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Abstract

Purpose: Pitt Hopkins Syndrome (PTHS) is a rare genetic disorder caused by mutations of a 

specific gene, transcription factor 4 (TCF4), located on chromosome 18. PTHS results in 

individuals that have moderate to severe intellectual disability, with most exhibiting psychomotor 

delay. PTHS also exhibits features of autistic spectrum disorders, which are characterized by the 

impaired ability to communicate and socialize. PTHS is comorbid with a higher prevalence of 

epileptic seizures which can be present from birth or which commonly develop in childhood. 

Attenuated or absent TCF4 expression results in increased translation of peripheral ion channels 

Kv7.1 and Nav1.8 which triggers an increase in after-hyperpolarization and altered firing 

properties.

Methods: We now describe a high throughput screen (HTS) of 1280 approved drugs and 

machine learning models developed from this data. The ion channels were expressed in either 

CHO (KV7.1) or HEK293 (Nav1.8) cells and the HTS used either 86Rb+ efflux (KV7.1) or a 

FLIPR assay (Nav1.8).

Results: The HTS delivered 55 inhibitors of Kv7.1 (4.2% hit rate) and 93 inhibitors of Nav1.8 

(7.2% hit rate) at a screening concentration of 10 μM. These datasets also enabled us to generate 

and validate Bayesian machine learning models for these ion channels. We also describe a 

structure activity relationship for several dihydropyridine compounds as inhibitors of Nav1.8.

Conclusions: This work could lead to the potential repurposing of nicardipine or other 

dihydropyridine calcium channel antagonists as potential treatments for PTHS acting via Nav1.8, 

as there are currently no approved treatments for this rare disorder.

Keywords

high throughput screen; Kv7.1; Nav1.8; Pitt Hopkins Syndrome; repurposing

*To whom correspondence should be addressed. sean@collaborationspharma.com, Phone: 215-687-1320. 

Competing interests:
S.E. is owner, and K.M.Z., are employees of Collaborations Pharmaceuticals Inc. J.G. was an intern at Collaborations Pharmaceuticals 
Inc. A.G., B.A. and Z.L. are employees of Icagen.

HHS Public Access
Author manuscript
Pharm Res. Author manuscript; available in PMC 2020 July 22.

Published in final edited form as:
Pharm Res. ; 36(9): 137. doi:10.1007/s11095-019-2671-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Pitt Hopkins Syndrome (PTHS) is a rare genetic disorder affecting a specific gene in 

chromosome 18, called transcription factor 4 (TCF4). The connection to TCF4 was not 

established until 2007 when it was found to play an essential role in the development of the 

nervous system and the brain (1–3). PTHS is characterized by developmental delay, 

breathing problems of episodic hyperventilation and/or breath-holding while awake (55%

−60%), recurrent seizures/epilepsy (40%−50%), gastrointestinal issues, lack of speech, and 

distinctive facial features. As more is learned about PTHS the developmental spectrum of 

the disorder is widening to include anxiety, attention deficit hyperactivity disorder (ADHD), 

and sensory disorders. PTHS was first described by D. Pitt and I. Hopkins in the Australian 

Pediatric Journal in 1978 (4). Any functional deficiency of TCF4 greatly affects how a child 

develops over time. More than 500 PTHS patients have been identified worldwide, but there 

are likely many who remain undiagnosed. PTHS is considered an autism spectrum disorder, 

and some patients have also been diagnosed with autism, with atypical autistic 

characteristics, and/or sensory integration dysfunction. There are currently no FDA approved 

treatments available for PTHS, so a treatment for this disease would completely alter clinical 

practice and have a transformational effect on these patients and their families.

In a recent 2016 article using cortical neurons from a Pitt Hopkins mouse (5), Maher and 

colleagues have shown: 1. TCF4 loss of function alters the intrinsic excitability of prefrontal 

neurons; 2. TCF4-dependent excitability deficits are rescued by SCN10a and KCNQ1 
antagonists; and 3. that intact Tcf4 represses expression of SCN10a and KCNQ1 genes, in 

central neurons. Therefore, the pathological expression of these ion channels in the central 

nervous system (CNS) creates a unique opportunity to target these channels with therapeutic 

small molecule agents, and it is speculated that targeting these ions channels may ameliorate 

cognitive deficits observed in PTHS. Over the past two decades various voltage-gated 

sodium and potassium channels have been confirmed as therapeutically desirable targets (6) 

and recent work has focused on delivering subtype-selective modulators.

