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Abstract

Purpose—Unlike conventional Magnetic Resonance Spectroscopy (MRS), which only measures 

metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1) and 

transverse (T2) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+). To 

test whether knowledge of these additional parameters can improve the clinical utility of brain 

MRS, we compare the conventional and multiparametric approaches in terms of expected 

classification accuracy in differentiating controls from patients with neurological disorders.

Methods—A literature review was conducted to compile metabolic concentrations and relaxation 

times in a wide range of neuropathologies and regions of interest. Simulations were performed to 

construct receiver operating characteristic curves and compute the associated areas (AUC) to 

examine the sensitivity and specificity of MRS for detecting each pathology in each region. 

Classification accuracy was assessed using metabolite concentrations corrected using population-

averages for T1, T2 and B1+ (conventional MRS); using metabolite concentrations corrected using 

per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator 

comprised of the metabolites’ concentrations and relaxation constants (multiparametric MRS). 

Additional simulations were conducted to find the minimal intra-subject precision needed for each 

parameter.

Results—Compared to conventional MRS, multiparametric approaches yielded AUC 

improvements for almost all neuropathologies and regions of interest. The median AUC increased 

by 0.14 over the entire dataset, and by 0.24 over the ten instances with the largest individual 

increases.

Conclusions—Multiparametric MRS can substantially improve the clinical utility of MRS in 

diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric 

sequences.
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1. Introduction

In recent years, there has been substantial interest in transforming the field of magnetic 

resonance into quantitative and multiparametric, capable of producing simultaneous 

estimates of multiple tissue parameters, such as the proton density, longitudinal and 

transverse relaxation coefficients (T1, T2), and hardware radiofrequency transmitter 

imperfections (B1+) within clinical timeframes. Several approaches to this end have been 

suggested, ranging from explicit model based estimations (1–3), to simulated echo 

modulation curves (4,5), to magnetic resonance fingerprinting (6–8). These schemes are 

almost universally multiparametric: they simultaneously uncover all, or most parameters. 

Since T1 and T2 are known to change in disease, these additional data can be used to 

enhance clinical assessment and diagnosis. Similar interest has been shown recently in the 

field of Magnetic Resonance Spectroscopy (MRS) (9,10), where knowledge of metabolites’ 

relaxation constants and transmitter inhomogeneity serves two purposes:

1. Metabolites’ T1s and T2s probe microscopic changes in specific cellular 

environments. An example of this is n-acetyl-aspartate (NAA), which is mostly 

found in neurons and is an established biomarker of neuronal health (11). While 

NAA’s concentrations reflect neuronal metabolism, NAA’s T1 and T2 

independently reflect the equally-important neuronal microenvironment.

2. In the context of MRS, a second, unique use of multiparametric data arises: The 

acquired metabolite concentrations are “weighted” by T1 and T2. Knowledge of 

each metabolite’s T1 and T2 constants, as well as of B1+, is required to properly 

correct for this weighting (12). Due to the long acquisition times conventionally 

required for their accurate per-subject determination – using, e.g., inversion 

recovery and multi-echo sequences – these are not acquired on a per-subject 

basis in clinical settings. As an approximation, tabulated values of metabolites’ 

T1s and T2s, representing population averages, are conventionally employed. 

However, the very use of tabulated values does not account for the large inter-

subject and regional variability in T1 and T2, and introduces unwanted errors into 

the correction process. This holds even when using advanced sequences which 

minimize the contribution of B1+, such as LASER (13), semiLASER (14,15) or 

STRESS (16,17).

Herein, we examine by how much multiparametric spectroscopic data – yielding not only 

metabolite concentrations, but also their subject-specific T1s, T2s, and B1+ – improves the 

detection and assessment of several well-known neuropathologies using single-voxel MRS. 

To carry out this analysis, we treat the tissue’s metabolic parameters as binary classifiers 

which can be used to distinguish between two states of tissue: healthy and pathological. We 

then evaluate the utility of these classifiers using the concept of receiver operating 

characteristic (ROC) curves and, in particular, the area under the curve (AUC). The AUC 
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ranges from 0.5 (useless; equivalent to a coin toss) to 1.0 (perfect classifier), and is used 

ubiquitously in assessing the performance of binary classifiers (18,19). Increases to the AUC 

translate to improved accuracy in clinical practice, or to smaller sample sizes when using 

MRS as an endpoint in a clinical trial. We compare the AUC of three binary classifiers in 

order of expected increasing accuracy:

C1. Metabolite concentrations, as obtained using conventional, non-multiparametric 

MRS, after correcting for signal weighting using population average values of T1 and 

T2, and assuming B1+=1.

