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Abstract

Magnetoencephelography (MEG) is a functional neuroimaging tool that records the magnetic 

fields induced by neuronal activity; however, signal from muscle activity often corrupts the data. 

Eye-blinks are one of the most common types of muscle artifact. They can be recorded by affixing 

eye proximal electrodes, as in electrooculography (EOG), however this complicates patient 

preparation and decreases comfort. Moreover, it can induce further muscular artifacts from facial 

twitching. We propose an EOG free, data driven approach. We begin with Independent Component 

Analysis (ICA), a well-known preprocessing approach that factors observed signal into 

statistically independent components. When applied to MEG, ICA can help separate neuronal 

components from non-neuronal ones, however, the components are randomly ordered. Thus, we 

develop a method to assign one of two labels, non-eye-blink or eye-blink, to each component.

Our contributions are two-fold. First, we develop a 10-layer Convolutional Neural Network 

(CNN), which directly labels eye-blink artifacts. Second, we visualize the learned spatial features 

using attention mapping, to reveal what it has learned and bolster confidence in the method’s 

ability to generalize to unseen data. We acquired 8-min, eyes open, resting state MEG from 44 

subjects. We trained our method on the spatial maps from ICA of 14 subjects selected randomly 

with expertly labeled ground truth. We then tested on the remaining 30 subjects. Our approach 

achieves a test classification accuracy of 99.67%, sensitivity: 97.62%, specificity: 99.77%, and 

ROC AUC: 98.69%. We also show the learned spatial features correspond to those human experts 

typically use which corroborates our model’s validity. This work (1) facilitates creation of fully 

automated processing pipelines in MEG that need to remove motion artifacts related to eye blinks, 

and (2) potentially obviates the use of additional EOG electrodes for the recording of eye-blinks in 

MEG studies.
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1 Introduction

The functional neuroimaging method known as magnetoencephalography (MEG) offers 

better temporal resolution than fMRI [1, 2]. Moreover, MEG source space reconstruction is 

simpler than electroencephalography (EEG) as it is less dependent on intervening tissue’s 

characteristics [1, 3, 4]. However, any technique that attempts to measure electromagnetic 

radiation from the neurons must combat muscular artifacts. Unfortunately, there is 

significant overlap between the two sources of signal. For example, the spectral bandwidth 

of muscle activity is 20–300 Hz while some of the key neuronal frequency bands, such as 

gamma-frequency band (30–80 Hz), lie entirely in the muscle activity bandwidth [3, 5].

Independent Component Analysis (ICA) based artifact detection improves MEG signal to 

noise ratio by 35% compared to spectral approaches that improve ratio by 5–10% [6]. Even 

though ICA can transform the noise and the signal into individual components, the 

components are randomly ordered and must be manually identified by a trained expert [3, 7]. 

To automatically detect eye-blink artifacts, one of the most common type of muscle artifact 

in MEG data, some researchers opt for electrooculography (EOG) to simultaneously record 

the muscle activity originating near the eyes [8]. These artifacts are then flagged and later 

removed from the MEG data. However, the EOG electrodes lengthen the setup process and 

can be uncomfortable to wear for some patients [9] inducing additional artifacts from facial 

twitching and postural muscle movements [3].

Very little work has been done to automate eye-blink detection without using EOG. Duan et 

al. [2] train a support vector machine (SVM) using manually selected features from the 

temporal ICA. They train their model using data from 10 pediatric subjects and report cross-

validation specificity of 99.65% and sensitivity of 92.01%. In comparison to this work, using 

a convolutional neural network (CNN), we report a slightly higher specificity (99.77%) and 

a 5.61% better sensitivity (97.62%). Furthermore, we have tested on a much larger set of 

subjects and, instead of cross-validation measures, use a more stringent form of accuracy 

reporting in which we hold out a test set until after all hyperparameter experimentation has 

concluded. Additionally, we gain an intuitive understanding of the automatically learned 

features as our visualizations show.

2 Methods

2.1 Data Collection and Processing

As part of the Imaging Telemetry And Kinematic modeLing in youth football (iTAKL) 

concussion study [10], 44 male high school football players underwent MEG scans for 8 

min. Subjects had their eyes open and fixed on a target to minimize ocular saccadic 

movement. For preprocessing, we downsampled the signal to 250 Hz, set notch filter to 

remove harmonics of 60 Hz, and then, applied bandpass filter from 1 Hz to 100 Hz. The 

preprocessed MEG signal was then decomposed using ICA into 20 components with the 

InfoMax ICA implementation [11]. We empirically tested multiple component numbers and 

20 yielded the most coherent, recognizable spatial maps for our expert MEG scientist. Each 

component consists of a spatial map indicating the areas of magnetic influx and outflux 

measured at the scalp and temporal time courses of these maps’ activation over the 8-minute 
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acquisition. To build our classifier in this study, we use the spatial maps as the input. The 

spatial maps from all subjects were labeled by an expert from our radiology department with 

more than 5 years of experience in MEG image interpretation (ED). We then randomly 

selected 14 subjects for training, and 30 subjects were set aside for testing the classifier.