A variety of sodium channel modulating drugs have been applied to the treatment of clinical 

conditions caused by abnormal cell excitability (7). In particular, they have been applied to 

CNS conditions acting as anticonvulsants (carbamazepine) and epilepsy therapy (phenytoin) 

via modulation of sodium channels expressed in the brain. Antiarrhythmics such as 

(mexiletine) and flecainide rectify cardiac arrhythmia by acting on sodium channels in the 

heart. Finally, local anesthetics (lidocaine and bupivacaine) have been established as 

injectable or topical agents for the treatment of pain via the blockade of sodium channels in 

peripheral nerves. These compounds are largely subtype unselective within the sodium 

channel family leading to the potential for undesirable side effects which severely limit their 

application for certain chronic indications.

Nav1.8 is a sodium ion channel subunit that in humans is encoded by the SCN10A gene (8–

11). Nav1.8-containing channels are a voltage-gated channel subtype that are tetrodotoxin 

(TTX)-resistant. Nav1.8 is expressed in peripheral sensory neurons. In the dorsal root 

ganglion(DRG), the channel is expressed in unmyelinated, small-diameter sensory neurons 

called C-fibers, and is involved in nociception (12, 13). C-fibers can be activated by noxious 
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thermal or mechanical stimuli and thus can carry pain messages. The specific location of 

Nav1.8 in sensory neurons of the DRG have made it a key therapeutic target for the 

development of new analgesics (14) as well as for the treatment of chronic pain (15).

It was previously thought that the voltage gated potassium channel KV7.1 encoded by the 

KCNQ1 gene was expressed only in peripheral epithelial cells and in the cell membranes of 

cardiac tissue (16–18). Curiously however, it has since been observed that mutation of 

KV7.1 is linked to sudden unexplained death in epilepsy (SUDEP) which is a catastrophic 

complication of human idiopathic epilepsy with an estimated prevalence of greater than 

18%.(19) Finally, in 2011 Roepke, et al. demonstrated that KV7.1 is expressed in forebrain 

neuronal networks and brainstem nuclei, regions in which a defect in the ability of neurons 

to repolarize after an action potential can produce seizures and dysregulate autonomic 

control of the heart (20). Targeted CNS control of the KV7.1 ion channel has potential to be 

advantageous in the treatment of PTHS as well as other seizure related idiopathic illness. 

Although there is a potential cardiac liability due to the role of KV7.1 in repolarization of 

cardiomyocytes, an acceptable safety window could possibly be achieved if only a small 

fraction of Kv7.1 block is required to restore normal neuronal excitability.

We now describe high throughput screens of a drug library to identify potential molecules 

for repurposing for PHTS. We have additionally used the data from the Nav1.8 and Kv7.1 

HTS to generate and validate machine learning models. These models could help to 

understand the fundamental structure activity relationship for these ion channels and the 

identification and development of additional novel inhibitors that are selective for each 

channel. Such compounds may also be more broadly applicable for other neurological 

disorders leading to further research on therapeutics targeting these proteins.

Materials and Methods

Compounds

The Prestwick chemical library was purchased from Prestwick (Illkirch, France). Individual 

dihydropyridine calcium channel antagonists were purchased from Sigma.

Ion Channel Screening

The Prestwick chemical library was prepared as 10 mM DMSO stocks and screened at 10 

μM test concentration (n=2 each sample) on either 86Rb+ efflux (Kv7.1) or FLIPR (Nav1.8) 

platforms. Ion channels were recombinantly expressed as clonal cell lines in either CHO 

(KV7.1) or HEK293 (Nav1.8) cells.