C2. Metabolite concentrations, corrected using subject-specific values of T1 and T2, 

as well as knowledge of B1+, as acquired using multiparametric MRS.

C3. An optimal linear classifier comprised of corrected metabolite levels (same as 

(C2)), as well as subjects’ T1 and T2, which themselves change in pathology.

All multiparametric schemes will inevitably exhibit some amount of intra-subject variability. 

Its effects will also be examined and used to derive guidelines regarding what constitutes 

“acceptable” variability which should be demanded of multiparametric sequences. These 

comparisons will serve to assess the importance of high quality multiparametric quantitative 

acquisitions to MRS, as well as to potentially motivate the development of methodologies 

capable of acquiring such data within clinical scan times.

Theory

A Simple Model for Quantification in MRS

To estimate the gains to the AUC obtained by fully knowing each subject’s individual T1, T2 

and B1+, one must assume a model for their effect on the signal. This will depend on the 

sequence employed. For a simple semiLASER-like model, whereby only the first pulse 

introduces B1+ weighting and the pulse spacing is sufficiently close so as to neglect any 

alterations to T1 weighting beyond the simple pulse-acquire scheme, the MRS signal 

becomes weighted according to:

Smet = B1 − ⋅ Cmet ⋅
1 − E1

met ⋅ sin B1 + ⋅ FA ⋅ E2
met

1 − cos B1 + ⋅ FA E1
met

(1)

where Cmet, T1
met,  T2

met are the metabolite’s concentration and relaxation constants, 

E1
met ≡ exp − TR

T1
met ,  E2 = exp − TE

T2
met , B1− the receiver sensitivity and FA the flip angle. The 

MRS signal is conventionally corrected for relaxation by dividing by a factor of the form:
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f met =
1 − exp − TR

T1, c
met sin B1 + , cFA exp − TE

T2, c
met

1 − cos B1 + , cFA exp − TR

T1, c
met

.

(2)

Conventionally, the values of T1, c
met,  T2, c

met are taken from literature data, where available. 

Since most clinical protocols do not quantify transmitter inhomogeneities, B1+,c=1 is often 

assumed. For absolute quantification, the acquired signal is divided by a second reference 

signal, often water, exhibiting the same behavior as shown in Eq. (1) and requiring its own 

correction factor, fref, with its own Cc
re f ,  T1, c

re f ,  T2, c
re f , but the same B1+,c This is then 

multiplied by some assumed concentration of the reference signal, Cc
re f , such that the final 

estimated quantity is:

CAQ
met = Smet

f met ⋅ f re f

Sre f ⋅  Cc
re f

(3)

For a perfectly accurate multiparametric MRS sequence, the values of T1, c
met,  T2, c

met are B1+,c 

are assumed known, leading to fmet=fref

Construction of Optimal Linear Multiparametric Classifiers

Given a collection of M normally distributed uncorrelated binary classifiers X1, X2, …, XM, 

X j N μ j, σ j
2 , form X=(X1,X2,…,XM), their multivariate joint distribution. Assume X~N(μh, 

∑h) in healthy tissue and X~N(μp, ∑p) in pathology, with μ = (μ1,μ2,…,μM) and ∑ the 

diagonal covariance matrix, Σi j = δi jσ j
2. The linear combination Y = a1X1+ a2X2 +…+aMXM 

= aTX is then normally distributed with Y~N(aTμh,aT∑ha) in healthy tissue and 

Y~N(aTμp,aT∑pa) in pathology. The AUC of the combined classifier is (20):
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AUC = Φ
aT μp − μh

aT Σh + Σp a
.

(4)

where Φ is the cumulative normal distribution function. The coefficients a1,a2,…,aM can be 

chosen in a way which maximizes Eq. (4):

a = Σh + Σp
−1 μp − μh .

(5)

Using these coefficients, the AUC of the combined classifier Y becomes (20):

AUC = Φ μp − μh
T Σh + Σp

−1 μp − μh .

(6)

In this manner, several classifiers, such as concentrations, T1 and T2 can be optimally 

combined to improve their sensitivity and specificity.