Our Brainstorm toolbox [12] preprocessing pipeline renders spatial topographic maps of 

ICA as colored RGB images for ease of human interpretation. The spatial maps are 

generated using the 2D Sensor cap option, which projects the 3D sensors onto a 2D plane 

and provides a realistic distribution of the sensors while minimizing distortion. Motivated by 

the success of CNNs in classifying RGB images for the Image-net Large Scale Visual 

Recognition Challenge (ILSVRC) [13], we decided to build our classifier using a CNN to 

label these images.

2.2 Recognized CNN Models/Model Selection

In 2012, AlexNet [14] reduced the top-5-error of ILSVRC general object classification from 

26.2% to 15.3% using CNNs and established CNNs as the new state of the art methodology 

for classifying 2D RGB images. In 2014, VGG [15] reduced this error rate to 6.8% by using 

a deeper model. While these models (VGG and AlexNet) do not work well on our problem 

directly, our model (Fig. 1) takes inspiration from both of them. Our model required 

innovation in the appropriate integration and fusion of the best architectural aspects. Like 

these networks, our CNN architecture also increases in the number of convolution layers per 

pooling layer as we progress through the architecture. AlexNet uses various convolution 

filter sizes, some as large as 11 × 11, whereas, VGG uses only 3 × 3 filter size for all the 

convolution layers. Thus, we decided to use one filter size throughout our network and 

experimented with different sizes from 3 × 3 to 11 × 11. Similar to AlexNet and VGG, we 

add 0.5 dropout in the first fully connected layer for regularization [16]. Furthermore, while 

other researchers report using traditional input feature normalization, including zero-mean 

and unit-variance transformations, we found these to be insufficient to ensure model 

convergence. There-fore we applied batch-normalization [17] to the input layer and all the 

convolution layers, and this resulted in consistent convergence of our model.

Our training parameters were as follows: batch size was 16; learning rate was 1e-5, which 

we reduced by factor of 10 when the training loss plateaus for 4 epochs; optimizer was 

Adam [18]; and, the number of epochs was 40.

2.3 Cross-Validation/Test Set

We employed a Leave-One-Subject-Out cross-validation strategy. Using this approach, we 

repeatedly trained on 13 subjects at a time and evaluated the performance on the 14th 

subject. Then we computed the mean performance across all folds. We did not use any of the 

30 subjects from the test dataset for model selection. Table 1 lists the different models we 

tested. Our initial models, that we call BlinkNet 0.1 to 0.3, comprised of 6 convolution 

layers. We found that these models did not perfectly fit the training data set. We reasoned 

that our classification objective is likely more complex than the statistical complexity of 

these models, thus we experimented with deeper models consisting of 8 convolution layers. 

These models did manage to reach 100% training accuracy. Further-more, BlinkNet 1.0 and 
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2.0 had the best cross-validation scores while BlinkNet 2.1 had slightly worse performance. 

Our test set included 600 spatial maps from 30 never seen before subjects.

3 Results

We evaluated all of the candidate architectures summarized in Table 1 on the held out test 

data. The results of this comparison are shown in Fig. 3 and include five measures of 

performance: sensitivity TP
TP + FN , specificity TN

TN+FP , area under the receiver operating 

characteristic curve (ROC AUC), F1 score 2 * precision * recall
precision+recall , and accuracy 

Total Correct Images
Total Images . Our proposed model, BlinkNet 2.0 (the model in which we used 8 

convolution layers, 9 × 9 filters, and 3 pooling layers) achieved the best performance in all 

performance measures.

Neural networks (NN) can suffer from limited interpretability, which reduces user 

confidence and slows adoption of NN based solutions. Thus, we visualize the learned 

features using saliency maps [19] and gradient-weighted class activation maps (grad-CAM) 

[20]. Both of these methods give us insight into the image areas the network considers 

important for classification. Figure 4 shows the visualization results.

Saliency maps [19] are created by computing gradients of the softmax output with respect 

to an input image. Pixels with higher values, shown in yellow-green in the middle column of 

Fig. 4, correspond to those with greater influence over the CNN output. This provides 

insight into the influence of each individual pixel on the output value of the model. The 

areas identified using the saliency map visualization technique highlights the ocular regions. 