KV7.1 86Rb+ HTS—All experimental measurements were performed on the Wallac 

Microbeta (Perkins Elmer, Shelton, CT). Counts per minute (CPM) values were collected 

over a 1 minute read time per well. The day before the assay was to be run, human KV7.1 

containing CHO cells were plated according to tissue culture protocols (40,000 cells per 

well in 96-well tissue culture treated plates).16–24 hours prior to running, 50 μl of media 

containing 1 μCi/ml 86Rb+ was added to all wells and incubated at 37°C, 5% CO2. Prior to 

the start of the assay, the 86Rb spiked media was removed from the plate and cells were 

washed 3X with 150 μl of Earle’s balanced salt solution (EBSS). After the last wash, the 

Ekins et al. Page 3

Pharm Res. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



buffer was removed, replaced with 100 μl of EBSS with 1X compound or controls, and 

incubated for 5 minutes. After this initial incubation, the buffer was removed and replaced 

with 100 μl of 70mM KCl EBSS with 100 μM Niflumic Acid buffer containing test 

compound or controls and incubated for an additional 3 minute time period. After the 

stimulation incubation, the assay buffer was removed from the plates and transferred to a 

counting plate. The cells were then lysed with 100 μl of 0.1% SDS and the lysate transferred 

to a second counting plate. Both counting plates were then read on the Wallac Microbeta to 
86Rb+ content. From the rubidium CPM data, % 86Rb+ efflux values were calculated for all 

wells in Excel. Percent efflux values were calculated as % Efflux = ((CPM efflux buffer) / 

(CPM efflux buffer + CPM cell lysate))*100. Percent efflux values were then normalized to 

baseline and max stim controls using the following equation: % inhibition = 100-(((% efflux 

test well – 10μM chromanol 293B control) / (70mM KCl+ niflumic Acid control response – 

10μM chromanol 293B control response))*100)

Nav1.8 FLIPR HTS—All studies were performed using the FLIPR TETRA (Molecular 

Devices, San Jose, CA) 96 well fluorescence imaging platform. Test agent effects on Nav1.8 

activity were measured using the following protocols. ANG-2 max excitation was 517nm 

with max emission at 540nm. For these experiments, the TETRA excitation filter was 470–

495nm paired with the 565–625nm emission filter. The day prior to testing, cells were 

harvested in growth media and plated on 96 well, PDL-coated black walled with clear 

bottom microplates. Prior to testing, growth media was removed from the plate and 50μl of 

5μM Asante Natrium Green (Teflabs) was added (mixed with equal volume of 20% Pluronic 

F127 first, then added to EBSS). Cells were then incubated for 60–90 minutes at room 

temperature, protected from light. After incubation, the dye was removed from the plates 

and replaced with 50μl of 2mM KCl EBSS (145mM NaCl, 0.8mM MgCl, 1.8mM CaCl2, 

2mM KCl, 10mM HEPES, 5mM Glucose, pH = 7.4, osmolarity = 300mOsm). Cell and 

assay plates were loaded onto the FLIPR and the run using 5 min/15 min protocol. Test 

compound was applied for 5 min and recorded at which point 10 μM deltamethrin was 

added to activate Nav1.8 channels for an additional 15 min. Max control wells contained 10 

μM deltamethrin. Min control wells contained 10μM deltamethrin + 30μM tetracaine. Data 

were exported as area under curve over the 15 minute addition and fluorescence units (RFU) 

are normalized to negative and positive controls using the following equation: % inhibition = 

(((RFU test well – RFU media control) / (10μM deltamethrin control – media 

control))*100). Because the data are normalized to positive and negative control wells, test 

compounds that block more than 30 μM tetracaine readout as >100% inhibition.

Nav1.8 Automated Patch Clamp—Selected hits were confirmed on the PatchXpress 

automated patch clamp platform (Molecular Devices, San Jose, CA) using 5 point 

concentration-responses to determine IC50. The test protocol was as follows: custom scripts 

were employed to determine the Vhalf of inactivation for each cell from the fit of a steady-

state inactivation curve prior to compound testing. The voltage protocol was then run from a 

holding potential of −100 mV at a frequency of 0.1Hz as depicted in Figure 1. Automated 

online statistical analysis was used for steady-state determination prior to compound 

addition and wash. Peak steady state current was determined from the 0 mV activating step 

for control, compound and wash conditions. Currents in response to test compound were 
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normalized to the average of the control + wash currents to determine percent inhibition. 