Methods

Literature Search

A literature search was conducted on metabolite concentrations as well as metabolite and 

water relaxation times and their standard deviations (SDs) in brain pathologies. The 

following criteria were applied: adult populations (>18 years of age); only proton MRS 

studies; only NAA, choline (Cho) and creatine (Cr), due to the almost complete lack of 

concentration and relaxation data of other metabolites; for the concentrations, only 

millimolar (mM) values showing statistically significant changes in pathology (p<0.05) and 

obtained by absolute quantification (i.e. studies reporting institutional units were not 

included); for the relaxation data, only studies done at field strength of 1.5T or higher. A 

data entry (disease/region) was created for each instance of reported metabolic or water 

relaxation times in disease. Even though no published relaxation times could be found for 

two regions in mild cognitive impairment (MCI), they were nevertheless included to match 

the regions listed for the closely related Alzheimer’s Disease (AD). When multiple 

relaxation values for a particular tissue type were found within a single study, an averaged 

mean±SD was recorded.
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Quantitative MRS data for many pathologies and regions is often partial. Where pathological 

values were missing for either T1 or T2, we assumed them to remain unchanged in pathology 

and substituted for them with values from healthy controls from a similar region (or at least 

tissue type).

Comparison of Conventional and Multiparametric MRS

A single-voxel acquisition was assumed with the following parameters: TE=40 ms, to 

minimize T2 weighting; FA=90°, to minimize B1+ weighting; and TR=1500 ms, 

approximately equal to 1.2 T1, to maximize sensitivity (21). Using these parameters, and the 

assumed signal model of Eq. (1), the AUC was calculated for each of the literature-reviewed 

cases for (C1)-(C3) listed in the Introduction. Each metabolite was considered 

independently.

To assess the AUC for (C1), Monte Carlo simulations were employed to randomly generate 

values of T1
met,  T2

met, Cmet, T1
re f ,  T2

re f ,  Cref and B1+ for a large number of controls and 

patients (Nsub=10,000). We’ve made the simplifying assumptions that tissue parameters are 

normally distributed: T1 N T−1, σ1
2 ,  T2 N T−2, σ2

2 ,  B1 + N B−1, σB
2  and C N C−, σC

2 , and 

uncorrelated. This is physiologically reasonable: the concentration of a metabolite (C) 

should not be correlated to its microenvironment (T1, T2) or to hardware related artifacts 

(B1+). Water was used as the reference signal. Since water concentrations are rarely 

quantified, we assumed them to be stable, fully known, and equal to some arbitrary constant. 

Patients’ and controls’ means and variances of the concentrations and relaxation times for 

both the metabolite of interest and water were taken from the results of our literature review. 

B1+ is pathology independent and therefore we assumed that B−1 = 1. At clinical (3T) field 

strengths, a ±10% variation in B1+ is common (22), and thus σB = 0.1. The values of B1+, 

concentrations and relaxation times were fed into Eq. (3) to generate absolutely-quantified 

metabolite concentrations, CAQ
met, for each control and patient. To calculate the AUC, a 

classification threshold, TH, was fixed; in pathologies where metabolic concentrations 

decline, values of CAQ
met ≥ TH were classified as controls, while CAQ

met ≤ TH were classified as 

patients (and vice versa). The threshold TH was varied from 0 mM to 20 mM in steps of 

0.05 mM, and the fraction of false positives and true positives was calculated as a function 

of TH. An ROC curve was constructed by plotting the true positive fraction as a function of 

the false positive fraction, and the AUC was calculated via numerical integration. To ensure 

accuracy, three simulations were run consecutively, and cases where the resulting AUCs 

disagreed by more than 0.5% were repeated by increasing Nsub by 5,000, until the target 

0.5% accuracy was obtained.

For (C2), the same Monte Carlo simulations for (C1) were repeated, but assuming the exact 

values of T1, T2 and B1+ were known for each subject for both the metabolite being 

quantified and the reference water signal. For (C3), an optimal linear classifier Λ = ηCC + 
η1T1 + η2T2 was formed, with coefficients calculated using Eq. (5). Its AUC was calculated 

using Eq. (6).
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We note that several sources reported mean±SD with coefficients of variation (CV=SD/

mean) larger than 30%. These cases are problematic to model as Gaussian distributions since 

the probability of generating a meaningless negative value over a population of Nsubj=10,000 

samples is non-negligible. Thus, we further employed a “cutoff” value in our simulations: 

quantities which dipped below 70% of the mean value were discarded and re-generated. This 

has the effect of slightly shifting the mean and standard deviation of the generated (non-

Gaussian) distribution, although for the vast majority of cases these shifts are small. We 

marked (but did not omit) cases with substantial skews, where reported CVs exceed 30% for 

at least one of the variables in either the patient or control population.

