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Abstract

Brain-derived neurotrophic factor (BDNF) is widely accepted as being critical for neural and 

synaptic plasticity throughout the nervous system. Recent work has shown that BDNF in the 

mesolimbic dopamine (DA) circuit, originating in ventral tegmental area (VTA) DA neurons that 

project to the nucleus accumbens (NAc), is crucial in the development of depressive-like behaviors 

following exposure to chronic social defeat stress (CSDS) in mice. While BDNF modulates DA 

signaling in encoding responses to acute defeat stress, BDNF signaling alone appears responsible 

for the behavioral effects after CSDS. Very different patterns are seen with another widely used 

chronic stress paradigm in mice, chronic mild stress (also known as chronic variable or 

unpredictable stress), where DA signaling but not BDNF signaling is primarily responsible for the 

behavioral effects observed. This review discusses the molecular, cellular, and circuit basis of this 

dramatic discrepancy which appears to involve the nature of the stress involved, its severity and 

duration, as well as its effects on distinct cell types within the VTA-to-NAc mesolimbic circuit.
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BRIEF INTRODUCTION TO MESOLIMBIC BDNF SIGNALING

BDNF is the most extensively studied neurotrophin and is highly regulated in a neuronal 

activity-dependent manner (1). BDNF and its receptor, TrkB, are expressed in the 

mesolimbic dopamine (DA) circuit, which projects from midbrain DA neurons in the ventral 

tegmental area (VTA) to the nucleus accumbens (NAc) in the basal forebrain (2, 3). This 

mesolimbic BDNF-TrkB signaling pathway was first implicated in the actions of drugs of 

abuse over two decades ago (4–6), and has more recently been associated with a range of 

motivation- and natural reward-related behaviors, including consumption of food and social 

interaction (7, 8) (Figure 1A). The mesolimbic DA circuit is activated by several forms of 

physical and social stress (8–10) as well as by natural and drug rewards (8, 11–17). 

Increasing evidence suggests that interactions between BDNF-TrkB and DA signaling in the 

mesolimbic circuit play a critical role in stress- and reward-related behaviors (15, 16, 18–

20). There is also growing evidence for distinct subsets of VTA DA neurons, based in part 

on different inputs and outputs, which respond very differently to aversive vs. appetitive 

stimuli and mediate very different responses to those perturbations (21–23).

Mesolimbic BDNF-TrkB signaling has been implicated as well in the pathophysiology of 

major depressive disorder (MDD) (24–28), for which antecedent stress is the strongest 

known risk factor (29, 30). Since loss of pleasure and motivation are core symptoms of 

depression in humans (31, 32), it is not surprising that dysregulation of the mesolimbic DA 

system is associated with depression-related behaviors (28, 31, 33). Indeed, manipulation of 

BDNF-TrkB signaling in the mesolimbic DA system exerts robust effects on stress responses 

in animal models for depression, with activation of the pathway promoting depression-

related behavioral abnormalities (8, 10, 11, 34–36). Clinical evidence confirms these 

findings. Increased levels of BDNF protein in NAc are reported in MDD patients at autopsy, 

including individuals who are depressed at the time of death despite being on 

antidepressants, suggesting elevated BDNF signaling as a sign of treatment-resistant MDD 

(11). Electroconvulsive therapy, one of the most effective treatments for depression, induces 

an antidepressant-like effect by reducing VTA BDNF expression (37). This pro-depressant 

role for BDNF signaling in the mesolimbic circuit is opposite to the well-described 

antidepressant-like role in other brain regions, in particular, hippocampus and prefrontal 

cortex (PFC) (see (27, 30, 38, 39). There is a high comorbidity of depression and drug 

addiction, and indeed studies support the involvement of BDNF in the VTA-to-NAc circuit 

in contributing to such interactions (40–48).

In this review, we highlight the actions of BDNF-TrkB signaling in the VTA-to-NAc DA 

system as a key mediator of depressive-like behaviors in the context of chronic stress. 

Furthermore, we discuss that exposure to different types of stress, through divergent 

interactions between BDNF and corticotropin-releasing factor (CRF) signaling, may 

differentially regulate depressive-like behaviors based on cell type-specific actions within 

the mesolimbic circuitry.
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MODELING FOR DEPRESSION IN RODENTS

MDD is a leading cause of severe social and economic burden that affects over 300 million 

people worldwide (49). MDD is ~35% heritable but this heritability is likely mediated by 

many hundreds of genes (50), each of which contributes a minute fraction to the overall risk. 