The mean ±SEM inhibition values were fit to a 4 parameter logistic equation in Prism 7.0 

(GraphPad)

Machine learning

The Assay Central project uses the source code management system Git to gather and store 

molecular datasets from diverse sources, in addition to scripts for curating well-defined 

structure-activity datasets. This machine learning approach has been recently described in 

detail and compared with other approaches (21–28). These scripts employ a series of rules 

for the detection of problem data that is corrected by a combination of automated structure 

standardization (including removing salts, neutralizing unbalanced charges, and merging 

duplicate structures) with finite activities and human re-curation. The output is a high-

quality dataset and a Bayesian model which can be conveniently used to predict activities for 

proposed compounds. Each model in Assay Central includes the following metrics for 

evaluative predictive performance: Recall, Precision, Specificity, F1-Score, Receiver 

Operating Characteristic (ROC) curve, Cohen’s Kappa, and the Matthews Correlation 

Coefficient (MCC). We utilized Assay Central to prepare and merge datasets collated in 

Molecular Notebook (29), as well as generate Bayesian models using extended-connectivity 

fingerprints of maximum diameter 6 (ECFP6) descriptors (30, 31).

The single point HTS binary data described previously was utilized for modelling of Nav1.8 

and KV7.1 activity. The 1280 compound library was reduced to 1276 total, after removal of 

mixtures (Prestw-160 and Prestw-265) and metal-coordinating compounds (Prestw-433) as 

well as merging duplicate compounds after salt removal (Prestw-820 and Prestw-873). All 

removed and merged compounds were inactive, maintaining the number of active 

compounds from the HTS results.

Results

KV7.1 Results

The KV7.1 screen identified 55 hits (4.2% hit rate, Table 1) from the 1280 compound 

Prestwick chemical library at >2SD from the mean response. >2SD and >3SD cut offs were 

43% and 63% inhibition, respectively. The Z prime for the assay was 0.6 and the data appear 

normally distributed. Screen statistics and selected hits are shown in Figure 2. Several of the 

FDA approved drugs appear promising and were unexpected such as efavirenz (HIV 

antiviral) and clorgyline (MAO inhibitor). Fenofibrate (PPARalpha activator) has previously 

been shown to inhibit KV7.1 (IC50 of 1μM) and thus represents validation that our screen is 

able to retrieve this compound (32).

Nav1.8 Results

The Nav1.8 screen identified 93 hits (7.2% hit rate, Table 2) from the 1280 compound 

Prestwick chemical library at >2SD from the mean response. >2SD and >3SD cut offs were 

88 % and 122.1 % inhibition, respectively. Because percent inhibition are calculated relative 

to both negative (DMSO) and positive control wells (30 μM tetracaine), >100% inhibition 

represents compounds that blocked to a great extent than tetracaine. The Z prime for the 
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assay was 0.6. Screen statistics and selected hits are shown in the Figure 3. This screen 

identified many known dihydropyridine calcium channel inhibitors which represent a class 

of compounds that are used frequently and relatively safe. These represented a potential 

interesting class of compounds for which there was also plentiful preclinical and clinical 

data. We have also selected several interesting inhibitors that appear to have not been 

identified previously as Nav1.8 inhibitors. These should all be CNS active based on their 

known uses. For example, cinnarizine, is a known antihistamine. The five dihydropyridine 

calcium channel antagonists with activity against Nav1.8 were then followed up with 

electrophysiology dose response analysis to generate a definitive potency using whole cell 

voltage-clamp on the PatchXpress automated HTEP platform with 5-point concentration 

response curves. Fresh compound was purchased for this analysis. Nicardipine and 

nilvadipine were found to be the most potent with IC50 = 0.6 μM. followed by nimodipine 

(1.2 μM), benidipine (4.4 μM) and nifedipine (16.7 μM) (Figure 4).