Assessing the Effect of Each Spin Parameter on Classification Accuracy

The AUC was also calculated for three additional cases: (V1) The case where B1+ was 

assumed known on a per-subject basis, e.g., using an auxiliary B1 mapping sequence; (V2) 

An ultra-long TR sequence (TR/TE=10000/40 ms), minimizing T1 and some B1+ weighting; 

and (V3) An ultra-short TE sequence (TR/TE=1500/0.1 ms), minimizing T2 weighting. The 

same Monte Carlo pipeline used for (C1) was employed for each of the cases (V1)-(V3), 

using population-averaged values for T1 and T2. The purpose of these additional 

comparisons was to assess the relative impact of each variable (T1, T2, B1+) on the 

classification accuracy, and shed light on whether some variables are more important to 

quantify than others.

Assessing the Effect of Sequence Precision on Multiparametric MRS

MRS data is noisy, and thus any multiparametric MRS technique will suffer from some 

degree of error, which will result in intra-subject variability. At some point, this variability 

might become so significant so as to introduce greater uncertainty than the one it was 

intended to correct. To assess the point at which this happens, our simulations for case (C2) 

and (C3) were repeated while including a non-zero intra-subject coefficient of variation 

(CVs) for each quantity (T1, T2, C, B1+) and recalculating the AUCs. The CVs for each 

parameter were varied from 0% up to 25% while keeping all other CVs at zero. Note that 

these simulations quantify the effect of intra-subject variability, in contrast to cases (V1)-

(V3) considered above, which quantify the effect of inter-subject variability.

For recalculating (C2), the Monte-Carlo simulations were repeated, and additional 

variability was added to each subject’s parameter. For example, for T1, it was assumed the 

method yielded T1
est N T1

true, CV ⋅ T1
true 2

, where T1
true is that subject’s true T1 value. All 

other steps, including generation of the ROC curves and numerical evaluation of their 

associated AUCs, remained the same. For recalculating (C3), the optimal combination 

coefficients (Eq. (5)) of the metabolite’s concentrations, T1 and T2 were calculated as before 

according to the population means and SDs obtained from the literature search. The intra-

subject variability was added to each variable’s variance – e.g., 

T1 N T−1, σ1
2 N T−1, σ1

2 + CV ⋅ T−1
2 , reasonably assuming lack of correlation between 

intra- and inter-subject sources of variability – and the AUC of the linear combination was 

then calculated using Eq. (4) directly.
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Results

Comparison of Conventional and Multiparametric MRS

Table 1 lists the results of the conducted literature review of concentrations and relaxation 

times in neurological disorders. A total of 18 regions (including abnormal-appearing tissue 

and tumors) within 7 neuropathologies were identified. One hundred sixty-two instances of 

published metabolite and water relaxation times were found in disease. Most were measured 

at 1.5T and 3T, with single cases at 2.0T and 4T. The remaining 129 relaxation time entries 

in Table 1 were replaced with values reported for healthy controls.

Table 2 lists the AUCs computed for each case: (C1)-(C3) and (V1)-(V3), using the averaged 

data from each pathology, metabolite and region. Included were only those cases for which 

there were documented differences in metabolic concentration, and at least one metabolite 

relaxation time was reported in the disease, region and field strength (n=37). As expected, 

multiparametric MRS improves classification for concentrations alone ((C2) vs. (C1)) and 

offers further improvements when relaxation values are incorporated into the predication 

((C2) vs (C3)). The median ± median absolute deviation (MAD) taken over all pathologies 

and regions yields (Fig. 1): AUCC1=0.72±0.07, AUCC2=0.78±0.07, AUCC3=0.86±0.07. 

While the increases are substantial, the global statistics confound the underlying 

improvement observed in several particular cases: confining the calculation to the 10 most 

substantial improvements yields AUCC1=0.68±0.05, AUCC2=0.77±0.07, 

AUCC3=0.92±0.05. These cases, listed in Table 2 in bold, consist of five applications in MS, 

two in AD, two in human immunodeficiency virus (HIV) infection and one in amyotrophic 

lateral sclerosis (ALS).