In the absence of a causative genetic factor of strong effect and high penetrance, the field has 

relied on several types of chronic stress paradigms in rodents based on epidemiological data 

which show that early-life trauma and stressful life events are robustly correlated with high 

risk for depression, signifying aberrations in stress-coping capacity in depressed patients 

(51–57). A related approach is to expose rodents chronically to corticosterone to mimic one 

well-characterized concomitant of a chronically-stressed state (58).

Depression is highly heterogeneous, which makes it impossible for any single animal model 

to capture the entire human condition. Rather, the goal is to induce subsets of depression-

like behaviors in animals (59). Some of the most prominent symptoms of depression (e.g., 

guilt, suicidality, and sad mood) are not accessible in animals. However, other symptoms of 

depression, schizophrenia, and ASD (e.g., anhedonia, social withdrawal, and alterations in 

sleep, appetite, and circadian rhythms) are readily measurable in laboratory animals (60, 61). 

Furthermore, these symptoms induced in rodents after chronic stress can often be 

ameliorated by administration of medications that are antidepressant in humans, with other 

classes of medication (e.g., anxiolytic drugs) being ineffective (62, 63)

Traditionally, three criteria are used to judge the validity of an animal model (61). Construct 

or etiological validity refers to the model recapitulating the causes or mechanisms of a 

human condition. Face validity means that the model produces symptoms in animals that 

resemble those of the human illness. Predictive validity indicates that the model reliably and 

accurately detects treatments that are clinically useful (64, 65). It is important to note that 

the validation provided for a given model is fit-for-purpose because animal models are used 

for a variety of objectives where, for example, construct or face validity may have a higher 

priority for researching potential etiology, whereas predictive validity is essential for 

medication testing (66). Difficulties in validating animal models for depression have been 

highlighted (61, 67). Despite the healthy skepticism with which animal models of any 

psychiatric syndrome should be viewed, recent transcriptomic data have confirmed the 

ability of chronic stress models in rodents to recapitulate large subsets of gene expression 

abnormalities seen in human MDD (68), thus establishing that it is possible to induce 

significant portions of the molecular pathology of human depression in rodent models.

Historically, most studies utilized acute stress assays, such as the forced swim and tail 

suspension tests (69–71), to study depression-related phenomena, in particular, to screen for 

potential antidepressant compounds, due to their ease, automation, and rapid phenotyping 

abilities (60). However, these tests cannot be viewed as models for depression: they utilize 

acute stresses (which generally does not cause depression) and monoamine-based 

antidepressants work in these assays after single doses, even though their clinical efficacy 

requires weeks or months of treatment (60, 72). For these reasons, the field has turned 

increasingly to a variety of chronic stress models which show better construct and face 

validity as well as better predictive validity in that they respond only to repeated 
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administration of monoamine-based antidepressants. Moreover, as stated earlier, studies of 

human post-mortem samples have shown that chronic stress paradigms induce molecular, 

cellular, and circuit abnormalities seen in human depression (e.g.,(11, 13, 68, 73, 74). Other 

models for the study of depression have focused on periods of early life stress (75, 76), 

which are not covered here because there has been less exploration of the influence of 

BDNF-TrkB signaling in these paradigms.

ROLE OF VTA DA NEURON ACTIVITY IN CHRONIC STRESS MODELS: CMS 

VS. CSDS

Chronic mild stress (CMS)—also referred to by some as chronic variable or unpredictable 

stress—is one of the most widely used chronic stress-based animal models for depression 

(77). In the CMS model, animals are subjected to varied and intermittent physical stressors 

such as forced swim test, cage tilt, cage crowding, and water and food deprivation over a 

period of time that ranges from 1 – 12 weeks (60, 78, 79). Animals exposed to CMS display 

increased immobility in the forced swim and tail suspension tests, and a decrease in social 

interaction and sucrose preference, used as rough measures of anhedonia (38, 80–82). More 

precise determinations of anhedonia would involve more time-consuming operant behaviors, 

which have rarely been used in the field but represent an important goal for future studies. 

