ECS mediates activity-dependent, retrograde signaling in many brain 

regions, including the hippocampus, prefrontal cortex, amygdala and cerebellum (Freund et 

al., 2003). In most cases, 2-AG is mobilized in postsynaptic neurons by receptors that 

activate phospholipase C (PLC), including the metabotropic glutamate family of receptors. 

The diacylglycerol (DAG) that is produced is further metabolized by DAG lipase to 

monoacylglycerol, including 2-AG. 2-AG acts on presynaptic CB1Rs to inhibit 
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neurotransmitter release, through inhibition of the opening of voltage operated calcium 

channels.

The CB1R is also present outside the CNS, including adipose tissue, liver and the adrenal 

gland. The CB1R in adipose and liver promotes the storage of fat and reduces fat utilization 

(Silvestri et al., 2011). There is little known about the sources of the eCBs that innervate the 

non-CNS CB1R. However, the eCBs are present in the circulation and recent data indicate 

that the circulating concentrations of 2-AG are nearly 4 times higher at noon than at 4 am in 

healthy humans (Hanlon et al., 2014), leading to the hypothesis that circulating eCBs 

activate these receptors and thereby coordinate adipose and liver function with caloric 

intake.

Formulations of the cannabis plant have been used by humans for thousands of years for the 

treatment of a variety of conditions, including pain and spasticity (Kumar et al., 2001). Δ9-

Tetrahydrocannabinol (THC) is a direct agonist of the CB receptors and is responsible for 

these medicinal effects as well as the feeling of euphoria or “high” that is sought by those 

using cannabis recreationally. There are many other chemicals in the plant that also have 

beneficial effects, but whose mechanisms are not as well understood (Devinsky et al., 2014).

CB1Rs are present in the hypothalamus at relatively low density compared to other brain 

regions (Herkenham et al., 1991); however, it is argued that this population of cannabinoid 

receptors is highly active, given the broad range of endocrine effects of the cannabinoids 

(Fernandez-Ruiz et al., 1997). Within the hypothalamus, the CB1R protein is 

heterogeneously distributed (Wittmann et al., 2007). CB1Rs are present on both symmetrical 

and nonsymmetrical synapses and most immunoreactivity is in preterminal and terminal 

portions of axons. There is sparse CB1R distribution within the suprachiasmatic and lateral 

mammillary nuclei, but other regions of the hypothalamus express significant amounts of 

CB1R.

Hypothalamic CB1R density differs between male and female rodents (Rodriguez de 

Fonseca et al., 1994) and this likely reflects important sex-related endocrine differences as 

well as differences in cannabinoid effects between male and female animals and humans 

(Craft et al., 2012). CB1R mRNA has been identified in the external zone of the median 

eminence (Wittmann et al., 2007, Herkenham et al., 1991) and CB1Rs are expressed at low 

levels in the intermediate and anterior lobes of the pituitary gland (Pagotto et al., 2001).

2. Cannabinoid interactions with the hypothalamic-pituitary-gonadal 

(HPG) axis

The first step in the regulation of the HPG axis involves the peptide hormone, gonadotropin 

releasing hormone (GnRH), which is produced by neurons in the preoptic area of the 

hypothalamus. GnRH secretion is pulsatile and it affects the release of two pituitary 

hormones through receptors in the anterior pituitary: low frequency GnRH pulses induce the 

release of follicle stimulating hormone (FSH) while high frequency pulses induce luteinizing 

hormone (LH) release. In males, the frequency of GnRH release is constant; while in 

females, frequency increases significantly at the time of ovulation, resulting in a surge of 
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LH. FSH and LH regulate follicular growth, ovulation and maintenance of the corpus luteum 

in females and spermatogenesis in males.

CB1R activation inhibits the release of GnRH through effects in the hypothalamus in male 

rats. Studies in isolated hypothalamic tissue demonstrated THC-induced suppression of 

simulated but not basal GnRH release (Rettori et al., 1990) and inhibition of pulsatile GnRH 

release by other CB1R agonists (Gammon et al., 2005). Mediobasal GnRH was increased by 

intracerebroventricular (i.c.v.) THC treatment, data consistent with a reduction in GnRH 

release in the pituitary (Wenger et al., 1987). However, another study demonstrated reduced 

concentrations of GnRH in the preoptic area and mediobasal hypothalamus following in vivo 
THC treatment (Kumar and Chen, 1983). It is possible that the discrepancy between these 

two studies is the result of different stimulus durations.