Assessing the Effect of Each Spin Parameters on Classification Accuracy

When considering the relative impact of each sequence parameter on the classification of 

pathology using only metabolite concentrations (cases V1–V3, Table 2), we find that the 

median±MAD AUCs, taken over all cases, are: AUCV1=0.72±0.08, AUCV2=0.76±0.09 and 

AUCV3=0.73±0.06 (Fig. 1). These numbers all fall between AUCC1, where typical 

parameters TR/TE=1500/40 ms are used, and AUCC2, which completely removes all T1, T2 

and B1+ weighting from the concentrations. Our results imply that long TRs (V2) are the 

most beneficial in removing unwanted signal weighting. Shortening TE (V3) has less of a 

dominant effect on quantification, providing some motivation for ultrashort-TE sequences 

such as STEAM (23), SPECIAL (24) or STRESS (16,17), but not a particularly strong one; 

however, this statement only applies to singlets and does not take into account the 

improvements to quantification conferred by ultrashort echo times, such as minimal J-

coupling dephasing. Our calculations also do not take into account the effects ultrashort TEs 

and ultralong TRs have on the signal-to-noise ratio and, commensurately, on the accuracy of 

quantifying metabolite concentrations. Finally, B1+ quantification (V1) seems to have a 

negligible effect on the overall accuracy of MRS, making the addition of B1+ mapping 

sequences to an imaging protocol of secondary importance. These results hold also when we 

confine ourselves to the ten cases which show the greatest improvement, as before, for 

which AUCV1=0.69±0.04, AUCV2=0.74±0.06, AUCV3=0.7±0.06 (Fig. 1).
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Assessing the Effect of Sequence Precision on Multiparametric MRS

Cases (C2) and (C3) above assume each subject’s relaxation values are perfectly known. The 

introduction of real-world intra-subject variability will unavoidably degrade those benefits, 

which will be reflected in a commensurate decline in the AUC. Fig. 2 shows how the AUC 

varies as a function of the intra-subject variability of each measured quantity. The curves 

represent the median taken over all cases in Table 2. The four dashed curves show how intra-

subject variability in T1 (magenta), T2 (red), B1+ (blue) and concentrations (green) affect the 

usability of metabolite concentrations alone (case C2). The three solid curves show how 

intra-subject variability in T1 (magenta), T2 (red) and concentrations (green) affect the 

performance of the optimal linear multiparametric classifier (case C3). Note that B1+ does 

not directly affect the linear multiparametric classifier, but can indirectly affect the 

quantification of T1, T2 and the concentrations themselves. The exact way in which this 

might occur will depend on the specific workings of the multiparametric MRS sequence and 

hence are not explicitly modeled in our simulations.

The results reveal several features of interest. When considering concentrations alone, the 

most significant source of error comes from imprecise estimation of the concentrations 

themselves. A CV of 5–10% is sufficient to completely undermine any gains made by 

multiparametric MRS. Lack of precision in quantifying relaxation times has a somewhat less 

pronounced, but still important effect on quantitative MRS, with a precision of 

approximately 10% in T2 and 15% in T1 sufficient to reduce the AUC to that of conventional 

spectroscopy. Finally, variability in B1+ has a weak effect on the quantification of 

concentrations, with a CV of even 20% leading to a decline of the AUC from 0.77 to 0.76. 

This is in accordance with our simulations above, which have shown that knowledge of B1+ 

improves the AUC of conventional MRS only marginally.

Interestingly, uncertainty in T2 has the most pronounced deleterious effect on the AUC. This 

finding does not invalidate our previous result that ultralong TR sequences (V2) increase the 

AUC more than ultrashort TE sequences (V3), since these two comparisons evaluate the 

effects of intra-subject and inter-subject variabilities, respectively. In practice, T1 exhibits 

greater inter-subject variability compared to T2, as evident in Table 2. An additional reason 

for this discrepancy could also be that ultralong TRs minimize both T1 and B1+ weighting, 

confounding two effects.

Similar trends to the AUC are observed when one considers linear optimal classifiers. Here, 

however, multiparametric MRS retains its edge even for fairly large intra-subject CVs of up 

to, and even above 20%. Intra-subject CVs of several percent are unavoidable for any 

method. These results serve to motivate the importance of quantitative multiparametric MRS 

for realistic sequences and signal-to-noise ratios.

Discussion

Making Sense of the AUC: What do the Increases Mean?

The AUC compactly describes the ROC curves of a binary classifier. It is used ubiquitously 

in the assessment of binary classifiers in fields ranging from medicine to machine learning 

and geology. It can be shown that, if a certain quantity increases in pathology, its 
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corresponding AUC equals the probability that a randomly chosen pathological specimen 

has a higher value of that quantity compared to a randomly chosen healthy specimen (19). 

Several works have linked the AUC to several other widely used performance metrics. Swets 

et al. have shown that, for normally distributed variables, the AUC is related to Cohen’s d, 

which is used to assess effect sizes, via d = 2z AUC , where z(x) is the normal z-distribution 

(25). Figure 3 plots several equal-variance normal distributions with varying means, and 

their related AUCs and Cohen’s d. It provides a visual aid for interpreting the AUC.