Mice exposed to CMS exhibit decreased activity of VTA DA neurons (80, 82), an effect 

observed in brain slices ex vivo and in awake mice in vivo. Acute, optogenetic phasic (30 

Hz) stimulation of VTA DA neurons reverses the CMS-induced abnormalities in sucrose 

preference and tail suspension tests (38, 80, 82) (Figure 1B, C). In contrast, optogenetic 

inhibition of VTA DA neurons in stress-naïve mice reduces sucrose preference and increases 

immobility (80).

A recent study with brain slices ex vivo has shown that the reduced firing activity of VTA 

DA neurons seen after CMS is specific for VTA-to-PFC DA neurons, with no effect 

observed for VTA-to-NAc DA neurons (38). A similar lack of effect of CMS was found for 

the lateral VTA (83), where DA neurons project predominantly to NAc (84). In contrast, 

other studies found significant reductions in firing rate and burst firing in lateral VTA DA 

neurons after CMS (80, 82). This discrepancy may be due to differences in the CMS 

paradigms used: the former studies applied 3–4 stressors/week over 4 weeks in rats (83) and 

5–7 stressors/week over 5 weeks in mice (38), whereas the latter studies applied 14 

stressors/week over 5 weeks in mice (82) and 14 stressors/week over 8–12 weeks in mice 

(80).

The reported differences in neural activity between VTA-to-NAc and VTA-to-mPFC circuits 

following CMS may be partly due to differences in expression of ion channels between 

circuits. Recent studies demonstrated that there are large hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channel-mediated currents (Ih) in VTA-to-NAc DA neurons, but 

small or no Ih in VTA-to-mPFC DA neurons (84, 85). Pharmacological manipulations that 

increase Ih in VTA DA neurons increase firing frequency (85–88). CMS reduces Ih in VTA-

to-NAc DA neurons (82), with a consequential reduction of DA release in NAc (89). 

Likewise, shRNA-mediated knockdown of HCN2 in VTA mimics CMS-induced depressive-
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like behavior in stress-naïve mice, whereas overexpression of HCN2 in VTA prevents the 

CMS-induced behavioral deficits (82). These findings emphasize that reduction in DA 

signaling in the VTA-to-NAc DA pathway contributes to depressive-like behaviors induced 

by CMS (Figure 1C), although as noted in the previous paragraph there are studies that 

suggest a predominant effect of CMS on VTA-to-PFC DA neurons.

The ion channel mechanisms that underlie stress-induced regulation of VTA-to-PFC DA 

neurons remain unknown. In contrast, very different effects are seen after chronic social 

defeat stress (CSDS), another well-established mouse model for depression (8, 11). Ten days 

of CSDS causes social avoidance in a subset of mice, which are designated as ‘susceptible’ 

to CSDS; the remainder are designated ‘resilient’. The susceptible mice also exhibit reduced 

sucrose preference, as well as disrupted circadian, sleep, and feeding behavior, compared 

with resilient and stress-naïve control mice (8, 11, 60, 90, 91). Strikingly, susceptible mice 

exhibit increased firing activity and burst firing in VTA DA neurons in brain slices ex vivo 
and in anesthetized mice in vivo, respectively (9–11, 88, 92–94) (Figure 1D). Moreover, this 

effect is specific for VTA-to-NAc DA neurons, with the opposite effect—a reduction in 

firing activity—observed for VTA-to-PFC DA neurons (10). Optogenetic inhibition of VTA 

DA neurons in general, or VTA-to-NAc DA neurons specifically, in susceptible mice 

induced a rapid antidepressant-like response: the manipulation increased social interaction 

and sucrose preference behaviors (10). Conversely, in a one-day subthreshold social defeat 

stress (sub-SDS) procedure that does not induce behavioral abnormalities, phasic activation 

of either VTA DA neurons in general, or VTA-to-NAc DA neurons specifically, during the 

social interaction test induced depressive-like behavior, effects not seen in stress-naïve 

control mice (10, 34). These lines of evidence that VTA-to-NAc and VTA-to-PFC pathways 

have distinct functional properties and differentially regulate behavior suggest that aversive 

stimuli differentially affect these microcircuits and that the final behavioral output results 

from the balance between these circuits.

