
*For correspondence:

Kimberly.Fornace@lshtm.ac.uk

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 14

Received: 10 April 2019

Accepted: 15 October 2019

Published: 22 October 2019

Reviewing editor: Ben Cooper,

Mahidol Oxford Tropical

Medicine Research Unit, Thailand

Copyright Fornace et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Local human movement patterns and land
use impact exposure to zoonotic malaria
in Malaysian Borneo
Kimberly M Fornace1,2*, Neal Alexander3, Tommy R Abidin4, Paddy M Brock5,
Tock H Chua4, Indra Vythilingam6, Heather M Ferguson5, Benny O Manin4,
Meng L Wong6, Sui H Ng4, Jon Cox1, Chris Drakeley1

1Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical
Medicine, London, United Kingdom; 2Centre on Climate Change and Planetary
Health, London School of Hygiene and Tropical Medicine, London, United Kingdom;
3Department of Infectious Disease Epidemiology, London School of Hygiene and
Tropical Medicine, London, United Kingdom; 4Department of Pathobiology and
Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia
Sabah, Kota Kinabalu, Malaysia; 5Institute of Biodiversity, Animal Health and
Comparative Medicine, College of Medical, Veterinary and Life Sciences, University
of Glasgow, Glasgow, United Kingdom; 6Parasitology Department, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia

Abstract Human movement into insect vector and wildlife reservoir habitats determines

zoonotic disease risks; however, few data are available to quantify the impact of land use on

pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological

methods to develop fine-scale models of human space use relative to land cover to assess

exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with

spatially explicit models of mosquito biting rates, we demonstrate the role of individual

heterogeneities in local space use in disease exposure. At a community level, our data indicate that

areas close to both secondary forest and houses have the highest probability of human P. knowlesi

exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting

rates in forests, incorporating human movement and space use into exposure estimates illustrates

the importance of intensified interactions between pathogens, insect vectors and people around

habitat edges.

DOI: https://doi.org/10.7554/eLife.47602.001

Introduction
Environmental change and human encroachment into wildlife habitats are key drivers in the emer-

gence and transmission of zoonotic diseases (Lambin et al., 2010; Patz et al., 2004). Individual

movements into different habitats influence exposure to disease vectors and animal reservoirs,

determining risk and propagation of vector-borne diseases (Stoddard et al., 2013; Stoddard et al.,

2009; Pindolia et al., 2012). Increased contact between these populations is theorised to drive

increases of the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo, now the main cause of

human malaria within this region. P. knowlesi is carried by long- and pig-tailed macaques (Macaca

fascicularis and M. nemestrina) and transmitted by the Anopheles leucospryphus mosquito group,

both populations highly sensitive to land cover and land use change (Moyes et al., 2016). Although

higher spatial overlap between people, macaques and mosquito vectors likely drives transmission,

Fornace et al. eLife 2019;8:e47602. DOI: https://doi.org/10.7554/eLife.47602 1 of 17

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.47602.001
https://doi.org/10.7554/eLife.47602
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the impact of human movement and land use in determining individual infection risks is poorly

understood (Imai et al., 2014).

The emergence of the zoonotic malaria Plasmodium knowlesi has been positively associated with

both forest cover and historical deforestation (Fornace et al., 2016b; Shearer et al., 2016). How-

ever, out of necessity, statistical approaches to assess environmental risk factors for P. knowlesi and

other infectious diseases typically evaluate relationships between disease metrics and local land

cover surrounding houses or villages. While an individual may spend most of their time within the

vicinity of their residence, this area does not necessarily represent where they are most likely to be

exposed to a disease. This is supported by varying associations between P. knowlesi occurrence and

landscape variables at different distances from households, ranging from 100 m to 5 km, likely par-

tially due to human movement into different surrounding habitats (Fornace et al., 2016b;

Brock et al., 2019). Although land cover variables describing physical terrestrial surfaces are fre-

quently incorporated into disease models, land use is rarely quantified. Land use is commonly

defined as ‘the arrangements, activities, and inputs that people undertake in certain land cover

types’ (IPCC, 2000). Places with similar types of land cover may be used very differently, with the

activities and frequencies with which people visit these places determining the spatial distribution of

disease (Lambin et al., 2010).

Mathematical modelling studies have revealed the importance of spatial variation in contact rates

due to the movement of individuals through heterogeneous environments with varying transmission

intensity (Acevedo et al., 2015). A multi-species transmission model of P. knowlesi highlighted the

role of mixing patterns between populations in different ecological settings in determining the basic

reproductive rate and subsequent modelling studies illustrate the sensitivity of this disease system to

population densities of both people and wildlife hosts (Imai et al., 2014; Yakob et al., 2018). How-

ever, although mechanistic models have been extended to explore the potential importance of these

heterogeneities in disease dynamics, there are inherent constraints on model complexity and most

models make simplistic assumptions about the habitat uses of different populations.

