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Abstract

Storage and quantitative analysis of small volumes of biofluids are challenging, especially when 

low concentrations of analytes are to be detected in the presence of complex matrices. In this 

study, we describe an integrated thread-based approach for stabilizing small blood volumes in the 

dry-state at room temperature, while also offering direct analysis capabilities via thread spray mass 

spectrometry. The analytical merits of this novel microsampling platform was demonstrated via 

the direct analysis of diazepam and cocaine in dried blood samples stored for 42 days. In-situ in-

capillary blood processing from hydrophobic threads enabled limits of detection as low as parts-

per-quadrillion to be reached. We validated this ultra-sensitivity by analyzing small tissue-like 

residues collected after pushing a thread through the sample once. The implications of this sample 

collection, storage and analysis platform can be extensive with direct applications in forensics and 

clinical studies.
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1. Introduction

Microsampling is essential for the rapidly changing healthcare system where the sustainable 

implementation of biobanks (collection and storage of biological specimens) is expected to 

reduce operational cost and increase access to a wider range of population groups [1–3]. 

This exciting new paradigm is challenged by difficulties in manipulating small sample 

volumes and maintaining analyte homogeneity in the microsample. For example, since there 

are currently no efficient methods for direct analysis of microsamples, dilution steps are 

deemed necessary to convert the small sample volume into a form that can be handled by 

traditional, large-volume analytical methods [4,5]. This dilution step does not only increase 

analysis time, but it also has severe consequences on the stability, storage and integrity of the 

sample [6,7]. The accuracy of small volume aliquots can be low, and the analysis of the 

diluted sample certainly requires a more sensitive instrument, one that might not be readily 

available in resource-limited settings. Another key challenge in microsampling, which 

involves the uneven analyte distribution in the collected sample, is a significant issue in 

dried blood spots (DBS) prepared on paper substrates [8–11]. Safeguarding homogeneity in 

microvolumes of liquid samples (<20 μL) is also not trivial due to (i) sample loss via 

potential adsorption of analyte to the wall of the container and the fact that (ii) cold storage 

often leads to unfavorable volume/surface ratios which results in evaporation (free-drying) 

after prolong storage [12].

Currently, there are multiple microsampling techniques utilized to circumvent these 

challenges. For example, the collection of small liquid samples via capillary microsampling 

(CM) [13] has significantly improved toxicological studies by reducing the number of 

animals required for safety assessments during drug development. After dilution, the 

collected blood sample is processed into plasma and stored under cold conditions for further 

downstream analysis in the laboratory. Remote sampling is more effectively achieved via 

collection platforms that allow dry-state sample storage. Lyophilization (freeze-drying) and 

vitrification (transformation into a “glass” state) have been used, but both techniques require 

vast resources and large volumes of blood [14]. Volumetric absorption microsampling 

(VAM) has been proposed as a microsampling technique and has recently been found to 

offer superior analyte recovery, stability and homogeneity compared with the traditional 

DBS method [15–17]. Like CM, however, direct sample analysis from VAM is not possible, 

requiring extensive sample preparation.

In this work, we present an integrated thread-based microsampling platform capable of (i) 

direct analysis of collected biological samples without dilution or pre-treatment, (ii) 

homogeneous distribution of the analyte within the collected microsample, and (iii) dry-state 

room temperature storage of blood samples, without a change in analyte integrity after 

prolong storage. Sample collection was achieved simply by dipping the thread substrate 

directly into the blood. Dried blood samples present on the thread substrates were directly 
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analyzed by thread spray mass spectrometry (MS) [18]. Contrary to other substrate-based 

ambient ionization methods where the simultaneous application of spray solvent and voltage 

limits analyte extraction [19–22], we will show that the ability to trigger spray/ionization 

after a specified analyte enrichment time (via delayed extraction) during thread spray 

ionization experiment can represent a unique feature in ambient MS, enabling ultra-sensitive 

analyte detection from raw untreated blood samples. Such a platform provides a facile 

solution to a long-standing challenge in clinical sample analysis where extensive sample 

preparation often increases turnaround times and instrument requirements. With the 

proposed thread-based sampling and analysis technique, we demonstrate the highest level of 

sensitivity ever reported for any type of direct MS analysis.