Several caveats of the AUC should be mentioned. First, there are cases in which a high AUC 

is not necessarily desired. Rather, high sensitivity – that is, a low rate of false negatives – is 

more appropriate, since the implications of not treating a patient are sometimes direr than 

those of mistakenly treating a healthy individual; unfortunately, there is no simple, closed-

form correspondence between sensitivity and the AUC, and it is not straightforward to relate 

an increase in one to an increase in the other. The optimal linear combination of several 

weak classifiers with poor AUCs may in practice result in smaller gains than predicted, due 

to the inherent difficulties and large sample sizes required to estimate the AUC precisely 

(26). Finally, while the AUC remains widely used, several criticisms have been leveled 

against its practical usefulness; for example, it takes into account regions of the ROC curves 

which are not usually used, and disregards the goodness-of-fit of the model being 

considered. Interested readers are referred to the literature for a comprehensive discussion 

(27,28).

Where is Multiparametric MRS Most Effective?

We set out to calculate the AUC for multiple neuropathologies, regions and metabolites. In 

all cases, multiparametric MRS had higher classification accuracy than conventional MRS, 

as revealed by Table 2, although the improvements to the AUC exhibit a large range. We 

note several cases where multiparametric MRS could make a substantial contribution. The 

largest number of improvements were observed in MS, with most for normal-appearing 

white matter (NAWM), a hallmark region for MS pathology, often studied with MRS in 

clinical trials (29–32). Overall in MS there were 5 instances showing AUCC3>0.9, which 

also include gray matter and lesions. Two of the largest AUC increases were in AD, which 

has a staggering incidence, but suffers from a lack of MR biomarkers. Marked AUC 

improvements were also seen in HIV infection and ALS, with the former recording the 

largest single increase across our study (0.55 for NAA in NAWM).

Although multiparametric MRS showed the smallest AUC increases in tumors, the technique 

can still have an impact in neuro-oncology. Due to the large concentration differences 

between healthy and diseased tissue, currently the most common clinical use of brain MRS 

is in tumor assessment. This is reflected in Table 2, which shows high AUC values for 

conventional MRS (AUCC1>0.8 for 7 out of 8 instances). Further increases due to 

multiparametric MRS, although projected to be modest, would improve the diagnostic 

accuracy of a technique already in clinical use.

We note that while our literature search was confined to adult neurological disorders, reports 

of altered concentrations and metabolic relaxation times in children with autism (33,34) 

suggest a role for multiparametric MRS in the pediatric population. Finally, it is important to 
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note that our results show the potential benefit of multiparametric MRS not only by way of 

AUC, but also by providing additional, hitherto-unexplored disease biomarkers of the 

molecular environment within the intracellular space.

The Practical Challenges of Multiparametric MRS

The current work purposely avoided assuming a particular multiparametric approach, since 

research into such sequences is preliminary at best, and since the implementation details can 

have a substantial impact on the performance and limitations of each method. However, for 

the sake of completeness, we mention here some of the potential challenges we foresee for 

future approaches, alongside possible solutions.

Existing multiparametric MRS acquisitions often entail varying sequence parameters (TE, 

TR, FA) to encode the relaxation parameters into the acquired signal (9,10). While optimal 

for relaxation measurements, these approaches can detract from the SNR per unit time and, 

consequently, impair quantification of metabolite concentrations. As argued in the literature, 

quantification accuracy improves marginally beyond a certain SNR threshold (35). For voxel 

sizes of several cm3, the major singlets (NAA, Cho, Cr) have a high SNR and their 

quantification would be only slightly impaired even if some SNR is lost. For lower 

concentration metabolites, this should be more carefully considered and weighted against 

the potential gains of multiparametric data. For example, the detection of 2HG in gliomas 

(36) could outweigh the information offered by its relaxation values, and it might very well 

be that, for that particular application, a sequence aimed at maximizing SNR could 

outperform a multiparametric alternative.

There are cases in which multiparametric approaches could also benefit SNR. For example, 

clinical protocols might resort to long TRs to minimize the confounding effects of T1-

weighting, leading to sub-optimal SNR per unit time (21). A multiparametric approach 

would most likely use shorter TRs in order to encode T1 relaxation into the signal. 

Depending on their specific implementation details, such acquisitions might improve the 

SNR per unit time compared to the alternative long TR protocol, while also providing an 

estimate of the metabolites’ relaxation values.