Empirical data on human population movement is increasingly available, allowing assessment of

the impact of mobility on infectious disease dispersion and risks (Pindolia et al., 2012). On larger

spatial scales, mobile phone data have revealed the role of human migration in the transmission of

infectious diseases such as malaria, dengue and rubella (Chang et al., 2019; Wesolowski et al.,

2015a; Wesolowski et al., 2015b).Although this data can provide insights into long range move-

ments, spatial resolution of this data is limited, particularly in areas with poor or no mobile coverage,

such as forested areas (Wesolowski et al., 2016). Alternatively, the advent of low-cost GPS tracking

devices allows quantification of fine-scale movements, demonstrating marked heterogeneity in indi-

vidual movement and risk behaviours (Stoddard et al., 2013; Vazquez-Prokopec et al., 2013).

Combining these data with detailed data on land cover and vector dynamics can provide new

insights into how landscapes affect P. knowlesi transmission.

Previous studies of P. knowlesi have relied on questionnaire surveys, identifying self-reported

travel to nearby plantations and forest areas as a risk factor for P. knowlesi and other malaria infec-

tions (e.g. Grigg et al., 2017; Singh et al., 2004; Yasuoka and Levins, 2007). However, the resul-

tant spatial range and frequency of these movements remain unknown and the definition of different

habitat types is entirely subjective. Further, little is known about differences in local movement pat-

terns in different demographic groups. While infections in male adults have been linked to forest

and plantation work, it is unknown whether infections reported in women and young children are

likely to arise from exposure to similar environments (Barber et al., 2012). The main mosquito vector

in this area, An. balabacensis, is primarily exophagic and has been identified in farm, forest and vil-

lage areas near houses (Wong et al., 2015; Manin et al., 2016). Macaque populations are reported

in close proximity to human settlements and molecular and modelling studies suggest transmission

remains primarily zoonotic in this area (Imai et al., 2014; Lee et al., 2011; Chua et al., 2017). A

case control study detected higher abundances of An. balabacensis near P. knowlesi case houses-

holds, suggesting the possibility of peri-domestic transmission (Manin et al., 2016). Understanding

the importance of these habitats is essential to effectively target intervention strategies and predict

impacts of future environmental changes.

Key questions remain about where individuals are likely to be exposed to P. knowlesi and how

landscape determines risk. Functional ecology approaches allow the distribution of different popula-

tions to be modelled based on biological resources and relate transmission to landscape and
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environmental factors (Hartemink et al., 2015). Within wildlife ecology, numerous methods have

been developed to estimate utilisation distributions (UDs), the probability of an individual or species

being within a specific location during the sampling period (Papworth et al., 2012). Although these

methods traditionally rely on kernel density smoothing, kernel density estimates may not actually

reflect time individuals spend in a specific location if there is substantial missing data or irregular

time intervals. Alternatively, biased random bridges (BRBs) improve on these methods by estimating

the utilisation distribution as a time-ordered series of points, taking advantage of the autocorrelated

nature of GPS tracks to bias movement predictions towards subsequent locations in a time series

(Benhamou, 2011). This allows for interpolation of missing values and adjustment for spatial error to

estimate utilisation distributions representing both the intensity (mean residence time per visit) and

frequency of individual visits to specific locations. By integrating these estimates of individual space

use with detailed spatial and environmental data in a Bayesian framework, fine-scale patterns of

human land use can be predicted and overlaid with spatiotemporal models of mosquito distribution.

This allows exploration of how landscape composition, as well as configuration and connectivity

between habitats, impacts human exposure to P. knowlesi and other vector-borne and zoonotic

diseases.

Focusing on one aspect of land use, human movement and time spent within different land cover

types, we explored the role of heterogeneity in local space use on disease exposure. Rolling cross-

sectional GPS tracking surveys were conducted in two study areas with on-going P. knowlesi trans-

mission in Northern Sabah, Malaysia (Matunggong and Limbuak; Fornace et al., 2018). We aimed

to characterise local movement patterns and identify individuals and locations associated with

increased P. knowlesi exposure risks by: 1. analysing individual movement patterns and developing

predictive maps of human space use relative to spatial and environmental factors, 2. modelling bit-

ing rates of the main vector An. balabacensis, and 3. assessing exposure risks for P. knowlesi based

on predicted mosquito and human densities (Figure 1) Integrating these three approaches allowed

a uniquely spatially explicit examination of disease risk.