2. Methods and Materials

2.1 Chemicals and Reagents

Standard solutions (1.0 mg/mL) of diazepam, benzoylecgonine, cocaine, amphetamine, and 

(±)-methamphetamine were obtained from Cerilliant (Round Rock, TX) and human blood 

was purchased from Innovative Research (Novi, MI). (3,3,3-trifiuoropropyl)-silane and 

acetonitrile (99.9%, HPLC grade) were purchased from Sigma-Aldrich (St. Louis, MO), 

including standards for ethylene glycol, dimethyl sulfoxide, quinoline, and cyclohexanol that 

were used in the estimation of surface energy via bracketing. 100% Cotton was purchased 

from a local store (JoAnn Fabrics, Columbus, OH) and Kimble 51 expansion borosilicate 

glass melting point capillaries (O.D. 1.5 mm) were purchased from Kimble Chase 

(Rockwood, TN). A 2% solution of agarose (Sigma) and McCoy’s 5A media (containing 

10% fetal bovine serum (FBS) and L-glutamine) were obtained from Dr. Amanda 

Hummon’s laboratory, OSU.

2.2 Hydrophobic Thread Preparation

Thread (35 mm in length) was cut from the spool and placed in a plastic desiccator with 0.5 

mL of silanization reagent (Trichloro(3,3,3-trifiuoropropyl) silane. Vacuum was pulled for 5 

minutes, sealed, and then allowed to gas-phase react for a total of (n+5) minutes for each 

desired treatment time (n = 30 and 60 min). The trichloro(3,3,3-trifiuoropropyl)silane 

reagent was selected based on preliminary screening in prior studies [23], which indicated 

that it has high volatility, allowing the silanization chemistry to occur at room temperature 

without heating.

2.3 Mass Spectrometry

Mass spectra were acquired on a Thermo Fisher Scientific Finnigan LTQ linear ion trap 

mass spectrometer (San Jose, CA, U.S.A.). The tip of the thread was positioned parallel to 

the MS inlet via a copper alligator clip, which was connected to an external high-voltage 

supply (0–6 kV). The thread spray ionization method generates ions without gas assistance 

so a close interface distance (0.5–5 mm) between the tip and the MS inlet was used to 

optimize signal intensity. MS parameters used were as follows: 200 °C capillary 

temperature, 3 microscans, and 60% S-lens voltage. Thermo Fisher Scientific Xcalibur 2.2 

SP1 software was applied for MS data collecting and processing. Tandem MS with collision-
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induced dissociation (CID) was utilized for analyte identification and was optimized for 

each analyte.

2.4 3D Laser scanning confocal microscopy

3D surface topographic measurements of the threads were analyzed and captured using the 

Keyence 3D Laser Scanning Microscope VKX200 (Itasca, IL, U. S. A). Wetted thread was 

placed on a microscope slide onto the stage then adjusted and focused with 20 objective 

lenses, where the diameter of thread and sub-fibers were measured. At 20 power objective, 

optical laser images of the thread surfaces were recorded. 2D imaging occurs by using high-

frequency XY laser as a light source with lateral resolution of 408 nm. Thread sample was 

then observed using 50 objective lenses, where thread topographic analysis was performed. 

3D topographic imaging and surface analysis were achieved using objective lens moving in 

the z direction.

2.5 Doping of diazepam into agarose beads

Agarose beads were stored in a 96-well plate at 37 °C in 200 μL of McCoy’s 5A media with 

10% fetal bovine serum (FBS) and L-glutamine. To spike the beads with diazepam, we 

removed the old, stored media and fresh excess media was doped with varying 

concentrations of diazepam (50, 100, and 250 ng/mL). The beads were then soaked with 200 

μL of the fresh media containing FBS/L-glutamine/diazepam and left overnight before 

analysis. Only pink colored samples were analyzed because they indicated successful drug 

infusion.