No single multiparametric protocol could be optimized for all metabolites, given the spread 

of T1s and T2s found in-vivo. Even if confined to a specific metabolite, the inter-subject and 

regional variability relaxation times makes it impossible to simultaneously address all 

pathologies, subjects and regions. However, given that most in-vivo relaxation values are 

confined to a range of several hundred milliseconds, it is reasonable to expect that, even if 

sub-optimal, many solutions are expected to function reasonably well for a wide range of 

pathologies and metabolites. This is not unlike the problem of inversion recovery, where 

inversion times are fixed in advance and yet used to successfully fit the T1 values of multiple 

metabolites (37–39).

The current study was confined to NAA, Cho and Cr, the major singlets, due to lack of 

literature data on relaxation times of coupled metabolites in pathology. Many coupled 

metabolites have shown clinical promise, such as myo-inositol in AD (40,41) or glutamate in 

traumatic brain injury (42), and preliminary reports have shown the feasibility of 
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multiparametric approaches in measuring such coupled metabolites’ relaxation times (10). 

However, the variable TE of existing multiparametric implementations could lead to 

unwanted scalar coupling evolution, making the quantification of some of the metabolites 

more difficult compared to a sequence with one optimal, fixed TE. It is also possible that the 

converse holds: since specific metabolites are often easier to quantify at specific TEs – such 

as the Glx pseudo-singlet at around 2.35 ppm at TE=80 ms (43), the 1.9 ppm resonance of 

2HG at TE=110 ms (44), or the 2.25 ppm resonance of 2HG at TE=97 ms (45,46) – it might 

turn out that acquiring data at multiple TEs could increase the fitting reliability of MRS data 

using advanced algorithms, much like a 2D resolved experiment. The extension of existing 

multiparametric approaches to include J-coupled, weaker metabolites should keep in mind 

these challenges.

Limitations of Current Work

The work reported herein provides a quantitative impetus to multiparametric MRS. Several 

assumptions made and caveats encountered should be kept in mind when evaluating our 

conclusions, beyond the drawbacks of using the AUC as an evaluation metric that were 

raised above.

Relaxation times were not found for many pathologies. While in Table 2 we only compile 

those cases where at least one metabolic relaxation time was reported in disease, in many 

cases the remaining metabolic and water relaxation times for a particular AUC calculation 

were substituted with values from healthy controls. This assumes that those T1 or T2 do not 

change in pathology (likely untrue), which underestimates the improvement to the AUC that 

comes from forming linear multiparametric estimators (case C3). However, using control 

values retains the natural inter-subject variability of T1 and T2; this variability impairs the 

absolute quantification of metabolites’ concentrations, and is corrected by multiparametric 

MRS (case C2). Thus, knowledge of the missing relaxation times would probably lead to 

even more pronounced improvements in the median AUC, although it is impossible to 

estimate the magnitude of these improvements. Furthermore, multiparametric MRS cannot 

be used where a particular peak is missing. Such is the case for NAA in meningiomas (Table 

1).

Our conclusions have some degree of publication bias, for two reasons: (i) some metabolites, 

pathologies and regions are more widely studied and (ii) we have only included 

concentration results from statistically significant findings. Reason (i) is likely behind the 

fact that most improvements were found for NAWM, a relatively simple region for 

performing MRS relaxation time measurements. The corollary explains that many regions 

which are key in certain diseases are missing from this report, e.g. the hippocampus in AD, 

MCI and schizophrenia. Therefore, it is very likely that there are other instances where 

multiparametric MRS significantly outperforms conventional MRS, even beyond what is 

reported in Table 2. Reason (ii) can be illustrated with an example for NAWM in MS: as 

shown in Table 1 there are five statistically significant reports of NAA changes, substantially 

more than the single report found for Cho. As shown in Table 2, a multiparametric classifier 

based on Cho’s concentrations and relaxation times offers a better AUC (0.95 at 3T) than an 

estimator based on NAA (0.87 at 3T). However, Table 1 also demonstrates the large degree 
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of inter-study variability in MRS, evidenced by the spread of effect sizes observed for 

NAA’s concentrations in MS. It is possible that the single statistically significant result 

reported for Cho happens to represent a deviation, or a special characteristic of the particular 

cohort considered in that study. Thus, the exact AUCs in Table 2 should not be treated as 

clinical recommendations, but rather as general guidelines, indicating which metabolites 

could be potentially interesting to target in future studies.