Materials and methods

Study site
This study was conducted in two rural communities in Northern Sabah, Malaysia: Matunggong,

Kudat (6˚47N, 116˚48E, population: 1260) and Limbuak, Pulau Banggi (7˚09N, 117˚05E, population:

1009) (Figure 2). These areas were the focus for integrated entomology, primatology and social sci-

ence studies for risk factors for P. knowlesi (https://www.lshtm.ac.uk/research/centres-projects-

groups/monkeybar), with clinical cases and submicroscopic infections reported from both sites and

P. knowlesi sero-prevalence estimated as 6.8% and 11.7% in Matunggong and Limbuak, respectively

(Fornace et al., 2018).

Demographic data and GPS locations of primary residences were collected for all individuals

residing in these areas (Fornace et al., 2018). Potential spatial and environmental covariates for

these sites were assembled from ground-based and remote-sensing data sources

(Supplementary file 1). The enhanced vegetation index (EVI) was used to capture temporal changes

in vegetation levels; this index captures photosynthetic activity and has higher sensitivity in high bio-

mass areas compared to the normalised difference vegetation index (NDVI) frequently used. Due to

the high cloud cover within this area, EVI at a high spatial resolution could not be obtained for all

time periods. Instead, EVI data at a lower spatial but higher temporal resolution was used and

monthly averages were calculated from all available cloud-free data and resampled to 30 m per pixel

(Didan, 2015).

GPS tracking survey
A minimum of 50 participants per site were targeted in a rolling cross-sectional survey

(Johnston and Brady, 2002). During pre-defined two-week intervals, randomly selected participants

from comprehensive lists of eligible community members were asked to carry a QStarz BT-

QT13000XT GPS tracking device (QStarz, Taipei, Taiwan) programmed to record coordinates contin-

uously at one-minute intervals for at least 14 days regardless of individual movement. Individuals

were excluded if they were not primarily residing in the study area, under 8 years old or did not
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consent. Trained fieldworkers visited the participant every two days to confirm the device was func-

tioning, replace batteries and administer questionnaires on locations visited and GPS use. Field-

workers recorded whether the device was working and if the individual was observed carrying the

GPS device to assess compliance. Individuals were excluded from analysis if insufficient GPS data

were collected (less than 33% of sampling period) or individuals were observed not using the device

for two or more visits.

Human space use
Biased random bridges were used to calculate individual utilisation distributions, the probability of

an individual being in a location in space within the sampled time period (Benhamou, 2011). Within

this study, large proportions of GPS fixes were missed due to technical issues with batteries and

GPS tracking; biased random bridges were used to interpolate between known locations and adjust

for missing data, using the time series GPS data to provide a more accurate estimate of space use.

Figure 1. Analysis methods used to estimate individual and community-level exposure to P. knowlesi sporozoite positive An. balabacencis bites.

DOI: https://doi.org/10.7554/eLife.47602.002
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Utilisation distributions were calculated separately for each individual for all movement and night-

time only movements (6pm – 6am).

To fit biased random bridges, we estimated the maximum threshold between points before they

were considered uncorrelated (Tmax) as 3 hr based on typical reported activity times. The minimum

distance between relocations (Lmin), the distance below which an individual is considered stationary,

was set at 10 m to account for GPS recording error based on static tests. Finally, the minimum

smoothing parameter (hmin), the minimum standard deviation in relocation uncertainty, was set as 30

m to account for the resolution of habitat data and capture the range of locations an individual could

occupy while being recorded at the same place (Papworth et al., 2012; Benhamou, 2011). Esti-

mates of the core utilisation area (home range) were based on the 99th percentile, representing the

area with a 99% cumulative probability distribution of use by the sampled individual.

To assess relationships between space use and environmental factors and develop predictive

maps of community space use, we fit resource utilisation functions, regression models in which the

utilisation distributions are used as the response variable, improving on models using raw GPS count

points as the response when there is location uncertainty and missing data (Hooten et al., 2013).

The probability density function (utilisation distribution) per individual was rasterised to 30 m2 grid

cells and environmental and spatial covariates extracted for each grid cell. Potential environmental

covariates included distance to the individual’s own house, distance to closest house, distance to

roads, land use class (forest, agriculture, cleared or water), distance to forest edge, elevation and

slope (Supplementary file 1). Resource utilisation was modelled as a Bayesian semi-continuous

Figure 2. Study sites and sampled houses. (A) Location of study sites and tracked houses (households with one or more individual GPS tracked) and

survey houses (households with only questionnaire data collected and used for prediction) in (B) Matunggong, Kudat and (C) Limbuak, Banggi;

description of land cover classification and survey methodology in Fornace et al. (2018).