Machine learning

The results of our Bayesian machine learning 5-fold cross validation for KV7.1 (ROC of 

0.77, Figure 5A) and Nav1.8 (ROC of 0.84, Figure 5B) suggest reasonable preliminary 

models considering they are highly imbalanced in favor of inactives. These models can be 

used in future to score additional libraries of compounds and suggest further molecules for 

testing.

Discussion

Over the past two decades various sodium and potassium channels have been confirmed as 

therapeutically desirable targets and recent work has focused on delivering subtype selective 

modulators. In the current study, the 1280 compound Prestwick library was successfully 

screened (10 μM, n=2) against human Nav1.8 and KV7.1 channels. The Prestwick chemical 

library is a well-regarded small molecule library of approved drugs which has been widely 

used in many other studies ranging from discovering treatments for cancers, cardiovascular 

disease, antivirals, antibacterials etc. (33). The screens in our study were robust with Z’ of 

0.62 for NaV1.8 and 0.58 for KV7.1. For NaV1.8, 93 compounds produced >3 SD inhibition 

(75% inhibition) when adjusted for high hit rate. The KV7.1 screen produced 55 compounds 

with >2 SD inhibition (43%) and 20 that were >3 SD inhibition (63%). These represent good 

hit rates on a par with other published HTS.

The NaV1.8 screen produced several known dihydropyridine calcium channel antagonists as 

potent inhibitors, a very interesting discovery which has not previously been described by 

others. In addition, there were several compounds in this class that also had less or no effect 

(Figure 6) and this may point to important structural characteristics for binding to this 

channel. One of the most active compounds was nicardipine which is widely used to treat 

angina and hypertension. It has also been used for neuroprotection of microglia (34) and 

increasing clearance of beta amyloid (35). This compound may represent a very promising 

lead for further evaluation, but there are still several questions that need to be addressed. For 

example: from in vitro blood/brain barrier predictions, what dose is required to engage 

Nav1.8 in the brain? What are the known adverse events at that dose? Nicardipine is 
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prescribed as an anti-hypertensive but does it lower blood pressure in normo-tensive subjects 

such as PTHS patients? What is the behavioral effect of nicardipine in a Pitt-Hopkins vs 

normal mouse? If there is an effect, does it differentiate from other pan-Nav channel 

blockers such as carbamazepine, mexiletine and/or lamotrigine? Addressing these questions 

is outside the scope of the present study.

The Nav1.8 channel, which unlike Kv7.1 (20) is normally not expressed in the brain, are 

upregulated in the Pitt Hopkins mouse. In future studies we will need to test the efficacy of 

the Nav1.8 inhibitors we have identified here such as nicardipine in this model to assess their 

ability to reverse the Pitt Hopkins phenotype. A battery of neurobehavioral tests could then 

be used to validate the phenotype of B6;129-Tcf4tm1Zhu/J mice (8–12 weeks old) after i.p. 

dosing. The neurobehavioral tests could include the Open Field Test, the Novel Spatial 

Recognition Task (30 min delay memory task), and the Holeboard Learning and Memory 

Task.

We have previously performed drug repurposing (36) using machine learning methods to 

identify FDA and EMA approved drugs for Ebola (37) and Chagas disease (38). Most 

recently we have been actively constructing Bayesian models for absorption, distribution, 

metabolism and excretion (ADME) properties such as aqueous solubility, mouse liver 

microsomal stability, and Caco-2 cell permeability (30), complementing earlier ADME 

machine learning work (39–47). This has led to models with acceptable ROC scores > 0.7 

(30). We have recently developed a Bayesian machine learning software called Assay 

Central (31, 48–50) and applied it in several studies (21–28) and in the current study with 

ECFP6 descriptors. These studies suggest we can build very promising models that have 

good statistics and ROC values and can identify chemical features that contribute to activity 

or lack thereof. To create novel intellectual property around KV7.1 and Nav1.8 inhibitors we 

can learn from the complete HTS datasets already generated using these machine learning 

models to virtually screen large libraries of to prioritize compounds for testing in vitro. The 

models developed in Assay Central can also be shared with others via a customized 

executable (21–28).