In contrast to CMS, CSDS increases Ih in VTA DA neurons of both susceptible and resilient 

mice, compared to non-stressed control mice (9, 85). The enhanced Ih increases VTA DA 

neuron activity and DA release in NAc (85–87, 95) (Figure 1D). It is of particular interest 

that resilient mice display a greater magnitude of induction of Ih in VTA DA neurons 

compared to susceptible mice, and that this greater Ih induction triggers stable normal firing 

of VTA DA neurons in resilient mice. This occurs via the homeostatic induction of several 

types of potassium (K+) channels in the resilient VTA which normalizes VTA DA neuron 

firing and promotes resilience to defeat stress (11, 85) (Figure 1E). Overexpression of the 

inwardly rectifying K+ channel Kir2.1 in VTA of susceptible mice decreases the firing rate 

of VTA DA neurons and blocked social avoidance behaviors (11), similar to intra-VTA 

infusion of an Ih channel inhibitor (9). Studies in primary neuronal cultures have reported 

that excessive hyperactivity can induce homeostatic up-regulation of K+ channel-mediated 

current (96). Our observation that elevated K+ current attenuates the Ih current-induced 

increase in DA neural activity in resilient mice suggests that homeostatic plastic processes 

occurring in the mesolimbic region stabilize neural dynamics (85).

Recent evidence further highlights the role of ionic channels in VTA DA cells in mediating 

resilience to social stressors. Overexpression of KCNQ3 (Kv7.3), a slow voltage-activated K
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+ channel which is induced in VTA of resilient mice (11), specifically in VTA DA neurons 

of susceptible mice reversed both the increased firing of VTA DA neurons as well as the 

depressive-like phenotype (97). Thus, targeting KCNQ channels offers a novel approach for 

depression treatment, since intra-VTA infusion or systemic administration of KCNQ channel 

openers, including the FDA-approved drug retigabine (also called ezogabine, originally 

approved as an antiepileptic drug) (98), normalized depression-like behaviors in susceptible 

mice (97). A recent open-label clinical trial with 18 medication-free MDD patients found 

that retigabine had significant antidepressant efficacy, along with normalizing depression-

related functional connectivity abnormalities in the brain’s reward circuitry (99), a finding 

now being followed up with a placebo-controlled study. While these clinical data should be 

viewed with caution since retigabine has several side effects (98), the observations 

demonstrate the ability to apply insight derived from rodent stress models to novel 

approaches for the treatment for depression (99, 100).

The differences observed in VTA DA neuron activity, and in Ih in these cells, after CMS vs. 

CSDS might be explained by the type and intensity of the stressor as well as by the duration 

of stress exposure (79, 101, 102). Strong stress increases VTA DA neural activity (103), 

whereas milder stress decreases it (94, 104). These findings likely correlate with 

observations that CMS, which typically consists of exposing mice to a variety of weak but 

uncontrollable stressors, decreases VTA DA neural activity, while CSDS which consists of 

more severe and socially-relevant stress increases such activity. However, we observed that 

evoked DA release in NAc is not significantly altered by CSDS, which may reflect a ceiling 

effect of CSDS increased phasic firing of VTA DA neurons in vivo (35). This discrepancy 

between DA release and DA neural activity following CSDS may be also related to CRF, a 

neuropeptide released in response to stress (105), that may play a prominent role in 

regulating DA neural activity or DA release. CRF positively mediates rewarding behavior by 

enhancing Ih in VTA DA neurons, which leads to elevated evoked DA release in NAc of 

stress-naïve animals (95). In contrast, severe-stress exposure completely ablated the CRF 

effects on DA release and subsequent appetitive behaviors (106). This switch in CRF action 

on DA release is mediated in part by glucocorticoid signaling associated with severe and 

chronic stress (106).

ROLE OF BDNF AND CRF IN CSDS: ACUTE VS. CHRONIC ACTIONS

Both CMS and CSDS, as described above, show causal evidence that acute manipulations of 

VTA DA neurons can alter depressive-like behaviors in a range of behavioral assays (107). 

However, there are some intriguing reports that DA-deficient mice (generated through loss 

of DA-synthetic enzymes) can still learn and express preferences for sucrose (108), and that 

pharmacological depletion or antagonism of mesolimbic DA signaling does not alter sucrose 

preference in stress-naive animals (109). These data suggest that DA per se is not always the 

critical mesolimbic substrate in some types of stress-based depression models.