DOI: https://doi.org/10.7554/eLife.47602.003
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(hurdle) model with two functionally independent components, a Bernoulli distribution for the proba-

bility of individual i visiting a specific grid cell j (!ij) and a gamma distribution for the utilisation distri-

bution in grid cells visited (yij) (Blangiardo and Spatial, 2015; Sadykova et al., 2017). For each

individual, we defined absences to be all grid cells with a utilisation distribution less than 0.00001,

indicating a very low probability the individual visited this grid cell during the study period. We

included all presences (grid cells with a utilisation distribution >0.00001) and randomly subsampled

equal numbers of absences (grid cells not visited) for each individual as including equal numbers of

presences and absences can improve predictive abilities of species distribution models (Barbet-

Massin et al., 2012). The utilisation distribution for grid cells visited is defined as:

yij ¼
Gamma

�2

ij

s2 ;
s2

�ij

� �

with probability 1� fij

0 with probability fij

( )

Where the mean of yij is given by:

ij ¼E yijjX
T
ij

� �

¼ 1�!ij

� �

�ij

The full model was specified as:

!ij ~ Bernoulli fij

� �

With the linear predictor for the Bernoulli model specified as:

logit fij

� �

¼ b0þXT
ijbiþ gj

Where b0 s2 represents the intercept, XT
ijbi s2 represents a vector of covariate effects and gj s2

represents the additive terms of random effects for individual. For the Gamma component, s2 is the

variance and the linear predictor � s2ij is specified as:

log �ij
� �

¼ a0þXT
ijaiþ’j

With a0 representing the intercept, XT
ijai representing a vector of coordinates and ’j representing

the random effects. Weakly informative normal priors specified as Normal (0,1/0.01) were used for

all intercepts and coefficients. Bayesian inference was implemented using integrated nested Laplace

approximation (INLA) (Rue et al., 2009). This approach uses a deterministic algorithm for Bayesian

inference, increasing computational efficiency relative to Markov chain Monte Carlo and other simu-

lation-based approaches (Blangiardo and Spatial, 2015). We did not explicitly include spatial auto-

correlation as several distance-based covariates were included (e.g. distance from own house)

(Hooten et al., 2013). Predictive models used data for all individuals aged 8 or over residing in

these communities (Table 1) and models were limited to land areas within 5km of households

included in the study site. Separate models were fit for each site.

Exposure to infected vectors
To estimate vector biting rates, we assembled data from 328 nights of human landing catches

(HLCs) conducted with 5 km of the Matunggong study site while GPS tracking was on-going, includ-

ing: monthly longitudinal surveillance (Wong et al., 2015), investigations surrounding households of

cases and controls (Manin et al., 2016), and environmentally stratified outdoor catches (Sh et al.,

2016) (Supplementary file 2). We limited this data to counts of An. balabacensis, the primary knowl-

esi vector, which comprises over 95% of Anopheles caught in this region. As one experiment only

collected mosquitoes for 6 hr, we fit a linear model of all available data vs totals after 6 hr catches to

estimate the total numbers of An. balabacensis which would have been caught over 12 hr for these

data (R2 = 0.85). Plausible environmental covariates were assembled, including land use type, slope,

aspect, elevation, topographic wetness index, EVI, population density and average monthly temper-

ature and rainfall. To select variables for inclusion, Pearson correlation analysis was used to assess

multicollinearity between selected environmental variables. As topographic slope and TWI had a

strong negative correlation, only TWI was included in the analysis. The autocorrelation function
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(ACF) and partial autocorrelation function (PACF) were used to explore correlation between time

lags.

A Bayesian hierarchical spatiotemporal model was implemented using counts of An. balabacensis

bites as the outcome, denoted as mit; j = 1. . .n; t = 1. . .n; where j indexes location and t indexes

month. The log number of person-nights per catch was included as an offset to adjust for numbers

of catchers conducting HLCs during different experiments. As the data were overdispersed, a nega-

tive binomial distribution was used to model mit. The linear predictor was specified as:

log �jt

� �

¼ log Njt

� �

þZ0 þ DT
jtZ þwj þ et

Where Nijt represents the number of person-nights for each HLC catch, Z0 represents the inter-

cept, DT
jtZ represents a vector of covariates, wj is the spatial effect and et is the temporal effect. The

temporal effect et was included as a fixed effect, random effect or temporally structured random

walk model of order 1 in candidate models (Lindgren and Rue, 2015). The spatial effect wj was

modelled as a Matern covariance function between locations sj and sk:

W ~ Multivariate Normal 0; Sð Þ

Shk ¼Cov � shð Þ; � skð Þð Þ ¼ Cov �h; �kð Þ ¼
s2

G lð Þ2l�1
kjjsh � skjjð ÞlKl kjjsh � skjjð Þ

Where ||sh – sk|| denotes the Euclidean distance between locations sh and sk, x(s) is the latent

Gaussian field accounting for spatial correlation, s2 is the spatial process variance and Kl is a modi-

fied Bessel function of the second kind and order l >0. k is a scaling parameter related to r, the dis-

tance at which spatial correlation becomes negligible, by r = H8l/ k. A stochastic partial differential

equations (SPDE) approach was used, representing the spatial process by Gaussian Markov random

fields (GMRF) by partitioning the study area into non-intersecting triangles (Lindgren et al., 2011).