Cells adjacent to GnRH-secreting cells express CB1R mRNA (Gammon et al., 2005) and a 

subset of neurons forming symmetrical synapses with GnRH neurons express CB1R protein 

(Farkas et al., 2010). CB1R activation inhibits gamma aminobutyric acid (GABA) release 

onto GnRH neurons (Glanowska and Moenter, 2011, Farkas et al., 2010), data in agreement 

with the predominant effect of CB1Rs being suppression of neurotransmitter release (Freund 

et al., 2003). Reduced release of GABA is associated with increased excitatory drive, so 

these data seem to contradict the findings described above that CB1R agonists inhibit GnRH 

release. However, GABA can depolarize GnRH neurons under some circumstances 

(Herbison and Moenter, 2011), and thus, inhibition of GABA release could paradoxically 

decrease GnRH neuronal activation. Alternative mechanisms have been suggested; for 

example AEA-induced inhibition of GnRH release evoked by NMDA in mediobasal 

hypothalamic fragments was blocked by both a CB1R antagonist and bicuculline, suggesting 

an increase in GABA release (Fernandez-Solari et al., 2004). Other data suggest that THC 

acutely suppresses norepinephrine stimulation of GnRH release (Steger et al., 1990, Murphy 

et al., 1990). Chronic treatment of male mice with bhang (a cannabis preparation) results in 

reduced expression of receptors for GnRH in the pituitary (Banerjee et al., 2011). Thus, 

while the effect of activation is consistently depression of GnRH release, currently available 

evidence suggests that multiple mechanisms are involved.

Given the differences in patterns of release of GnRH between male and female, it is not 

surprising that sex steroid status profoundly affects CB1R regulation of GnRH release 

(Scorticati et al., 2004). In particular, AEA had no effect on GnRH release in ovariectomized 

(OVX) rats and increased GnRH release in hypothalamic tissues from OVX rats in which 

estrogen is replaced (Scorticati et al., 2004). In agreement with findings obtained in 

experiments with other systems (Craft et al., 2012), it seems that estradiol is an important 

contributor to differences in response to CB1R activation. An earlier study also found 

opposite effects of in vivo THC treatment on hypothalamic GnRH in male and OVX female 

rats (Kumar and Chen, 1983).

In accord with the evidence that CB1R activation suppresses GnRH release, many studies 

also find that THC decreases circulating LH concentrations in male rats (Marks, 1973, 

Murphy et al., 1990); intact female mice (Dalterio et al., 1983a); OVX female rats (Tyrey, 

1978); and OVX female monkeys (Smith et al., 1979). The effect of THC in monkeys was 

Hillard Page 3

Handb Exp Pharmacol. Author manuscript; available in PMC 2019 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reversed by the administration of GnRH (Asch et al., 1981), which is consistent with THC-

induced suppression of hypothalamic GnRH release. AEA treatment reduced circulating 

concentrations of LH in wild type but not CB1R −/− mice (Wenger et al., 2001), data 

supporting the CB1R as the site of action for THC- and other cannabinoid-induced 

suppression of LH release. Administration of THC by i.c.v. administration also decreases 

LH but not FSH release, support for a CNS site of action (Wenger et al., 1987).

It is well known that stress dysregulates the HPG axis, resulting in negative consequences on 

reproduction. Stress elevates hypothalamic endocannabinoid concentrations (Patel et al., 

2004), likely through glucocorticoid receptor activation (Evanson et al., 2010), leading to the 

hypothesis that ECS mediates stress-induced inhibition of the HPG axis. In support of this 

hypothesis, recent data demonstrate that immobilization stress-induced decrease in LH 

release in male rats is reversed by CB1R antagonist treatment (Karamikheirabad et al., 

2013).

There is considerable evidence that systemically administered THC and other cannabinoid 

agonists suppress testosterone production and circulating concentrations in animal models 

(Dalterio et al., 1977, Jakubovic et al., 1979) and chronic exposure induces regression of 

testes (Dixit et al., 1977, Kumar and Chen, 1983). These data are consistent with an ability 

of THC to suppress LH release, secondary to reduced GnRH. However, CB1R −/− mice 

exhibit decreased circulating testosterone (Battista et al., 2008), which is at odds with the 

inverse effect of CB1R activation and HPG activation outlined above. However, there is 

evidence that CB1Rs are also expressed in the testes and play a role in the postnatal 

differentiation and maturation of Leydig cells (Cacciola et al., 2008). Thus the reduction of 

testosterone in CB1R−/− mice could be the result of abnormal Leydig cell development. 

Components of the ECS are also present in Sertoli cells (Maccarrone et al., 2003) and THC 

inhibits FSH-induced signaling in Sertoli cell cultures (Heindel and Keith, 1989). Thus, ECS 

can alter the responsivity to testosterone in addition to its production.

Cannabinoid-mediated dysregulation of HPG activity has been found to have consequences 

on female reproduction as well. THC treatment blocks ovulation and the LH surge in rats 

(Nir et al., 1973) and high doses of cannabis extract decrease progesterone concentrations 

during the luteal phase of mice (Kostellow et al., 1980). THC treatment of monkeys in the 

follicular phase decreases both ovulation, and LH, FSH and estrogen concentrations in the 

circulation (Asch et al., 1981). On the other hand, THC has been show to facilitate sexual 

receptivity in female rats, possibly as a result of direct effects on the progesterone receptor 

(Mani et al., 2001).