Typical CVs within both patients and controls were between 10%−20%, although some 

pathologies, such as brain tumors, exhibit a very large variability in reported concentrations 

and relaxation times. Such a large spread of values might be attributed to artifacts typically 

found in spectra from cancer patients, such as the presence of intense lipid peaks. However, 

in the absence of any additional specific information or access to patient data, it is 

impossible to apply any consistent exclusion criteria. We have chosen to include these 

published cases and mark them appropriately in Table 2. We have assumed throughout that 

all variables are normally distributed. This is clearly at odds with several cases in Table 1 

which exhibit CVs larger than ≈20%−25%, which lead to non-physical negative values, 

which were dealt with by setting a lower cutoff value for all simulated quantities. Cases for 

which this happens are marked in Table 2. However, the relative fraction of these cases is 

fairly small and has negligible effect on the overall AUC. For example, even with a CV of 

30%, a distribution of randomly chosen numbers from X~N(X0,(CV⋅X0)2 will only have 

approximately 1% of all values which will dip below the X0−70%⋅X0 lower threshold set in 

our Monte Carlo simulations.

It is impossible to ascertain what part of the reported variability (the SDs in Table 1) 

originates from true biological variation in the population, and what originates from 

methodological errors and noisy or corrupted data. We have treated all variability as inter-

subject variability, and have also run additional simulations to quantify the effect of 

additional intra-subject variability.

The values for the concentrations and relaxation times for the same disorder and region often 

originate from different publications and, hence, from different patient cohorts. The values 

used to calculate a single AUC, therefore, may be mismatched in terms of disease stage and 

patient characteristics related to study entry criteria, medication use, etc. It is not possible to 

correct for these discrepancies, given the lack of studies which simultaneously quantify 

metabolic concentrations, as well as metabolite and water relaxation times. Our results 

should therefore be considered an approximation of the expected AUC improvements, and 

may not match the results obtained in practice.

Even when all are taken into account, these drawbacks do not invalidate the reported 

improvements. MRS relaxation times and concentrations often exhibit inter-scan CVs of 

approximately 10–20%, which are on the same order as the differences observed in most 

pathologies. This is clearly observed in many of the entries of Tables 1 and 2. Thus, the 

median AUC behavior, summarized in Fig. 1 and reported in the Results, captures the 

essence of the expected benefits of multiparametric MRS.
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Conclusions

Our results show that, compared to conventional MRS, multiparametric MRS confers 

benefits to metabolite quantification, by removing T1, T2 and B1+ weighting from the MRS 

signal and by integrating additional metabolite-specific biomarkers (T1, T2). Quantitatively, 

we have shown that by doing so, the median AUC, calculated for a wide range of brain 

pathologies, increases from 0.72 to 0.78. Furthermore, forming multiparametric classifiers, 

consisting not only of metabolite concentrations but also of their relaxation times, provides 

an additional and substantial boost to the power of MRS, increasing the AUC again to a 

median of 0.86. When considering the ten cases showcasing the greatest improvement, the 

median AUC increases from 0.68 to 0.92. Our results demonstrate tangible and substantial 

potential clinical benefits of quantitative, multiparametric MRS sequences and data 

processing pipelines, and serve to motivate their pursuit.
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Fig 1. 
The benefits of multiparametric MRS. Left: median AUCs, taken over all pathologies and 

regions (Table 2), for conventional spectroscopy (C1), multiparametric MRS concentrations 

(C2) and optimal linear classifiers (C3), as well as the effect of knowing B1+ (V1), ultra-long 

TR (V2) and ultra-short TE (V3). Error bars represent median absolute deviations (MADs). 

Right: Median±MAD AUCs using the ten cases from Table 2 which show the most marked 

improvement to AUC (compared between (C1) and (C3)).
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Fig. 2. 
The effect of precision (intra-subject variability) on multiparametric MRS. The AUC is 

plotted as a function of the multiparametric MRS’s method coefficient of variation (CV) for 

each of the variables: T1, T2 and B1+, for both cases (C2) (using only the concentrations 

corrected using per-subject metabolite concentrations) and (C3) (using a full multiparametric 

classifier). Dashed lines correspond to (C2) while solid lines correspond to (C3). Note that, 

for multiparametric classification, only errors in the concentrations and relaxation 

parameters (but not B1+) are modeled.
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Fig. 3. 
Visual interpretation of the AUC. Shown are two normal distributions of unit standard 

deviation, which represent some quantity which varies between patients and controls. As the 

distance between the distributions increases, so do the AUC and Cohen’s d, both variables 

used to describe effect size.
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