As noted earlier, CSDS increases BDNF protein levels and BDNF-TrkB signaling in NAc, 

effects dependent upon the Bdnf gene in VTA DA neurons (8, 11). Knockout of Bdnf in 

VTA blocks behavioral susceptibility to CSDS and exerts antidepressant-like effects (Figure 

1D) (8, 11, 37). Blockade of BDNF-TrkB signaling in NAc also has an antidepressant-like 

Koo et al. Page 6

Biol Psychiatry. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect (11, 35, 36), while increasing BDNF levels in NAc produces pro-depressant effects 

(11). These actions of mesolimbic BDNF in the CSDS model are in striking contrast to the 

lack of influence of BDNF in the CMS model (38, 110). For example, CMS does not alter 

protein levels of BDNF in either NAc or VTA (110). BDNF infusion into NAc shell has no 

impact on CMS-induced depressive-like behaviors (38).

Insight into the relatively contributions of DA and BDNF to stress responses comes from a 

study, which demonstrated that BDNF-TrkB, but not DA, signaling in NAc is essential for 

CSDS-induced depressive-like abnormalities (35). Chronic optogenetic phasic stimulation of 

VTA-to-NAc circuit during CSDS exacerbated defeat-induced behavioral symptoms, and 

these aggravated symptoms were reversed by blockade of BDNF-TrkB signaling in NAc. By 

contrast, optogenetic activation of VTA-to-NAc DA neurons during CSDS, or CSDS itself, 

did not alter evoked NAc DA release (35). Additionally, intra-NAc infusion of DA receptor 

antagonists had no effect on CSDS-induced depressive-like symptoms (35). This inability of 

DA signaling to affect CSDS-induced depressive-like behaviors is very different from sub-

SDS, where intra-NAc administration of DA receptor antagonists blocked the ability of 

acute optogenetic stimulation of VTA-to-NAc circuit to induce depressive-like behaviors 

following sub-SDS (Figure 1D, G) (35). This difference in the role of mesolimbic DA 

signaling between Sub-SDS and CSDS may be due to mesolimbic BDNF normalizing 

stress-induced extracellular DA release in NAc where CSDS-induced BDNF signaling in 

VTA-to-NAc pathway may attenuate DA release that can be facilitated by heightened 

mesolimbic DA activity, a mechanism supported by studies in BDNF+/– mice (111–113).

In contrast, the significant effect of DA signaling on depressive-like behaviors in sub-SDS 

could be associated with lack of involvement of CRF, whose regulation of the mesolimbic 

system becomes prominent only after severe, chronic stress (35, 106). One day of sub-SDS 

may not be long enough for CRF action to switch from appetitive to aversive, compared to 

CSDS. In other words, in contrast to CSDS, one-day sub-SDS increases DA activity in the 

context of normal CRF action, mediating appetitive behaviors (92, 106, 114), which may 

explain the previous observation that sub-SDS sometimes increases social interaction (11, 

115) (Figure 1F). Observations that phasic stimulation of VTA-to-NAc DA neurons, 

following sub-SDS, requires NAc BDNF signaling in order to induce depression-like 

behavior, while intra-NAc infusion of a CRF receptor antagonist reverses both social 

avoidance and BDNF release, suggests an intimate interaction between these systems in 

encoding for the actions of acute stressors (34) (Figure 1G).

DOWNSTREAM TARGETS OF BDNF ACTIVATION – D1 VS. D2 MSNs

Principal NAc neurons are categorized as D1-type or D2-type medium spiny neurons 

(MSNs) based on the predominant DA receptor that they express. In general, D1 MSNs send 

projections to VTA and to a lesser extent to ventral pallidum, while D2 MSNs send 

projections to ventral pallidum (116, 117). These two neural populations work in concert to 

control behavior, with an imbalance promoting dysfunctional motivational states (118–122). 

In general, activation of D1 MSNs promotes rewarding behavior, while activation of D2 

MSNs exerts the opposite effect (119, 122–126).
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Stress exposure has also been shown to differentially affect these neuronal subtypes. D1 

MSNs were shown to be the site of action of BDNF in NAc following CSDS exposure. 