In spite of consistent findings of changes in HPG function by ECS in both male and female 

preclinical models, data from humans using cannabis are far less consistent (see Gorzalka et 

al., 2009 for an excellent review). A recent meta-analysis of the effects of cannabis use on 

male fertility concluded that THC can have negative effects on male fertility (Fronczak et 

al., 2012), but epidemiological studies do not support this conclusion in the population at 

large (Hall and Solowij, 1998). It is possible that tolerance or sensitization develops to the 

effects of THC on reproduction in humans (Gorzalka and Dang, 2012). A study in Korean 

males in which cannabis effects on the ratio of urinary testosterone/epitestosterone was 
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examined, an 8-fold suppression was detected in 30 year old cannabis users (total number 

studied was 18), but not in other age groups (Moon et al., 2014). More to the point, 3.7% of 

couples presenting to an infertility clinic in Italy were positive for cannabis, which exceeds 

the incidence of cannabis use in the overall population (Pichini et al., 2012). These studies 

suggest that cannabis use can contribute to infertility in some couples.

3. Interaction of cannabinoids with hormones of lactation

3.1. Prolactin

Prolactin, a peptide hormone secreted from lactotrophs of the anterior pituitary, is essential 

for lactation and its release is promoted by suckling. Prolactin release is also evoked by 

copulation, ovulation and eating, and it plays roles in a diverse number of physiological 

processes in addition to milk production, including sexual satisfaction, immune regulation 

and hematopoiesis (Majumdar and Mangal, 2013). Prolactin release is tonically inhibited by 

dopamine, released from tuberoinfundibular neurons and acting through D2 dopamine 

receptors (Majumdar and Mangal, 2013).

Preclinical studies consistently demonstrate that CB1R agonists reduce prolactin 

concentrations in the circulation through an effect upstream of the pituitary. Both 

intravenous (Hughes et al., 1981) and i.c.v. (Rettori et al., 1988) administration of THC 

produce long-lasting inhibition of prolactin release in male rats. This effect is shared by 

AEA and inhibited by the CB1R antagonist, rimonabant (Fernandez-Ruiz et al., 1997). THC 

has no effect when the pituitary is removed from hypothalamic influence (Hughes et al., 

1981) and does not affect prolactin release when incubated directly with dispersed pituitary 

cells (Hughes et al., 1981, Rettori et al., 1988), suggesting an effect in the hypothalamus or 

CNS. Data from nonhuman primates are in accord with the rat findings; in particular, THC 

suppresses prolactin basally but does not inhibit prolactin release induced by thyrotropin 

releasing hormone (TRH) (Asch et al., 1979). There is evidence that cannabinoids can also 

regulate prolactin secretion through effects in the pituitary. For example, 2-AG was found to 

potentiate forskolin- and adenosine-induced prolactin secretion from cultured pituitary cells 

from Syrian hamsters in a CB1R-dependent manner (Yasuo et al., 2014). CB1R antagonist 

treatment does not affect prolactin concentrations in rats (Black et al., 2011), evidence that 

the CB1Rs involved in regulating prolactin release are not tonically active.

Cannabinoids have been shown to increase the release of dopamine in several brain regions, 

including the hypothalamus (Rodriguez De Fonseca et al., 1992, Hao et al., 2000, Murillo-

Rodriguez et al., 2007, Murillo-Rodriguez et al., 2011). Given that dopamine exerts 

inhibitory control over prolactin release, cannabinoids could potentiate dopamine-mediated 

inhibition of prolactin through this mechanism. In support of this hypothesis, AEA 

inhibition of prolactin release in male rats is accompanied by an increase in dopamine 

turnover in the anterior pituitary (Scorticati et al., 2003) and the inhibitory effect of THC is 

occluded by dopamine antagonist treatment (Kramer and Ben-David, 1978).

The effects of cannabinoid agonists on prolactin in female rats is more complicated. 

Administration of THC to female rats in the morning of estrus results in decreased prolactin 

and increased dopamine turnover in the hypothalamus, a pattern that parallels the changes 
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seen in males (Bonnin et al., 1993). However, administration of THC in the afternoon of 

estrus, or in proestrus and diestrus, was without effect on prolactin, and had variable effects 

on dopamine turnover. Similarly, while an i.c.v. injection of AEA decreased circulating 

prolactin in males, the same dose had no effect on prolactin in OVX female rats and very 

significantly increased prolactin in OVX-estrogen replaced rats (Scorticati et al., 2003). 