An alternative approach to that described in this study would be to take a known molecule as 

a starting point and try to modify it. For example, Pfizer and other companies have published 

on Nav1.8 compounds such as PF-06305591 which was run in safety and proof of concept 

trials at the same time. The pharmacokinetics was reported to be acceptable and no obvious 

safety issues were seen. It was however terminated because the pain efficacy was 

underwhelming (51). This compound is available from Sigma and chemistry is tractable so 

one could propose developing analogs of this or another related compound (52). The 

machine learning models described herein could be used to score these potential analogs 

prior to synthesis.

Over the past two decades various sodium and potassium channels have been confirmed as 

therapeutically desirable targets and recent work has focused on delivering subtype selective 

modulators. In summary, we have now used a repurposing screening approach to identify 

potential compounds for testing as treatments for PTHS that act at these ion channels. We 

have also used this new data to generate Bayesian machine learning models which could 
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further increase the efficiency of identifying additional ion channel inhibitors. A great 

strength of the combined HTS and machine learning strategy is its potential wide 

applicability for other rare diseases which need treatments.
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Figure 1. 
Automated patch clamp voltage protocol.
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Figure 2. 
A. KV7.1 percent inhibition data distribution and B. select KV7.1 hits. The 2SD and 3SD 

cutoffs were 43% and 63% inhibition, respectively. 55 compounds produced >2SD 

inhibition and 20 compounds were >3SD.
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Figure 3. 
A. Nav1.8 percent inhibition data distribution and B. select hits. The mean of the Nav1.8 

activity distribution was 22.2% inhibition with a right side SD of 33.3. This skewed 

distribution was from the larger number of hits relative to library size. For this reason we 

used the left side SD of 17.6 for statistical analysis. This resulted in 2SD and 3SD cutoffs of 

57.4% and 75.0% inhibition, respectively. 92 compounds produced >3SD inhibition.
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Figure 4. 
Concentration-response relationships for dihydropyridine compounds with Nav1.8 activity 

determined using automated patch clamp. Nicardipine (CPI1073) and nilvadipine (CPI1076) 

were found to be the most potent with IC50 = 0.6 μM, followed by nimodipine (CPI1075, 1.2 

μM), benidipine (CPI1074, 4.4 μM) and nifedipine (CPI1077, 16.7 μM).
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Figure 5. 
Bayesian machine learning results for A. KV7.1 and B. Nav1.8 models in Assay Central.
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Figure 6. 
Structure activity relationship for dihydropyridine compounds against NaV1.8.
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Table 1.

KCNQ1 percent inhibition data.

Drug Name Average percent inhibition at 10 μM

Diethylstilbestrol 90.2

Ethynodiol diacetate 88.0

Tibolone 87.6

Ethaverine hydrochloride 86.9

Econazole nitrate 85.6

Hexestrol 82.0

Lithocholic acid 80.8

Efavirenz 80.3

Miconazole 79.8

Clorgyline hydrochloride 76.8

Triclabendazole 76.0

Ethinylestradiol 75.8

Triclosan 74.0

Troglitazone 73.0

Tolnaftate 69.4

Cyclopenthiazide 68.3

Butoconazole nitrate 67.0

Equilin 64.6

Fenofibrate 64.0

Latanoprost 63.7

Liranaftate 62.8

Dienestrol 61.3

Isoconazole 61.2

Paroxetine Hydrochloride 59.9

Phenothiazine 59.8

Idebenone 59.0

Sertaconazole nitrate 58.6

Benzbromarone 58.1

Oxybenzone 57.4

Thiethylperazine dimalate 56.9

Estradiol-17 beta 56.3

Tioconazole 53.5

Dehydroisoandosterone 3-acetate 52.9

Etofenamate 51.8

Benidipine hydrochloride 51.1

Nicardipine hydrochloride 50.7

Famprofazone 50.7
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Drug Name Average percent inhibition at 10 μM

Mitotane 49.5

Tribenoside 48.8

Cyclosporin A 48.7

Nisoldipine 48.0

Nimesulide 47.9

Dicyclomine hydrochloride 47.5

Racecadotril 46.4

Clotrimazole 46.3

Nitrendipine 46.1

Cyclizine hydrochloride 45.9

Papaverine hydrochloride 45.6

Benazepril hydrochloride 44.8

Topiramate 44.3

Stanozolol 43.6

Homochlorcyclizine dihydrochloride 43.5

Piperacillin sodium salt 43.5

Raloxifene hydrochloride 43.3

Cinnarizine 43.3
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Table 2.