Levels of phosphorylated (active) ERK, a downstream target of TrkB receptor signaling, are 

increased solely in NAc D1 MSNs of susceptible, but not resilient, mice (35, 97). These 

observations suggest that BDNF signaling in D1 MSNs contributes to the susceptible 

phenotype after CSDS (Figure 1D). Interestingly, enhanced ERK phosphorylation has been 

associated with reduced neuronal activity of D1 MSNs (122), and reducing neuronal activity 

of D1 MSNs renders resilient mice more susceptible (126). Moreover, excitatory synaptic 

input to D1 MSNs is reduced in susceptible mice after CSDS (126) and in mice subjected to 

repeated restraint stress (127), both of which induce anhedonia-like behaviors. Together, 

these results support a scheme wherein increased BDNF signaling in NAc contributes to 

CSDS-induced behavioral susceptibility by inhibiting the activity of D1 MSNs. In vivo 
imaging studies report decreased activity of D1 MSNs of susceptible mice (128). In contrast, 

enhanced activity of D1 MSNs encodes pro-reward and reinforcement behaviors (122, 126, 

127, 129–131). D2 MSNs exhibit increased excitatory synaptic input in susceptible mice 

after CSDS, which suggests possible differences in the effects of phasic VTA DA input to 

D1 vs. D2 MSNs in NAc. In other words, it is possible that elevated BDNF release from 

VTA DA nerve terminals in NAc in response to CSDS has differential effects on D1 and D2 

MSNs resulting in the expression of depression-like behaviors.

The transcription factor EGR3 is another promising downstream target of mesolimbic BDNF 

activation (132). Following exposure to CSDS, EGR3 is upregulated in NAc D1 but not D2 

MSN’s of stress susceptible mice (128). Furthermore, elevated EGR3 appears to be 

responsible for the observed decreased excitatory input and increased dendritic atrophy in 

D1 MSNs of stress susceptible mice (128). EGR3 regulates the expression of several 

proteins involved in synaptic plasticity and ChIP-seq analysis found that stress exposure 

altered EGR3 binding to promoter regions of genes involved in dendritic morphology, such 

as Actn1, RhoA, and Shank2 (128, 133, 134). In light of earlier work that stress susceptible 

mice exhibit elevated phasic activity of VTA DA neurons (10, 11) and concomitant 

enhanced levels of BDNF release from VTA DA terminals in NAc (11, 34), it is possible that 

the elevated BDNF induces EGR3 in D1 MSNs leading to decreased excitatory input and 

increased dendritic atrophy (128) and subsequent expression of depression-like behavior 

(Figure 1D).

Exposure to CSDS differentially induces expression of another transcription factor ∆FosB, 

which accumulates in NAc in response to repeated stimuli associated with reward, 

motivation, or stress (135). Mice susceptible to CSDS exhibit ∆FosB induction selectively in 

D2 MSNs, while those resilient to CSDS show ∆FosB induction solely in D1 MSNs (136). 

Chronic exposure to drugs of abuse also induces ∆FosB expression in NAc, with effects 

predominating in D1 MSNs, although opiate drugs of abuse and natural rewards induce the 

protein in both cell types (136, 137).

A recent study investigated whether the observed comorbidity between addiction and 

depression may be related to overlapping signaling between BDNF and ∆FosB within the 

mesolimbic circuit. This study followed up on previous observations that intra-VTA BDNF 

overexpression enhanced social defeat stress-induced cross sensitization to psychostimulants 
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together with induced ∆FosB expression in NAc (138). The authors showed that, while 

stress exposure increased cocaine intake, rats exposed to social defeat stress together with 

increased expression of VTA-BDNF exhibited even greater cocaine intake and increased 

∆FosB expression in NAc. BDNF-TrkB signaling in NAc activates the transcription factor 

CREB (139, 140), as would be expected since CREB activation is known to be downstream 

of TrkB activation. The observation that CREB induces ∆FosB transcription (141, 142) and 

itself can promote depression-like behavior at the level of VTA-to-NAc circuit (28), suggests 

complex feedback loops that operate within NAc MSNs—in a cell-type specific manner—to 

control the influence of BDNF in this circuit and the generation of both depression- and 

addiction-like behavioral abnormalities. It should be noted that, in addition to distinct D1 

and D2 MSNs, there is also a small subpopulation of cells that express both D1 and D2 

receptors in NAc, along with reports that functional D1-D2 receptor dimers contribute to 

regulation of these cells.