While AEA increased pituitary dopamine turnover in male rats, AEA treatment decreased 

this measure in both OVX and OVX-estrogen replaced females in a CB1R-dependent 

manner. CB1R blockade significantly reduced prolactin in the OVX-estrogen replaced but 

not OVX rats, suggesting an increase in tonic CB1R activity in the OVX-estrogen replaced 

setting. These data are consistent with other evidence that estrogen increases the synthesis of 

eCBs in females (Huang and Woolley, 2012). Interestingly, THC was found to reverse the 

stimulatory effect of estrogen on prolactin release in female rats in vitro (Murphy et al., 

1991a) and in vivo (Murphy et al., 1991b). Since THC has low efficacy at the CB1R (Kearn 

et al., 1999), it is possible that it acts as an antagonist in this situation in which eCB tone is 

high. Several mechanisms have been suggested by which CB1R activation alters prolactin 

release in females, including direct effects on CB1Rs of dopaminergic terminals resulting in 

inhibition of dopamine release (Scorticati et al., 2003) or alterations in the sensitivity of 

lactotrophs to stimulation (Murphy et al., 1991a).

Cannabinoid effects on prolactin in humans parallel those seen in rodents. In a study carried 

out in young men, THC was found to produce a slight decrease in prolactin concentrations 

(Liem-Moolenaar et al., 2010). Two other studies in which THC was administered by 

inhalation to cannabis-experienced young men also found small but significant reductions in 

circulating prolactin concentrations measured 90 min after treatment (Klumpers et al., 2012, 

Kleinloog et al., 2012). Another study, which compared the effects of intravenous THC 

administration to experienced cannabis users and healthy controls, found no acute effect of 

THC on prolactin in either group (Ranganathan et al., 2009). On the other hand, these 

investigators found that baseline prolactin concentrations were very significantly lower in 

the cannabis users than controls, which could reflect dysregulation of prolactin release or be 

persistent effects arising from a significant body burden of THC.

Two studies have examined the role of dopamine signaling in the mechanism of action of 

THC. In one, haloperidol pretreatment abrogated the reduction in prolactin by THC (Liem-

Moolenaar et al., 2010), while in the other, THC continued to reduce prolactin in 

olanzapine-pretreated individuals (Kleinloog et al., 2012). These limited data and the very 

large increase in prolactin that results from dopamine receptor inhibition make these studies 

difficult to interpret.

3.2 Oxytocin

The hypothalamic-neurohypophyseal axis consists of magnocellular neurons within the 

supraoptic (SON) and periventricular nuclei (PVN) of the hypothalamus. These neurons 

synthesize the neuropeptides oxytocin (OXT) and vasopressin (VP) and send axonal 

projections to the posterior pituitary. Activation of magnocellular neurons results in the 

release of OXT and VP from axon terminals in the posterior pituitary. OXT and VP regulate 

reproduction and body fluid homeostasis through effects in peripheral organs. The release of 
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OXT and VP occurs in response to a wide variety of stimuli, including suckling, mating 

behavior, stress, fever and infection (McDonald et al., 2008).

In addition to acting as a hormone, OXT is also released within multiple limbic and cortical 

brain regions (McGregor et al., 2008). OXT receptors are present in non-hypothalamic brain 

areas (Neumann et al., 1993) and centrally released OXT contributes to maternal behaviors, 

and increases sexual and social interactions (McGregor et al., 2008).

A series of important and interesting papers have characterized a role for ECS in the 

regulation of activity in the magnocellular neurons of both the SON and PVN. CB1R 

activation by endogenously produced eCBs reduces glutamate release onto magnocellular 

neurons of the PVN and SON (Hirasawa et al., 2004, Di et al., 2005a, Di et al., 2003, Di et 

al., 2005b, McDonald et al., 2008). A variety of mechanisms can evoke eCB release from 

magnocellular neurons, including glucocorticoids, acting via a membrane receptor (Di et al., 

2003, Di et al., 2005a, Di et al., 2005b), OXT itself (Hirasawa et al., 2004, McDonald et al., 

2008), and alpha-melanocyte stimulating hormone (Sabatier and Leng, 2006). OXT also 

recruits ECS in layer V of the infralimbic region of the prefrontal cortex to decrease 

glutamate release (Ninan, 2011). A recent in vitro study suggests that AEA can also 

decrease the release of OXT through a mechanism requiring increased nitric oxide synthase 

activity, and CB2Rs and vanilloid receptors but not CB1Rs (Luce et al., 2014).

CB1Rs are also present on GABA terminals in the hypothalamus (Wittmann et al., 2007) and 

several studies support a role for ECS in the suppression of tonic GABA release onto 

magnocellular neurons (Oliet et al., 2007, Di et al., 2009, Wang and Armstrong, 2012). Low 

concentrations of OXT in the dendritic regions of the magnocellular neurons recruit ECS to 

produce a tonic inhibition of GABA release (Oliet et al., 2007). This process is hypothesized 

to provide a mechanism by which OXT itself can regulate inputs in an autocrine fashion that 

is coordinated and easily reversed when needed. The eCB that subserves this process is not 

known, although i.c.v. administration of the FAAH inhibitor, URB597 increases, while 

AM251 inhibits OXT release evoked by lipopolysaccharide (De Laurentiis et al., 2010). 

These data are consistent with an ability of AEA to inhibit GABAergic influence over the 

magnocellular SON neurons and thus potentiate OXT release.