This approach represents the covariance matrix S by the inverse of the precision matrix Q of the

GMRF (Blangiardo and Spatial, 2015; Lindgren et al., 2011). Prior distributions were specified on

fixed effects and hyperparameters. A vague normal prior distribution was used for the intercept.

Weakly informative priors were used for fixed effects specified as N(1,1/0.01). Priors for spatial

hyperparameters were specified as range r ~ N(10, 1/0.01) and standard deviation s ~N(0.1, 1/0.01)

as described by Lindgren and Rue (Lindgren and Rue, 2015).

As these vectors are rarely reported indoors (Manin et al., 2016) and HLCs were primarily con-

ducted outside, we excluded areas within houses for calculations of exposure risks. The proportion

of infectious mosquitoes, c, was parameterised using a beta distribution for P. knowlesi sporozoite

Table 1. Baseline characteristics of study site communities and sampled populations

Matunggong Limbuak

Sampled Community* Sampled Community*

N 134 958 109 633

Gender

Male, % (n) 51.5% (69) 46.1% (442) 47.7% (52) 46.1% (292)

Women, % (n) 48.5% (65) 53.9% (516) 52.3% (57) 53.9% (341)

Age in years, median (IQR) 31 (17–53) 32.5 (8–51) 29 (15–46) 30 (15–47)

Main occupation, % (n)

Farming 29.9% (40) 28.6% (274) 7.3% (8) 10.2% (65)

Plantation work 10.4% (14) 8.6% (82) 10.1% (11) 7.6% (48)

Student 26.1% (35) 27.7% (265) 26.6% (29) 21.0% (133)

Other 6.7% (9) 9.1% (87) 15.6% (17) 14.4% (91)

No employment/housewife 26.9% (36) 26.1% (250) 40.4% (44) 46.8% (296)

*Community includes all individuals eligible for these surveys (residents ages eight and over).

DOI: https://doi.org/10.7554/eLife.47602.004
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rates within this site; with only 4 out of 1524 collected mosquitoes positive, it was not possible to

look at variations of infection rates by time and space. Spatially explicit exposure risks were calcu-

lated as derived quantity from human resource utilisation, mosquito biting rate models and probabil-

ity of P. knowlesi sporozoite positivity. Individual exposure risk was explored using a simple

exposure assessment model where the number of infected bites received by an individual is the sum

of bites by infected vector across all locations visited, with the number of infectious bites received

by individual i in month t as:

rit ¼ c
X

J

j¼1

yijmjt

Where j indexes the grid cells visited, yij is the utilisation distribution, mjt is the number of bites

per individual in that cell and month, and c is the proportion of infectious mosquitoes

(Stoddard et al., 2009). To evaluate places associated with exposure for the entire community, we

calculated the number of infectious bites per grid cell each month as:

rjt ¼ c
X

I

i¼1

Yijmjt

Where Yij is the predicted utilisation distribution for all individuals within the community per grid

cell j. All analyses were conducted in R version 3.5, with Bayesian models implemented using Inte-

grated Nested Laplace Approximation (INLA) (Rue et al., 2009). Model fit was assessed using devi-

ance information criteria (DIC) and area under the receiver operating curve (AUC), root mean square

error (RMSE) or conditional predictive ordinate (CPO) (Held et al., 2010).

Ethics approval
This study was approved by the Medical Research Sub-Committee of the Malaysian Ministry of

Health (NMRR-12-537-12568) and the Research Ethics Committee of the London School of Hygiene

and Tropical Medicine (6531). Written informed consent was obtained from all participants or

parents or guardians and assent obtained from children under 18.