Stress hormones also play a role in regulating circuits connecting stress signaling to the 

mesolimbic system. Certain depression-like behaviors (e.g., social avoidance) after chronic 

stress require activation of glucocorticoid receptors (GR) on NAc MSNs (143). Knockout of 

GR from MSNs, but not VTA DA cells, alleviated CSDS-induced depression-like, but not 

anxiety-like, behaviors. Building upon previous studies (9–11, 34, 85), this group observed 

increased VTA DA neural activity in vivo following exposure to CSDS, which was lost upon 

GR receptor knockout from MSNs (143). That GR knockout in MSNs alleviates the CSDS-

induced increase in VTA DA activity suggests a feedback mechanism from NAc to VTA. 

Further work is needed to determine whether this normalization of VTA DA neuron activity 

is mediated by their direct innervation by MSNs or by indirect effects of MSNs on VTA 

inhibitory interneurons.

CONCLUSIONS AND FUTURE DIRECTIONS

Today’s antidepressant treatments fully treat <50% of affected individuals (144–146). The 

highly heterogeneous nature of depression has prompted preclinical and clinical researchers 

to use multiple stress paradigms and clinical measures to define diverse mechanisms that 

contribute to the etiology of depression toward the goal of more personalized treatments in 

the future (24). From the preclinical side, for example, work described here has 

distinguished between acute vs. chronic stress paradigms (35) and between stress-

susceptible vs. stress-resilient animals subjected to stress (11, 147). Types, intensity, 

duration and incubation period of stress have been considered as contributing factors (79, 

101, 148).

We speculate that the strength of stressors is a key determinant of the effects on VTA DA 

neuron activity. Severe stress increases VTA DA neural activity (103), whereas mild stress 

decreases it (94, 104). These findings are consistent with observations that CMS decreases 

VTA DA neural activity, while CSDS increases it. Of note is our 2016 study showing that 

DA release is no longer relevant to the CSDS-induced increase in phasic firing of VTA DA 

neurons, since evoked DA release in NAc is not significantly altered by CSDS due to 

compensating mechanisms (Figure 2). In addition, mesolimbic DA signaling was found not 

to mediate CSDS-induced behavioral abnormalities (35). The lack of DA release and of 
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functional DA signaling in NAc following CSDS may be related to CRF, whose homeostatic 

regulation over the mesolimbic system is revealed only after severe, chronic stress (106). It 

may also be due to homeostatic effects of BDNF on the excitability of DA neurons or on 

extracellular DA release as observed in previous studies (15, 111–113). Understanding these 

homeostatic functions of CRF and BDNF and their concomitant interaction in CSDS 

warrants further investigation.

Current evidence thus supports a scheme where mesolimbic BDNF, which is induced only in 

susceptible mice after CSDS, contributes importantly to the behavioral sequelae of CSDS, 

independently of DA signaling. However, this hypothesis raises further questions. What are 

the molecular and physiological mechanisms that elevate mesolimbic BDNF in response to 

CSDS? As discussed above, NAc CRF is one candidate to induce mesolimbic BDNF and 

downstream depressive-like behaviors (34). Alternatively, does NAc CRF act directly on 

NAc MSNs to induce behavioral susceptibility to CSDS? If so, are D1 MSNs, where BDNF-

TrkB signaling mediates the behavioral effects of CSDS, also important for CRF action? It 

would be interesting to investigate whether CRF-induced release of BDNF from VTA DA 

nerve terminals into NAc of stress susceptible mice decreases expression of ∆FosB in D1 

MSNs or induces ∆FosB in D2 MSNs to also contribute to the susceptible vs. resilient 

phenotype (135, 136). Taken together, investigating the dynamics of mesolimbic BDNF 

signaling, and its interactions with numerous other molecular and cellular mechanisms in 

this circuit, have provided important insight into the biological mechanisms of susceptibility 

and resilience in response to diverse types of stress, work that is also being mined for 

developing more effective and better-targeted therapeutics for depressive disorders.
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Figure 1. 
Role of brain-derived neurotrophic factor (BDNF), and its interactions with dopamine (DA) 

and corticotropin-releasing factor (CRF), in controlling the mesolimbic circuit after chronic 

stress. (A) The mesolimbic DA circuit, which is composed of DA neurons in the ventral 

tegmental area (VTA) and their forebrain projection regions, in particular, medium spiny 

neurons (MSNs) in nucleus accumbens (NAc), has been associated with depressive-like 

behavioral phenotypes including social avoidance and anhedonia in animal models for 

depression. (B,C) Chronic mild stress (CMS) decreases Ih and firing rate of VTA-to-NAc 

DA neurons. Some clinical and preclinical studies show antidepressant-like effect of 

pramipexole, a D2 receptor agonist and relevance of mesolimbic D2 signaling in CMS 

models, suggesting a functional role of D2 MSNs in depressive symptoms (149–152). 