Data from Tasker and colleagues suggest that 2-AG mediated inhibition of GABA release is 

normally opposed by efficient buffering by astrocytes of 2-AG released from magnocellular 

neurons (Di et al., 2013). When astroglia are retracted, as during dehydration, or 

metabolically inactivated, 2-AG-mediated inhibition of GABA release is revealed. These 

data are very interesting and suggest that the primary role for 2-AG is to regulate glutamate 

inputs into magnocellular neurons, but that under certain circumstances, an effect on GABA 

release can also occur. These data also suggest different roles for 2-AG versus AEA in the 

regulation of magnocellular neuronal activation.

In vivo studies of the effects of cannabinoids on circulating OXT, lactation and maternal 

behaviors suggest an inhibitory effect of the CB1R over OXT release, and are therefore in 

accord with evidence that CB1R activation inhibits glutamatergic drive onto magnocellular 

neurons. Early studies demonstrated that THC and a variety of cannabis extracts interfere 
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with nest building behavior in mice (Moschovakis et al., 1978) and rats (Sieber et al., 1980). 

In a more recent study, a synthetic CB1R agonist was demonstrated to produce a very 

significant reduction in circulating OXT concentrations and to reduce maternal behaviors 

(Vilela and Giusti-Paiva, 2014). Dexamethasone-induced disruption of suckling-induced 

secretion of OXT and maternal behavior is also blocked by CB1R antagonism (Vilela et al., 

2013). These data, together with the evidence that glucocorticoids mobilize ECS in the 

hypothalamus to inhibit glutamate release in the SON (Di et al., 2005a), are consistent with 

ECS-mediated suppression of OXT neurons.

Paradoxically, both dams treated with a CB1R antagonist (Schechter et al., 2012) and CB1R

−/− dams (Schechter et al., 2013) also exhibit poor maternal care, as measured by time to 

retrieve pups. However, circulating OXT concentrations are not different between wild type 

and CB1R−/− dams, suggesting that release of OXT is not affected by loss of CB1R 

signaling. CB1R−/− dams had significantly lower amounts of OXT receptor mRNA and 

protein in hippocampus than wild type dams and did not exhibit a postpartum-mediated 

increase as occurred in the wild type dams. These data indicate that the CB1R is needed for 

proper increases in CNS sensitivity to OXT following delivery, through regulation of 

increased OXT receptor expression.

Receptors for OXT are expressed in many brain regions involved in reward and drug 

seeking, including the nucleus accumbens and ventral tegmental area (VTA) (Vaccari et al., 

1998). OXT in these brain regions is thought to be involved in the production by 

cannabinoids of enhanced feelings of sociability (McGregor et al., 2008). The OXT system 

exhibits significant neuroplasticity and it has been hypothesized that chronic exposure to 

rewarding drugs, including THC, can down-regulate OXT-mediated signaling, and that loss 

of OXT signaling contributes to withdrawal (McGregor et al., 2008). Indeed, the 

administration of a moderate dose of THC for 7 days resulted in a significant reduction in 

expression of mRNA and protein for OXT in nucleus accumbens and VTA of rats without 

any effect in the hypothalamus (Butovsky et al., 2006). Similarly, chronic THC exposure 

results in lasting dysregulation of social interactions in rodents (O′Shea et al., 2004, O’Shea 

et al., 2006, Quinn et al., 2008). OXT itself is not a useful therapeutic, since it does not cross 

the blood brain barrier. However, lithium was shown to alleviate all of the symptoms of 

precipitated withdrawal induced by CB1R antagonism in CB1R agonist-tolerant rats, and 

this effect was accompanied by a large increase in circulating OXT concentrations (Cui et 

al., 2001).

A small study demonstrated that lithium treatment reduced withdrawal signs and promoted 

abstinence in chronic cannabis users (Bowen et al., 2005). However, a larger clinical trial 

recently published did not find any overall effects of lithium on withdrawal, although some 

of the individual withdrawal symptoms, including loss of appetite, stomach aches and 

nightmares were reduced (Johnston et al., 2014). While this study concluded that there was 

no clear advantage of lithium over placebo, the timing of lithium administration was such 

that its concentrations may not have been in a therapeutic range during the period of greatest 

withdrawal and further studies are warranted.
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4. Interaction of cannabinoids with hormonal regulation of growth, 

development and metabolism

4.1 Thyroid Hormones

The thyroid hormones, 3,5,3′-triiodothyronine and L-thyroxin, regulate development and 

metabolism in many mammalian tissues. Receptors for the thyroid hormones function as 

transcription factors, regulating gene transcription through thyroid hormone response 

elements in promoter regions of multiple genes (Flamant et al., 2007). Thyroid hormone 

release is the end-product of a regulatory cascade that includes hypothalamic TRH and 

pituitary thyroid stimulating hormone (TSH), defining a hypothalamic-pituitary-thyroid 

(HPT) axis.