Results
Between February 2014 and May 2016, 285 consenting people participated in the GPS tracking

study with 243 included in the final analysis including 109 in Limbuak and 134 in Matunggong

(Table 1). The most commonly reported occupation was farm or plantation work (n = 73), primarily

conducted within the immediate vicinity of the house. A total of 3,424,913 GPS points were col-

lected, representing 6,319,885 person-minutes of sampling time. Median sampling duration was

16.27 days (IQR 13.72–19.97), with points recorded for a median of 59.1% (IQR: 46.9–71.1%) of the

sampling duration. Maximum distances travelled ranged from no travel outside the house to 116

km, with a median distance travelled of 1.8 km. Utilisation distributions (UDs), the probability of an

individual being in a location in space within a given time (Figure 3), varied by gender and occupa-

tion. Individuals at the more rural Limbuak site covered larger distances (Table 2), with the largest

distances covered by individuals reporting primary occupations of fishing (n = 5) and office work

(n = 9). Although substantial differences were reported in all movements (24 hr sampling) between

seasons, no seasonal differences were observed in human movements during peak Anopheles biting

times (6pm-6am).

For both study areas, we developed models of community space use during peak mosquito biting

hours (6pm – 6am), in the form of resource utilisation functions, predictions of time- and space-spe-

cific UDs on the basis of spatial and environmental variables (Papworth et al., 2012). Between 6pm

– 6am, human space use (UDs) was mostly predictable and negatively correlated with distance from

the individual’s house, other houses, roads and slope. The AUC for presence/absence models was

0.936 for Matunggong and 0.938 for Limbuak and RMSE for the overall model was 0.0073 and

0.0043 for Matunggong and Limbuak, respectively. While individuals were more likely to use areas

further away from forests in the Matunggong site, human space use was positively correlated with

proximity to forests in the Limbuak site (Table 3). Despite marked differences between different
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demographic groups and seasons observed during 24 hr movements, these factors did not improve

the predictive power of the model for movements between 6pm and 6am.

Between August 2013 and December 2015, 4814 An. balabacensis were caught from 328 sam-

pling nights in 155 unique locations. The median biting rate was 2.1 bites per night per person, rang-

ing from 0 to 28 bites per person per night (Figure 4). Despite monthly variation, including temporal

autocorrelation did not improve model fit (Table 4). Although no associations were identified

between land classification and vector density in this site, models identified positive relationships

with enhanced vegetation indices (EVI) and negative associations with distance to forest and human

population density (Table 5). Of 1524 mosquitoes tested for Plasmodium sporozoites, the median

sporozoite rate was 0.24% (95% CI: 0.09–0.58%).

For individuals included in the GPS tracking study in Matunggong, where both human movement

and entomology data were available, we calculated exposure risks as a derived quantity from utilisa-

tion distributions and mosquito biting rate models. Exposure varied markedly between individuals,

with an overall 150-fold difference in predicted mean probabilities of infected bites per night (range:

0.00005–0.0078) (Table 6). No clear differences were observed between genders, age groups or

occupations of individuals sampled and there was no association between risk and distance

travelled.

Using the resource utilisation function with demographic and spatial data for all individuals in

Matunggong, we predicted community-wide space use and estimated exposure to infected mosqui-

toes (Figure 5). The predicted number of person nights per grid cell for the entire community

ranged from 0 to 12.79 (median: 0.01, IQR: 0.0004–0.99), with the mean probability of a community

member exposed to an infected bite per grid cell of 0.00082 (IQR: 0.00001, 0.00050). Although over

43% of the study site is forest and relatively high biting rates were predicted in forests during the

study period (mean: 1.94, range: 0.04–12.59), this habitat was rarely used by people in the evenings,

Figure 3. Human movement relative to habitat. (A) Example of GPS tracks from a 22-year-old male plantation worker in Matunggong over aerial

imagery, (B) Probability density of an individual utilisation distribution calculated from GPS tracks.

DOI: https://doi.org/10.7554/eLife.47602.005
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with less than 8% of predicted person-nights in forests. Models only based on mosquito biting rates

and not including human space use predicted 42% of infectious bites occurred in forested areas and

only 8.6% of bites occurring within 100 m of houses (Figure 5C). In contrast, when space use pat-

terns are included, over 91% of predicted infected bites were predicted within 500 m of houses

Table 2. Home range estimates by demographic group and site

Area of 99% UD for all movement (hectares)
Median (IQR)

Area of 99% UD from 6pm – 6am (hectares)
Median (IQR)

Demographic group

Men 32.09 (7.07, 148.93) 4.50 (2.79, 19.53)

Women 74.25 (12.24, 320.74) 6.08 (2.79, 24.17)

Children (under 15) 26.01 (6.39, 151.94) 3.83 (2.79, 8.73)

Occupation

Farming 29.34 (8.15, 324.38) 6.75 (2.79, 19.80)

Plantation work 49.14 (9.72, 201.33) 4.59 (2.79, 27.72)

Fishing 442.49 (40.07, 1189.00) 227.16 (4.05, 465.14)

Office work 96.80 (63.61, 256.75) 13.63 (2.88, 20.14)

Other 19.98 (6.30, 26.82) 2.97 (2.61, 18.27)

No employment/housewife 43.38 (11.97, 157.59) 3.60 (2.79, 19.12)

Site

Limbuak 99.99 (24.57, 387.54) 7.74 (2.88, 58.05)

Matunggong 12.02 (3.94, 85.55) 2.97 (2.70, 11.77)

Season

Dry (February – July) 28.62 (5.45, 252.45) 4.19 (2.79, 19.60)

Wet (August – January) 54.90 (17.23, 160.99) 4.64 (2.79, 19.35)

DOI: https://doi.org/10.7554/eLife.47602.006

Table 3. Estimated coefficients for fixed effects of resource utilisation functions (6pm – 6am).