3. Results and Discussion

3.1 Sampling and Analysis with Untreated Cotton Thread

Our previous work on thread spray mass spectrometry focused largely on forensic 

applications and we optimized various thread types pulled from the corresponding fabrics 

(without treatment) for direct analysis of capsaicinoids in pepper spray [18]. In the present 

work, we show excellent results for direct biofluid analysis by using spooled cotton threads. 

The spooled thread of specific weight (30 or 50 wt, see Supplemental Figure 1) was cut (~35 

mm) and used as is (hydrophilic) or after treatment with the vapor of trichloro(3,3,3-

trifiuoropropyl) silane reagent, which converted the surface OH groups of the thread into 

hydrophobic groups. Scanning electron microscope (SEM) image of a section of spooled 

cotton thread is shown in Figure 1A, accompanied by an illustration of the resultant 

modified hydrophobic layer afforded by gas-phase silanization, which converts the surface 

OH groups of the thread into hydrophobic groups [23]. The vertical capillary action on 

thread substrates allowed for correct volume estimation for blood samples less than 10 μL 

(Supplemental Figure 2). Unlike paper substrates, that are anisotropic in nature, the 

individual fibers in thread are unidirectional providing highly controlled fluid flow. For MS 

analysis of samples present on the thread substrate, we place the thread in a glass capillary 

and an organic solvent (e.g., ethyl acetate, 20 μL), which is immiscible in water, suitable for 

electrospray and has high solubilizing power is applied. This selectively extracts organic 

analytes from the blood sample (Figure 1B), leaving behind the aqueous components present 

in blood and minimizing their interference in MS analysis. By fitting the threaded glass 
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capillary in front of a mass spectrometer and applying a direct current (DC) voltage, the 

extracted molecules present in the organic solvent are ionized and transferred into the gas-

phase via an electrospray ionization mechanism. With the thread enclosed in a small 

capillary, solvent evaporation is limited, and extraction time can be effectively controlled, 

allowing up to 84% of organic compounds such as benzoylecgonine (partition coefficient 

(LogP) = −0.59) to be extracted from the thread substrate within 60 s using ethyl acetate 

(Figures 2A; also see Supplemental Data for further discussion).

To characterize the performance of the proposed method, we chose to evaluate the sensitivity 

and stability of diazepam, which is important both in medicine (used for treating pediatric 

status epilepticus) and forensics (where it is abused with illicit drugs). First, we sampled 10 

μL of blood spiked with diazepam using untreated, hydrophilic cotton thread. Direct thread 

spray MS analysis of these samples using 60 s extraction time resulted in excellent linearity 

in 0.2 – 100 ng/mL concentration range (Figure 2C). This calibration curve was constructed 

using isotopically labeled internal standard (IS), and monitoring analyte-to-internal standard 

ratio (A/IS) in tandem MS mode. Limit of quantification was determined to be 185 part per 

trillion (185 pg/mL). It was also observed that 10 μL blood volumes travel an average 

distance of 16 ± 1.7 mm along the hydrophilic thread substrates (Figure S2), which gave a 

basis for studying analyte distribution. To determine whether diazepam was homogeneously 

distributed along this distance, the thread substrate containing the blood sample was cut into 

two equal sections and the ion signal from each section was quantified. Comparable ion 

yields were recorded from both sections (Figure S3) indicating uniform analyte distribution 

on the thread substrate, which we attribute to the uniform fluid flow in the unidirectional 

thread fibers. Further analysis showed that 10X improvement in ion yield was achieved 

when the sample volume was increased by 4X (Figure 2B).