Treatment of adult rats with THC reduces thyroid hormone concentrations in the circulation 

(Nazar et al., 1977, Rosenkrantz and Esber, 1980, Hillard et al., 1984). Several possible 

mechanisms for the effect have been suggested. Data showing that THC does not inhibit 

TRH-induced increases in circulating thyroid hormone (Hillard et al., 1984) together with 

evidence that CB1Rs are expressed on neurons innervating TRH-expressing neurons (Di et 

al., 2003, Deli et al., 2009) suggest that THC and other CB1R agonists can inhibit TRH 

release through effects in the hypothalamus. It is interesting in this regard that 

glucocorticoid-induced mobilization of ECS has been shown to inhibit glutamate release 

onto TRH-positive neurons in the hypothalamus (Di et al., 2003), suggesting that eCBs link 

stress and suppression of the HPT axis. Cannabinoids have also been shown to suppress the 

HPT axis at the pituitary (Veiga et al., 2008) and thyroid gland (Porcella et al., 2002). 

However, inhibition at the first step in a cascade such as the HPT axis will have the greatest 

impact in vivo.

TSH and thyroid hormone concentrations were all within normal limits and did not correlate 

with concentrations of THC or its major metabolites in a study of chronic cannabis users 

(Bonnet, 2013). These findings suggest that chronic exposure of adults to THC does not 

produce a long-lasting impact on HPT axis function in otherwise healthy adults. However, 

perinatal hypothyroidism can result in severe and irreversible cognitive deficits in later life 

(Bernal, 2007), suggesting that cannabis use during pregnancy could have adverse effects on 

fetal development through dysregulation of the HPT axis. In support of this notion, treatment 

of a trophoblast cell line with THC results in inhibition of proliferation and a nearly 3-fold 

reduction in the expression of thyroid receptor β1 (TRβ1) (Khare et al., 2006). This effect on 

TRβ1 expression is similar to what occurs in fetal growth restriction (FGR) (Ohara et al., 

2004). Since cannabis use has been associated with FGR (Zuckerman et al., 1989), it is 

possible that THC exposure during pregnancy could interfere with growth as a result of 

decreased expression of TRβ1 and, thus, a decrease in thyroid hormone effect.

One recent study indicates that thyroid hormone status also modulates ECS. Hypothyroid 

rats exhibit an increase in the inhibitory effect of CB1R agonism on the formation of spatial 

memories (Gine et al., 2013). This defect was normalized by administration of thyroid 

hormone. There was no difference in hippocampal CB1R expression between control and 

hypothyroid rats, suggesting that the effect of the thyroid hormone is to enhance CB1R 
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signaling. Hypothyroid rats have also been shown to have a 50% reduction in the cerebral 

expression of G protein receptor kinase 2 (GRK2) (Penela et al., 2000, Penela et al., 2001), 

an enzyme that participates in the desensitization of a variety of G protein-coupled receptors, 

including the CB1R (Kouznetsova et al., 2002). Thus, it is possible that loss of thyroid 

hormones results in dampening of a negative regulatory process that affects the CB1R.

4.2 Growth Hormone

Growth hormone (GH) is a polypeptide released from somatotrophs of the anterior pituitary 

that stimulates growth and regulates energy homeostasis. GH secretion is negatively and 

positively regulated by the hypothalamic peptides somatostatin and growth hormone 

releasing hormone (GHRH), respectively. Somatostatin and GHRH release are regulated by 

biogenic amines, metabolic status, sex hormones and sleep. GH is released in a pulsatile 

manner, with the largest GH peak occurring about an hour after the onset of sleep (Takahashi 

et al., 1968). Surges in GH release occur during waking as well, with a frequency of 

approximately 3–5 hours (Natelson et al., 1975).

Acute and chronic THC treatment of adult and adolescent rodents decreases basal 

circulating GH concentrations (Kokka and Garcia, 1974, Dalterio et al., 1983b, Dalterio et 

al., 1981) and suppresses episodic release of GH in adult male rats (Falkenstein and Holley, 

1992). A synthetic CB1R agonist also produces a dose-dependent suppression of GH in male 

rats (Martin-Calderon et al., 1998). Data that THC administration into the third ventricle 

also suppresses GH (Rettori et al., 1988); and THC increases somatostatin release from 

hypothalamic explants (Rettori et al., 1990), support the hypothesis that THC inhibits GH 

via increased somatostatin. CB1Rs are also expressed by GH secreting cells in the human 

pituitary, and CB1R agonist treatment inhibits GH secretion from acromegaly-associated 

pituitary adenomas in culture (Pagotto et al., 2001), although another study found no effect 

of THC on GH release from isolated pituitary cells (Rettori et al., 1988). The ability of 

ghrelin to increase GH release is not affected by CB1R antagonist treatment (Kola et al., 

2013).