Nav1.8 percent inhibition data.

Drug Name Average percent inhibition at 10 μM

Carmofur 123.6

Nicardipine hydrochloride 122.6

Oxiconazole Nitrate 117.1

Benidipine hydrochloride 113.2

Cinnarizine 110.5

Levonordefrin 107.0

Carvedilol 103.7

Proparacaine hydrochloride 103.3

Dehydroisoandosterone 3-acetate 100.7

Pimozide 100.6

Fluspirilen 100.1

Dioxybenzone 100.0

Salmeterol 99.6

Diethylstilbestrol 99.5

(−)-Isoproterenol hydrochloride 99.2

Dyclonine hydrochloride 99.0

Isoetharine mesylate salt 98.5

Tegaserod maleate 98.3

Flunarizine dihydrochloride 96.6

Nimodipine 96.1

Naftifine hydrochloride 96.1

Levopropoxyphene napsylate 95.1

Racecadotril 94.8

Suloctidil 93.8

Vinpocetine 93.4

Oxethazaine 92.9

Saquinavir mesylate 92.8

Lidoflazine 92.7

Diperodon hydrochloride 92.2

Ketanserin tartrate hydrate 91.9

Hexestrol 91.6

Naftopidil dihydrochloride 91.4

Fendiline hydrochloride 91.3

Lomerizine hydrochloride 91.0

Terbutaline hemisulfate 90.6

Adiphenine hydrochloride 90.4
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Drug Name Average percent inhibition at 10 μM

Perospirone 89.7

Amodiaquin dihydrochloride dihydrate 89.6

Bepridil hydrochloride 89.1

(+)-Isoproterenol (+)-bitartrate salt 89.0

Doxepin hydrochloride 88.7

Trimebutine 88.7

Nefazodone hydrochloride 88.5

Pimethixene maleate 88.5

Raloxifene hydrochloride 88.4

Promazine hydrochloride 88.1

Nilvadipine 87.9

Triclosan 87.8

(R)-Duloxetine hydrochloride 87.7

Droperidol 87.6

GBR 12909 dihydrochloride 87.0

Thiethylperazine dimalate 86.6

Tribenoside 86.2

Luteolin 86.2

Phenoxybenzamine hydrochloride 86.1

Nortriptyline hydrochloride 85.9

Methiothepin maleate 85.6

Pentolinium bitartrate 85.6

Ethopropazine hydrochloride 85.5

Levalbuterol hydrochloride 85.3

Benperidol 84.2

Benoxinate hydrochloride 83.7

Benzydamine hydrochloride 83.6

Nebivolol hydrochloride 82.7

Nicergoline 82.3

Clemastine fumarate 82.2

Methyl benzethonium chloride 82.0

Spiperone 82.0

Benzethonium chloride 81.4

Protriptyline hydrochloride 80.0

Benzonatate 79.9

(+,−)-Synephrine 79.6

Dibucaine 79.4

Perhexiline maleate 79.2

Trifluoperazine dihydrochloride 79.1
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Drug Name Average percent inhibition at 10 μM

Trimeprazine tartrate 79.0

Felbamate 78.6

Promethazine hydrochloride 78.5

Anethole-trithione 78.5

Metaproterenol sulfate, orciprenaline sulfate 78.5

Fenoterol hydrobromide 78.3

Estrone 78.2

Salbutamol 78.0

Florfenicol 77.5

Chlorprothixene hydrochloride 77.4

Oxybutynin chloride 77.3

Dilazep dihydrochloride 76.9

Drofenine hydrochloride 76.8

Lopinavir 76.8

Doxazosin mesylate 76.1

Moricizine hydrochloride 75.8

Dimethisoquin hydrochloride 75.5
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