3.2 Sampling and Analysis with Treated Hydrophobic Threads

The above results motivated us to alter the surface properties of the thread substrate in an 

attempt to increase analyte availability without increasing sample volume. We adopted a 

hydrophobic silane treatment that is known to reduce absorption of aqueous-based samples 

[23]. By using a bracketing method, we characterized the surface energies of the resultant 

treated hydrophobic threads as <34.4 and <33.0 mN/m for 30- and 60-min silane treatment 

times, respectively (Figure S4). As expected, limit of quantification (LOQ) for diazepam 

decreased by 5X when the treated, hydrophobic threads were used for analysis, where the 30 

and 60 min treated threads registered 80 and 34 part per trillion LOQs, respectively (Table 

1). This increase in sensitivity is attributed to the spatial concentration of the sample at the 

tip of the hydrophobic thread due to the limited wetting of the blood sample. Extracted 

analytes do not diffuse much from their original site resulting in relatively higher analyte-to-

internal standard ratios during thread spray MS. For untreated hydrophilic thread substrates, 

the same 10 μL sample volume yields relatively lower ion intensity because the sample is 

spread over a larger surface area (17 mm2, compared to 0.4 mm2 on hydrophobic thread). 

This allows for a higher material exchange efficiency with the solvent, and since this process 

occurs at markedly different positions in the glass capillary, an overall low ion signal is 

detected due to analyte dilution. Secondary factors contributing to ion yield may include 

ease of analytes’ extraction and their subsequent redistribution between the solid thread and 
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solvent phases. The influence of both factors is exemplified by the dependence of ion signal 

on the amount of time the thread is allowed to sit in the extraction solvent (i.e., extraction 

time). Complete absorption of blood sample into the untreated hydrophilic thread substrate 

can introduce strong analyte/thread interactions (especially analytes located inside the core 

of the thread), which may limit extraction. On hydrophobic threads, however, the entire 

blood sample is adsorbed at the thread surface and completely accessible to solvent. Detailed 

on-line in-capillary dissolution experiments showed that >60% of diazepam (LogP = 2.82; 

Figure S5) can be desorbed from a 60-min treated thread within 60 s compared with 84% for 

the hydrophilic benzoylecgonine analyte (Figure 2A) present on the same 60-min treated 

thread. This is because the hydrophobic diazepam analyte prefers the hydrophobic medium 

and is preferentially retained on the hydrophobic thread substrate. Also, after dissolution, 

there is a higher tendency for diazepam to be redistributed back into the hydrophobic thread, 

reducing overall amount transferred to the mass spectrometer. Interestingly, we also 

observed the in-capillary, online dissolution process (for both treated and untreated cotton 

threads) to be more efficient than the corresponding offline, bulk-phase extraction performed 

using the same final sample volume (Figure S6). The online processes allow for higher ion 

yield presumably because of the large interfacial contact between the thread and the small 

solvent volume. As the thread is fully stretched in the glass capillary during the on-line 

experiment, the 20 μL solvent volume is able to wet the entire thread, facilitating extraction 

with an increased analyte-to-solvent ratio. On the other hand, for offline extractions 

performed in PCR tubes, it was difficult to process the thread (e.g., complete immersion) in 

the same 20 μL solvent; increasing the solvent volume further increased analyte dilution and 

hence lowered the ion yield. It should be noted that the used thread can be stored and 

reanalyzed (Figure S6) providing a unique opportunity to validate results and eliminate the 

need to increase sample volume via dilution for the same studies.

For the purposes of comparing with other direct ionization methods (e.g., paper spray), and 

the fact that diazepam is often abused with other illicit drugs, the limits of detection (LOD) 

and limits of quantification (LOQ) for cocaine, amphetamine and methamphetamine were 

also determined using the thread spray MS methodology. In all cases, treated hydrophobic 

threads offered lower LODs and LOQs (Table 1) than direct analysis from untreated thread. 

Relative standard deviations less than 10% were obtained at all concentrations tested for 

both treated and untreated threads, and excellent linearity (R2 > 0.999) and reproducibility 

(as indicated by error bars in the calibrations curves, Figures S7 and S8) were also recorded 

for all analytes. LODs as low as 13 pg/mL were calculated for amphetamine (Table 1) 

compared to 60 ng/mL previously determined using hydrophobic paper spray MS [23]. 