5. Cannabinoids and the hypothalamic-pituitary-adrenal (HPA) axis

The HPA axis contributes to the circadian regulation of physiological function and is an 

essential component of the stress response. HPA axis activation begins with the 

neuropeptide, corticotrophin releasing hormone (CRH), which is synthesized by PVN 

neurons that respond to and integrate inputs from the amygdala, prefrontal cortex (PFC) and 

hippocampus (Herman et al., 2003). CRH induces the release of adrenocorticotropic 

hormone (ACTH) from the anterior pituitary which stimulates glucocorticoid synthesis and 

release from the adrenal cortex.

Output of the HPA axis, the glucocorticoids cortisol and corticosterone (CORT), have wide-

ranging effects on the body, influencing metabolism, immune function and behavior. The 

HPA axis is activated by both physical and psychological stress and glucocorticoids, acting 

via the glucocorticoid receptor (GR) are responsible for many of the homeostatic changes 

that follow stress, including increased food consumption and suppression of the immune 

system. However, the HPA axis also has “housekeeping” duties at basal concentrations that 
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are mediated by mineralocorticoid receptor (MR) activation, as these receptors have higher 

affinity for the corticosteroids than GRs. Circulating glucocorticoid concentrations are 

circadian and the highest concentrations of corticosterone are reached shortly after the 

beginning of the active period of the day.

As is the case for the other endocrine systems discussed, the ECS plays an important role in 

the regulation of the HPA axis at the level of the hypothalamus. Activation of CB1Rs in the 

PVN inhibits the release of glutamate onto CRH neurons, data consistent with CB1R-

mediated inhibition of the HPA axis (Di et al., 2003, Di et al., 2005b). ECS at this synapse is 

rapidly activated by CORT, leading to the hypothesis that ECS regulates CORT-mediated 

feedback inhibition (Evanson et al., 2010). In addition to effects in the PVN, CORT-

mediated increases in 2-AG also contribute to feedback regulation of the HPA axis in the 

medial PFC (Hill et al., 2011) and hippocampus (Wang et al., 2012). As a result of actions in 

all of these brain regions, deficient or absent ECS results in prolonged activation of the HPA 

axis by restraint stress (Hill et al., 2011).

ECS in the basolateral amygdala (BLA) also regulates the HPA axis: in particular, it 

constrains the initiation of HPA axis activation by stress. Intra-BLA injections of a CB1R 

agonist and antagonist decrease and increase, respectively, CORT responses to stress in male 

rats (Hill et al., 2009, Ganon-Elazar and Akirav, 2009). Since stress exposure produces a 

rapid decrease in BLA AEA concentrations (Hill et al., 2009), it has been suggested that 

AEA concentrations in BLA are high at rest and function to inhibit spurious activation of the 

HPA axis (Patel et al., 2004, Hill et al., 2009). In order for a robust HPA axis activation to 

occur, the concentration of AEA in the BLA must decrease. This is accomplished via 

activation of FAAH in the amygdala (Hill et al., 2009), likely through CRH acting through 

the CRH-R1 receptor (Gray et al., 2013). In further support of this mechanism, low 

concentrations of direct CB1R agonists and inhibition of FAAH inhibit activation of the HPA 

axis by restraint stress (Patel et al., 2004), while systemic administration of rimonabant 

increases circulating CORT concentrations in response to injection (Wade et al., 2006) and 

restraint stresses (Patel et al., 2004).

There is evidence that ECS negatively regulates basal and circadian HPA axis activation 

states as well. For example, i.c.v. administration of high doses of rimonabant increases 

circulating CORT and ACTH concentrations in rat, suggesting a tonic inhibition of HPA axis 

activation by the CB1R (Manzanares et al., 1999). Female CB1R−/− mice exhibit 

significantly elevated concentrations of both CORT and ACTH at the onset of the active 

period (i.e. dark phase) compared to wild type mice (Cota et al., 2007). CB1R antagonist 

treatment increased both ACTH and CORT concentrations in non-stressed rats; however, it 

had a far greater effect on CORT concentrations when administered during the diurnal 

trough than during the diurnal peak (Atkinson et al., 2010). These data suggest that 

endogenous tone at the CB1R is higher in the early light period than in the early dark period. 

In accord with this notion, we have recently demonstrated that hypothalamic contents of 

AEA are highest at the times of 07:00 and 11:00 and are low between 15:00 and 03:00 

(Liedhegner et al., 2014).
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In vivo studies showed that low doses of CB1R agonists other than THC reduced basal and 

stress-induced HPA axis responses in rodents (Patel et al., 2004, Saber-Tehrani et al., 2010), 

data that are consistent with the regulatory mechanisms discussed above. However, high 

doses of synthetic agonists (Patel et al., 2004), and THC treatment, increase circulating 

concentrations of CORT (Steiner and Wotjak, 2008). A pharmacological study in rats 

suggests that the cannabinoid-induced increase in HPA axis activity is secondary to 

activation of monoaminergic hindbrain nuclei as both noradrenergic and serotonergic 

blockade reduced the stimulatory effects (McLaughlin et al., 2009). It is interesting that this 

circuit seems to be preferentially activated by THC, while higher efficacy cannabinoids and 

AEA inhibit HPA axis through direct actions on limbic and hypothalamic circuitry as 

described above.