This makes sense in that the presence or absence of magnetic influx or outflux from these 

areas should be of vital import to identify eye-blink and non-eye-blink spatial maps. While 

such insights are helpful, a limitation of saliency maps is that they tend to be less useful for 

determining class specific areas. For example, if a spatial feature is considered important for 

proper classification of two different classes, it is often observed in the saliency map of both 

classes. To overcome this limitation we apply an additional visualization method called 

gradient weighted class activation mapping (grad-CAM).

Grad-CAM [20] heatmaps, illustrated in Fig. 4 (third column), are created by visualizing 

the gradients from the feature maps of the last convolution layer for a given image. Unlike 

saliency maps, grad-CAM visualizations are class-discriminative, i.e., a feature region is 

associated with the class with strongest reliance on that region. Applying the approach to the 

eye-blink and non-eye-blink images reveals the intuitive class discriminative regions that our 

CNN has learned. For example, the heatmap in the top row shows the bilateral ocular 

regions while the bottom row shows the center of the scalp region. These are the same 

regions that human experts tend to rely upon to discriminate these two categories. This 

information can be combined with the images for which the CNN classification is most 

confident. Figures 2 and 5 show us the canonical and most confident correct predictions of 

non-eye-blink images have some signal (prominent red/blue colors) in the central scalp 

region, and minimal bilateral signal in the ocular regions. Meanwhile, confident and correct 

predictions of eye-blink images have the inverse: they lack strong signals in the central area 
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and have significant signal in the bilateral ocular regions. These two facts are used together 

by the two neurons in the softmax layer to make a decision. In Fig. 6, we use grad-CAM to 

visualize the 64 filters learned in an earlier layer (the last convolution layer). Here we 

observe that some of this layer’s grad-CAM heatmaps highlight either the left or right ocular 

area or the central scalp region. This suggests that the CNN is learning individual areas in 

earlier layers and then combining them in subsequent layers to form discriminative heatmaps 

for labeling the MEG component images. Finally, we point out that visualization of learned 

features allows us to appreciate the failure modes of our CNN. If we analyze the three wrong 

predictions shown in the lower right of Fig. 5, we observe that false positive eye-blink 

classifications (first two in lower right of Fig. 5) have some bilateral signal in the ocular 

regions, while the false negative eye-blink (third image in lower right) contains strong signal 

in central scalp region.

4 Conclusion

In this paper, we have proposed a CNN that accurately detects eye-blink artifacts in MEG 

and obviates the need for problematic EOG electrodes and wires. Our solution is fully 

automated; it does not require any manual input at test time. Our end-to-end CNN learns the 

important features from data derived spatial maps. Through advanced visualization, we 

reveal the learned features, which largely match those features used by the human experts. 

We achieve this success without making use of the temporal time courses of the ICA 

components. We suspect this information is complementary and should improve our model 

further. In the future, we aim to build on this work by automatically identifying other 

anomalies such as cardiac artifacts.
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Fig. 1. 
Automatic eye-blink artifact detection using BlinkNet (CNN)
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Fig. 2. 
Examples of Eye-Blink and Non-Eye-Blink spatial maps. Top row represents canonical 

examples. Bottom row represents confounding examples.
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Fig. 3. 
Evaluation of our models on previously unseen data from 30 subjects.
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Fig. 4. 
Attention maps from the CNN. Both Saliency maps and grad-CAM images are created using 

output from the softmax layer. On the right is the color scheme for the heatmaps.
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Fig. 5. 
Analyzing the confidence of our model. Confidence level ranges from 50% to 100%. Images 

in the bottom row state the confidence of the model in the prediction, the prediction, and the 

true label (0 = Non-Eye-Blink; 1 = Eye-Blink Artifact).
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Fig. 6. 
Applying grad-CAM to last convolution layer. This illustrates the important spatial areas 

from the second to last convolution layer that are responsible for activating each of the 64 

filters in the last convolution layer. Activations corresponding to the Fig. 4 grad-CAM 

features are highlighted by orange boxes.
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Table 1.

Architectural aspects of the different versions of BlinkNet tested. Highlighted rows are models that achieved 

best performance during cross-validation.

Model Name Filter Size Convolution Layers Pool Layers Total Parameters

BlinkNet_0.1 3×3 6 3 663,006

BlinkNet_0.2 5×5 6 3 790,750

BlinkNet_0.3 7×7 6 3 982,366

BlinkNet_0.4 3×3 8 3 737,374

BlinkNet_0.5 5×5 8 3 996,190

BlinkNet_0.6 5×5 8 4 553,822

BlinkNet_1.0 7×7 8 3 1,384,414

BlinkNet_2.0 9×9 8 3 1,902,046

BlinkNet_2.1 11×11 8 3 2,549,086
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