Matunggong Limbuak

Mean SD 95% CI Mean SD 95% CI

Probability of presence/absence

Intercept 3.383 0.839 3.218, 3.547 3.571 0.104 3.368, 3.775

Distance from own house (km) �0.954 0.006 �0.966,–0.942 �0.543 0.003 �0.548,–0.539

Distance from forest (km) 5.997 0.177 �5.650, 6.344 �1.845 0.050 �1.944,–1.746

Distance from road (km) �5.552 0.057 �5.663,–5.441 �3.656 0.019 �3.694,–3.618

Distance from houses (km) �0.504 0.030 �0.563,–0.444 0.176 0.007 0.162, 0.189

Elevation (100 MSL) �0.710 0.025 �0.759,–0.662 �1.268 0.037 �1.340,–1.197

Slope (degrees) �0.0244 0.002 �0.028,–0.021 �0.009 0.001 �0.012,–0.006

Utilisation distributions for locations present

Intercept �6.846 0.866 �8.549,–5.147 �5.676 1.017 �7.673,–3.681

Distance from own house (km) �0.583 0.004 �0.590,–0.576 �0.308 0.002 �0.311,–0.305

Distance from forest (km) 12.012 0.199 11.621, 12.403 �1.771 0.049 �1.868,–1.675

Distance from road (km) �0.833 0.054 �0.939,–0.728 �1.532 0.011 �1.554,–1.511

Distance from houses (km) �0.819 0.023 �0.864,–0.773 �0.239 0.006 �0.249,–0.228

Elevation (100 MSL) 0.664 0.027 0.610, 0.718 �0.297 0.003 �0.303,–0.297

Slope (degrees) �0.021 0.002 �0.024,–0.018 �0.034 0.001 �0.036,–0.031

DOI: https://doi.org/10.7554/eLife.47602.007
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(Figure 5D). Highest exposure risks were consistently found near forest edges and in close proximity

to households, despite spatial and temporal heterogeneity and model uncertainty (Figure 4).

Figure 4. Mosquito biting rates. (A) An. balabacensis biting rate per person-night from data collected in Matunggong, (B) Predicted mean An.

balabacensis biting rates per month from spatiotemporal models, (C) Predicted number of bites for all individuals residing in Matunggong by distance

from secondary forest, and by (D) Distance from households.

DOI: https://doi.org/10.7554/eLife.47602.009

Table 4. Model selection statistics for mosquito biting rates

Model DIC* Marginal likelihood Model complexity* RMSE* Mean log-score (CPO)

M1 No spatial or temporal effect 2367.03 �1196.61 4.12 4.99 3.61

M2 Spatial effect only 2292.97 �1175.47 40.03 4.42 4.16

M3 Spatial effect + month as fixed effect 2282.88 �1173.68 43.99 4.24 3.90

M4 Spatial effect + month as random effect 2222.89 �1155.91 50.28 4.05 3.61

M5 Spatial effect + month as random walk 2225.43 �1167.79 47.55 4.09 3.63

DOI: https://doi.org/10.7554/eLife.47602.008
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Discussion
This study highlights the importance of human space use in different land cover types in determining

exposure to zoonotic and vector-borne diseases such as P. knowlesi. Although P. knowlesi has previ-

ously been associated with forest exposure (e.g. Grigg et al., 2017) and higher biting rates have

been reported in forest interiors (Wong et al., 2015), this novel approach incorporating both mos-

quito and human space use data provides a new perspective on peri-domestic transmission, with

more than 90% of infectious bites predicted in areas surrounding households at forest edges. This

study additionally demonstrates the utility of ecological methods to understand human movement

and identify geographical areas associated with higher contact with disease vectors.