There is some evidence that CB1R activation regulates the HPA axis via effects in the 

pituitary and adrenal gland as well as in the brain. Pituitary cells isolated from CB1R−/− 

mice exhibited greater secretion of ACTH in response to both CRH and forskolin 

stimulation (Cota et al., 2007), suggesting an inhibitory role for the CB1R in the pituitary. 

CB1R mRNA is expressed in the adrenal gland of rodents (Buckley et al., 1998) and humans 

(Ziegler et al., 2010) and AEA-mediated activation of the CB1R has been found to decrease 

basal and stimulated adrenocortical steroidogenesis (Ziegler et al., 2010). Additionally, 

CB1R activation decreases epinephrine release from adrenal medullary cells (Niederhoffer et 

al., 2001). Therefore, ECS could decrease glucocorticoid synthesis within adrenocortical 

cells directly or via reduced sympathetic drive. This conclusion is supported by a study in 

which systemic administration of a CB1R antagonist elevated circulating CORT 

concentrations without an effect on ACTH or pituitary c fos expression, suggesting a direct 

effect of the antagonist on the adrenal gland (Newsom et al., 2012).

Human studies reproducibly demonstrate that acute consumption of cannabis (Cone et al., 

1986) or THC (D’Souza et al., 2004, D’Souza et al., 2008, Klumpers et al., 2012, 

Ranganathan et al., 2009, Kleinloog et al., 2012) increases the secretion of cortisol in 

individuals who were either naive to cannabis or infrequent users. The stimulatory effect of 

THC administration on cortisol levels was blunted in chronic cannabis users, suggesting that 

tolerance develops (D’Souza et al., 2008, Ranganathan et al., 2009). On the other hand, 

some (King et al., 2011, Somaini et al., 2012), but not all (Block et al., 1991), studies have 

reported that chronic cannabis users exhibit elevated basal cortisol levels, and other studies 

demonstrate that stress-induced activation of the HPA axis is blunted in chronic adult and 

adolescent cannabis users (Somaini et al., 2012, van Leeuwen et al., 2011). In adolescents 

with an early onset of use, chronic cannabis use is associated with altered diurnal cortisol 

rhythms such that cortisol concentrations are higher than normal at night and blunted in the 

morning (Huizink and Mulder, 2006). Taken together, the human data suggest that chronic 

cannabis use has the potential to dysregulate basal, circadian and stress-regulated HPA axis 

activity in a complex manner.

6. Summary

The hypothalamus is an important center for the regulation of metabolism, reproduction, and 

responses to stress. Although the density of the CB1R in the hypothalamus is lower than 
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other brain regions, it is clear from a vast number of studies that ECS plays a highly 

significant role in hypothalamic function through regulation of neurotransmitter release from 

glutamatergic, GABAergic and possibly other nerve terminals. The ECS is designed to act in 

a localized manner, and it is clear that it can regulate the activation state of several 

hypothalamic neuronal subtypes in an independent manner. However, stress produces an 

increase in eCBs in the hypothalamus, and it is possible, although not validated completely, 

that CB1Rs mediate the effects of stress on multiple endocrine systems.

A consistent theme throughout all available studies is that THC has relatively inconsistent 

effects in humans, in spite of consistent effects seen in preclinical studies. It is possible that 

individual differences in the underlying ECS result in inconsistent effects of THC. While it 

is tempting to conclude that THC does not have significant endocrine effects in humans, it is 

possible that THC could have significant effects in some individuals that increase the risk of 

health problems, including infertility, hypothyroidism, or problems in stress responding.
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Abbreviations:

2-AG 2-arachidonoylglycerol

ACTH adrenocorticotropic hormone

AEA N-arachidonoylethanolamine

BLA basolateral amygdala

CB1R type 1 cannabinoid receptor

CB2R type 2 cannabinoid receptor

CNS central nervous system

CRH corticotrophin releasing hormone

DAG diacylglycerol

eCB endocannabinoid

ECS endocannabinoid signaling

FAAH fatty acid amide hydrolase

FGR fetal growth restriction

FSH follicle stimulating hormone

GABA gamma amino butyric acid
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GH growth hormone

GHRH growth hormone releasing hormone

GnRH gonadotropin releasing hormone

GR glucocorticoid receptor

HPA hypothalamic pituitary adrenal

HPG hypothalamic pituitary gonadal

HPT hypothalamic pituitary thyroid

i.c.v. intracerebroventricular

LH luteinizing hormone

MGL monoacylglycerol lipase

MR mineralocorticoid receptor

OVX ovariectomized

OXT oxytocin

PLC phospholipase C

PVN periventricular nucleus

SON supraoptic nucleus

THC Δ9-tetrahydrocannabinol

TRß1 ß1 subtype of the thyroid hormone receptor

TRH thyrotropin releasing hormone

TSH thyroid stimulating hormone

VTA ventral tegmental area
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