When using hydrophobic paper, analyte dilution due to spreading of aqueous-based samples 

via capillary action is minimal. Therefore, we attribute the observed increase in sensitivity to 

the delayed extraction capabilities in thread spray allowing more analytes to be extracted and 

detected. That is, on planar hydrophobic paper substrates, the ethyl acetate organic spray 

solvent spread and evaporate very quickly necessitating the DC voltage to be applied 

simultaneously with the solvent. The concomitant application of spray voltage and solvent, 

and the continuous MS analysis, lead to low extraction efficiency and an overall reduced 

signal intensity, compared with the proposed thread spray experiment in which extraction 

and MS analysis can be decoupled by an optimized 60 s enrichment time.
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While the coupling of a separate solid-phase extraction (SPE) process/device with ambient 

ionization has resulted in improved sensitivity, this combination cannot be used for 

microsamples since large volumes of biofluid (10 – 250 μL) are required for the SPE step 

[24–27]. It is important to point out that the SPE-based approaches have not been applied to 

analyze raw blood; it often utilizes less complex biofluids, such as urine and plasma. The 60 

s enrichment time employed here for thread spray ionization experiments can be considered 

as a form of SPE where the ethyl acetate spray solvent selectively transfers the extracted 

organic compounds to the mass spectrometer, leaving the bulk of the blood matrix 

immobilized on the thread substrate. The reduced matrix effects resulted in a very high ion 

yield (Figures S7 and S8; 60-min treatment – results summarized in Table 1), suggesting that 

the sensitivity of the proposed thread-based method may be well below the typical parts-per-

billion concentrations. Therefore, we sought to characterize the analytical performance of 

the thread spray MS methodology in a low parts-pertrillion concentration range. Figure 2D 

shows the calibration curve constructed using 2 – 100 pg/mL standard solutions of diazepam 

spiked separately in 10 μL of whole blood. This analysis was performed using 60-min 

treated hydrophobic thread substrates, which provided an unprecedented 25 parts-per-

quadrillion detection limit for diazepam (LOQ is 52 fg/mL) without sacrificing linearity, 

precision and reproducibility. This establishes thread spray as an ultrasensitive ambient 

ionization technique enabling direct analysis of microsamples by mass spectrometry. The in-

capillary sample processing is highly efficient in eliminating matrix effects and yielding 

results that are comparable to the most sensitive SPE surfaces but without the use of extra 

washing steps, large sample volumes or specialized accessories like cartridges [22,25,28–

30]. It is important to note that the silane self-assembly chemistry used for thread treatment 

represents one of the surface modification procedures recently developed by us and others to 

improve the sensitivity of substrate-based ambient ionization techniques without prior 

sample preparation. These include metal oxide deposition, wax-printing, and direct coating 

with silica, carbon nanotubes or metal organic frameworks [31–36]. Similar to results 

observed with treated thread substrates, most of the reported surface treatment methods 

afforded enhanced sensitivity for complex mixture analysis.

3.3 Dry- State Blood Storage on Thread Substrates

Storage is the main determining factor governing the stability of diazepam in blood. While 

varied diazepam stability has been reported under freezer (–20°C) storage conditions [37], 

most studies agree on severe degradation when stored at room temperature [38–40]. 