However, there are reports of selective effects of CMS on VTA-to-PFC DA neurons (see 

text). (D) In contrast to CMS, animals susceptible to chronic social defeat stress (CSDS) 
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display increased Ih and firing rate of VTA-to-NAc DA neurons and enhanced levels of NAc 

BDNF. Nonetheless, evoked DA release in NAc is not altered in susceptible animals, which 

may be due to homeostatic effects of CRF and BDNF in the mesolimbic circuitry. CRF, 

which elevates evoked DA release in NAc of stress-naive animals, attenuates DA signaling 

in NAc in response to excessive and uncontrollable stress. This switch in CRF action may be 

mediated by changes in glucocorticoid signaling associated with chronic stress (not shown). 

Studies show that BDNF, but not DA, signaling in the mesolimbic system mediates CSDS-

induced depressive behaviors. CSDS-induced BDNF signaling in NAc could contributes to 

behavioral susceptibility through ERK phosphorylation, EGR3 induction, and its 

consequential reduction in D1 MSN activity. (E) Compared to susceptible animals, highly 

upregulated Ih, but with normal neuronal activity due to a homeostatic induction of K+ 

currents, are observed in VTA-to-NAc DA neurons of resilient mice. (F,G) In subthreshold 

defeat stress paradigm, phasic activation of VTA DA neurons in general, or VTA-to-NAc 

DA neurons selectively, induces depressive-like behaviors, which is mediated through both 

BDNF and D1 receptor signaling. In contrast to CSDS, acute and weak stress manipulations 

such as subthreshold defeat stress elevate DA release via CRF in NAc (see text for details). 

In addition, CRF is required for NAc BDNF induction and consequent depressive behaviors 

by phasic activation of VTA-to-NAc neurons in subthreshold defeat stress.
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Figure 2. 
Working model of behavioral abnormalities (e.g., social avoidance) which are exacerbated 

by repeated phasic optogenetic stimulation of VTA-to-NAc DA pathway during CSDS. (A) 

Illustration of retrograde AAV2.5-hsyn-ChR2-eYFP infused into NAc, intra-NAc ANA-12 

infusions, and optic fiber implantation into VTA. Blockade of D1 or D2 signaling in NAc 

does not affect social avoidance induced by CSDS, but inhibition of BDNF-TrkB signaling 

in NAc using ANA-12 reverses this behavioral abnormality (35). Impaired social interaction 

after CSDS was exacerbated by repeated phasic activation of VTA-to-NAc pathway. 

Inhibition of BDNF-TrkB signaling blocked this effect of optogenetic stimulation. (B) 

Schematic coronal sections showing injection site of AAV2.5-hsyn-ChR2-eYFP in NAc. 

Scale bar, 100 µm. (C) Representative confocal images showing localization of ChR2-EYFP 

(green) in TH+ cells (red) in VTA. Scale bar, 50 µm. (D) Illustration of CSDS-induced 

social avoidance behavior which is exacerbated by repeated phasic optogenetic stimulation 
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of VTA-to-NAc DA pathway. NAc BDNF mediates social avoidance through activation of 

TrkB on D1 MSNs, as evidenced by exclusive induction of ERK phosphorylation in D1 

MSNs of susceptible mice (35).

Koo et al. Page 22

Biol Psychiatry. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	BRIEF INTRODUCTION TO MESOLIMBIC BDNF SIGNALING
	MODELING FOR DEPRESSION IN RODENTS
	ROLE OF VTA DA NEURON ACTIVITY IN CHRONIC STRESS MODELS: CMS VS. CSDS
	ROLE OF BDNF AND CRF IN CSDS: ACUTE VS. CHRONIC ACTIONS
	DOWNSTREAM TARGETS OF BDNF ACTIVATION – D1 VS. D2 MSNs
	CONCLUSIONS AND FUTURE DIRECTIONS
	References
	Figure 1.
	Figure 2.