Within these communities, local movement patterns during peak vector times were largely pre-

dictable and could be explained by spatial and environmental factors. However, despite this finding,

there was substantial variation in predicted exposure between individuals as a result of heterogene-

ity in habitats used. No significant differences in exposure were predicted between men and women,

with individuals with high exposure risks identified across occupational and age groups. Although

this finding differs from clinical reports, a comprehensive survey within this community identified

equal proportions of men and women exposed to P. knowlesi as evidenced by specific antibody

responses and data on asymptomatic infections suggests higher numbers of non-clinical infections in

women (Fornace et al., 2018; Fornace et al., 2016a). While infrequent events or long-range move-

ments (such as hunting trips) may contribute to these differences in clinical cases and may not have

been captured within this two-week sampling period within the study site, this analysis highlights the

importance of routine movements into local environments in shaping exposure risks.

This improved understanding of how local human land use is related to exposure risk has impor-

tant implications for surveillance and control programmes. Malaria control programmes often rely on

interventions within the house, such as insecticide treated bednets and indoor residual spraying;

however, movements outside during peak biting times illustrate the importance of also targeting

outdoor transmission. The identification of areas where exposure is likely to occur can further be

Table 5. Posterior rate ratio estimates and 95% Bayesian credible interval (BCI) for model 4 of

mosquito biting rates.

Covariate

95% BCI Rate Ratio

Mean 2.5% 97.5%

Population density 0.963 0.916 1.004

EVI 3.185 1.185 8.532

Distance to forest (100 m) 0.926 0.871 0.976

Spatial range (km) 3.120 0.514 6.926

DOI: https://doi.org/10.7554/eLife.47602.010

Table 6. Probabilities of infected bites per person per night for sampled individuals in Matunggong by demographic characteristics.

Predicted infectious bites per night (median [IQR])

Demographic group

Men 0.00157 (0.000804, 0.00289)

Women 0.00219 (0.000864, 0.00307)

Children (under 15) 0.00131 (0.000812, 0.00330)

Occupation

Farming 0.00180 (0.00101, 0.00362)

Plantation work 0.00216 (0.000680, 0.00278)

Student 0.00143 (0.000915, 0.00304)

Other 0.00225 (0.000852, 0.00302)

No employment/housewife 0.00142 (0.000297, 0.00263)

DOI: https://doi.org/10.7554/eLife.47602.011

Fornace et al. eLife 2019;8:e47602. DOI: https://doi.org/10.7554/eLife.47602 12 of 17

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.47602.010
https://doi.org/10.7554/eLife.47602.011
https://doi.org/10.7554/eLife.47602


used to refine interventions; for example, although insecticide treated hammocks have been pro-

posed for deep forest environments, larval source management may be more appropriate to target

environments in close proximity to houses. Although initial P. knowlesi cases were primarily identi-

fied in adult men living and working in forests (Singh et al., 2004), this study illustrates the potential

importance of peri-domestic habitats in transmission and provides quantitative insight on mixing

between people and infected mosquitoes in forest fringe areas. As Malaysia moves towards malaria

elimination, surveillance systems are incorporating novel focal investigation methods, including mon-

itoring changes in local land use and populations at risk (Bahagian Kawalan Penyakit, Kementerian

Kesihatan Malaysia, 2016). In additional to routine vector surveillance, this study highlights the

need to incorporate measures of human space when defining risk zones.

Even with the large and highly detailed movement dataset analysed, this study was limited by the

availability of mosquito data; as human landing catch data were assembled from other studies, there

was not uniform spatial and temporal coverage of the study site increasing uncertainty. The limited

mosquito data availability precluded development of mosquito biting rate models for Limbuak and

other outlying islands. An additional limitation to estimating mosquito biting rates was the difficulty

obtaining spatially and temporally resolute remote sensing data for predictors due to high cloud

cover (Weiss et al., 2015). As few positive mosquitoes were identified, uniform estimates of sporo-

zoite rates based on available data were used across the Matunggong site; if further data were avail-

able, these models could be refined to incorporate estimates of human and macaque density,

mosquito biting preferences in different habitats and infection levels in all hosts (Yakob et al.,

2010). Additionally, as this study was designed to quantitatively estimate time spent in different

Figure 5. Model outputs relative to land cover. (A) Land use in Matunggong site, (B) Predicted number of person-

nights for entire community per grid cell, (C) Predicted mosquito biting rates, (D) Predicted infected bites per grid

cell.

DOI: https://doi.org/10.7554/eLife.47602.012
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landscapes, further studies could explore other aspects of land use, such as the purposes of travel,

activities undertaken or practices used to modify or management land cover.

Despite these limitations, this is the first large-scale study to utilise GPS tracking data and eco-

logical methods to create fine-scale maps of exposure risk. This study highlights the importance of

incorporating heterogenous patterns of human space use into disease models, as the majority of

human exposure may occur in areas with lower vector biting rates but greater probabilities of human

use. Further, results quantitatively illustrate the importance of forest edges and local habitat in P.

knowlesi transmission and can inform understanding of other zoonotic and vector-borne diseases.
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