Therefore, we investigated diazepam stability in blood after storage on treated and untreated 

thread substrates. As already indicated, the rapid flow of aqueous samples on untreated, 

hydrophilic thread (radius 175 μm) results in the distribution of the 10 μL blood over a 

surface area of 17 mm2 compared with 0.4 mm2 for treated, hydrophobic threads (see 

Supporting Information for details, Scheme S1). This increased surface area-to-volume ratio 

predisposes majority of labile diazepam analytes present on the untreated thread substrate to 

oxidation. Diazepam degraded in less than 5 days after blood storage at room temperature on 

the untreated hydrophilic thread (Figure 3A). On the contrary, the spatial concentration of 10 

μL blood to a small area, as a blood spheroid, when stored on hydrophobic threads provided 

improved analyte stability (Figure 3A). In this case, near-surface molecules provide transient 

passivation leading to limited thermal and/or oxidant flux into the sample and thus 
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mitigating oxidation of analyte within the core of the stored blood over the entire six week 

period. Similar stability profiles were observed for cocaine in whole blood storage on 

untreated, hydrophilic versus treated, hydrophobic thread substrates (Figure 3B). In all 

cases, the relative ion signal (A/IS) derived from the 60-min treated threads was higher than 

signal from the 30 min treated thread substrates. This is likely due to the higher ionization 

efficiency from the more hydrophobic thread substrate. However, the marked reduction 

(~57%) in the cocaine signal after the first day of storage on hydrophilic thread is consistent 

with rapid degradation in a storage environment without a protective surface layer, as 

observed in dried blood spot samples [6,41]. The ability to detect diazepam and cocaine in 

biofluid samples over an extended period without sacrificing sensitivity or the integrity of 

the sample has important implications for forensic and clinical applications. In addition, the 

thread-based sampling and storage methodology uses small sample volumes and does not 

require special storage conditions, making it ideal for field studies.

3.4. Tissue Sampling with Treated Hydrophobic Thread

Diazepam is also commonly analyzed in postmortem biochemical investigations due to its 

role in accidental overdoses. The concentration of diazepam changes rapidly after death due 

to decomposition and redistribution phenomena so sensitive analytical methods for tissue 

samples can serve to complement biofluid analyses. To demonstrate this concept, we used 

soft tissue-mimicking agarose beads (5 mm, ID) that exhibit high water uptake and 

controllable permeation for oxygen and nutrients [42–45]. They were stored in a 96-well 

plate at 37 °C in 200 μL of McCoy’s 5A media with 10% FBS and L-glutamine, which we 

removed to enable diazepam infusion. For spiking of the analyte into agarose beads, excess 

media was doped with varying concentrations of diazepam (50, 100, and 250 ng/mL) before 

adding 200 μL to each well. This drug-doped media was infused into the soft, porous 

agarose beads overnight before taking a threaded needle to punch through each sample 

(Figure 4A). Pink colored samples were deemed viable for analysis because they reflected 

the pink color of the media, suggesting that diffusion of the analyte into the beads was 

successful, and were the only samples used for analysis. Small agarose bead residues 

collected on the 60-min thread, after punching through the bead sample, were analyzed 

directly by thread spray MS.

Similar to what we have seen with blood, there is an increase in signal intensity as the 

concentration increases (Figure 4B), suggesting this method is capable of detecting varying 

analyte concentrations with statistical significance. Note that, unlike blood analysis where 

the whole sample is subjected to extraction, here only a small fraction of the agarose bead is 

collected, and yet intense ions are detected for diazepam via tandem MS (Figure 4D). In this 

case, collision-induced dissociation was employed producing a diagnostic fragment ion at 

m/z 257 via CO (MW 28) neutral loss, which further dissociated to give ions at 228 and 222 

through the elimination of nitrine (CH3N; MW 29) and chlorine (Cl; MW 35) species. To 

further explore sensitivity for this application, a stability test, in dry conditions, was 

performed. Fresh agarose beads were doped with diazepam (250 ng/mL) as described above 

and left overnight for analyte infusion. After the initial 24-hour period, diazepam-doped 

media was removed, and the dry agarose beads were stored at 37°C for four weeks. Removal 

of the media was done to mimic post-mortem conditions for tissue storage [37,46], where 
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proper nutrients are not available to keep them viable. Analysis for this study included daily 

sampling in the first week followed by weekly analyses for the subsequent weeks. Diazepam 

signal was stable in the first week of storage suggesting the agarose samples stayed viable. 

There was a visible change from a pink to brown color after the second week, which may 

indicate the onset of oxidation of the agarose beads. This fact was reflected in the thread 

spray MS signal, where a noticeable drop in ion yield was continuously detected after this 

point, (Figure 4C). This gradual degradation of the agarose samples, and in turn the analyte, 

was expected due to the porous nature of the agarose beads and, with the steady detection 

and identification of diazepam in these samples, further validates thread spray as a sensitive 

technique that could be used for post-mortem analyses.

4. Conclusion.

In conclusion, through the hydrophobic treatment of cotton threads and subsequent 

encapsulation in glass capillary – enabling controlled solvent evaporation and extraction – 

we have established thread spray mass spectrometry as ultrasensitive platform for 

quantitative analysis of small blood volumes. Most importantly, this study shows that cotton 

threads can be used as an all-in-one substrate for sample collection, storage, and direct 

analysis. The observed parts-per-quadrillion detection limit make it an attractive alternative 

to other substrate-based ambient methods with unique features as demonstrated in the tissue-

like sampling for postmortem biochemical investigations. Both untreated, hydrophilic and 

treated, hydrophobic thread substrates are found viable for biological fluid analyses. The 

advantages of surface modifications, uniform diffusion, and online analyte enrichment 

capabilities directly influence the analytical performance of the proposed method. We expect 

these to benefit both biomedical and translational research.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Functionalized cotton thread is proposed for blood sampling, storage and 

analysis.

• Thread-based microsampling platform enables extended dry-state blood 

storage.

• Threads act as solid-phase extraction media for ultra-sensitive detection.

• Threads enable tissue sampling and quantitative analysis by mass 

spectrometry.
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Figure 1. 
A) SEM image of untreated cotton thread and schematic of silane functionalization for 

hydrophobic surface modification. B) Hydrophobic thread spray setup, a single piece of 

thread with pre-deposited sample is placed in a glass capillary and a suitable solvent applied. 

The inset shows Taylor cone formation, after application of onset voltage (3 kV).
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Figure 2. 
A) Benzoylecgonine ion yield as a function of extraction time after drying analyte onto 

various threads types: untreated, 30- and 60-min treated substrates. B) Average ion intensity 

is recorded as a function of blood volume for cocaine deposited on 60-minute treated thread. 

Calibration curves for diazepam in the concentration range of C) 0.2 – 100 ng/mL and D) 

0.2 – 100 pg/mL in 10 μL dried whole blood on untreated and 60-minute treated cotton 

threads, respectively. Error bars indicate standard deviation for five replicates.
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Figure 3. 
Stability profiles of A) diazepam and B) cocaine in 10 μL dried whole blood on untreated, 

30 minutes treated, and 60 minutes treated thread substrates stored over a six-week period 

under ambient conditions. Error bars represent five replicates.
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Figure 4. 
A) Photograph showing a viable tissue-mimicking agarose bead soaked with McCoy’s 5A 

media with 10% FBS and L-glutamine. Tissues sampling occurred via 60 minutes treated 

thread suspended on a needle. B) Concentration dependence of diazepam in agarose beads. 

The ratio of diagnostic ions for diazepam and its isotopically-labelled species were plotted. 

Error bars represent three replicates. C) Stability profile of agarose beads infused with 250 

ng/mL diazepam over a four-week period. Error bars represent five replicates. D) 

Representative tandem MS spectrum of 100 ng/mL diazepam doped agarose bead sample.
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Table 1.

Limits of detection (LOD) and quantification (LOQ) of illicit and pharmaceutical drugs in 10 μL dried blood 

samples.

LOD (LOQ) in pg/mL

Diazepam (LogP 2.82) Amphetamine (LogP 1.76) Methamphetamine (LogP 2.07) Cocaine (LogP 2.30)

Untreated 131 (185) 37 (65) 43 (107) 99 (142)

30 minutes 43 (80) 28 (44) 31 (50) 44 (67)

60 minutes 17 (34) 13 (34) 16 (22) 14 (22)
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