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Abstract
The phosphatidylserine-specific phospholipase A1 (PLA1A) is an essential host factor in hepatitis C virus (HCV)

assembly. In this study, we mapped the E2, NS2 and NS5A involved in PLA1A interaction to their lumenal domains and

membranous parts, through which they form oligomeric protein complexes to participate in HCV assembly. Multiple

regions of PLA1A were involved in their interaction and complex formation. Furthermore, the results represented struc-

tures with PLA1A and E2 in closer proximity than NS2 and NS5A, and strongly suggest PLA1A-E2’s physical interaction

in cells. Meanwhile, we mapped the NS5A sequence which participated in PLA1A interaction with the C-terminus of

domain 1. Interestingly, these amino acids in the sequence are also essential for viral RNA replication. Further experiments

revealed that these four proteins interact with each other. Moreover, PLA1A expression levels were elevated in livers from

HCV-infected patients. In conclusion, we exposed the structural determinants of PLA1A, E2, NS2 and NS5A proteins

which were important for HCV assembly and provided a detailed characterization of PLA1A in HCV assembly.

Keywords Phosphatidylserine-specific phospholipase A1 (PLA1A) � HCV assembly � Viral RNA replication

Introduction

Hepatitis C virus (HCV), a major human pathogen, is

responsible for the development of chronic liver diseases,

including steatosis, fibrosis, cirrhosis and hepatocellular

carcinoma (Chisari 2005; Sanyal et al. 2010). All HCV

proteins interact with host cell membranes, either directly

as membrane-binding proteins or, in the case of NS3, via

interaction with the membrane-anchoring protein, NS4A.

HCV has two envelope glycoproteins: both proteins are

heavily glycosylated on the N-terminal ectodomain in the

lumen of the endoplasmic reticulum (ER) (Op De Beeck

et al. 2001). Furthermore, they contain transmembrane

domains (TMD) within the C-terminal ends (Op De Beeck

et al. 2004), which co-localizes with all other nonstructural

proteins on ER-derived membranes. During HCV assem-

bly, E1 and E2 interact non-covalently and form hetero-

dimers, which are inserted into enveloped lipid membrane

of the viral particle.

HCV NS2 is required for HCV polyprotein processing

and particle assembly. It is a 217-amino acids (aa) long

cysteine-protease composed of a highly hydrophobic

N-terminal membrane binding domain (aa 1-93) and a

C-terminal globular and cytosolically oriented protease

subdomain (aa 94–217) (Lorenz et al. 2006; Lange et al.

2014). The membrane domain is composed of three pre-

dicted transmembrane domains and serves as a molecular

platform for the coordination of HCV structural and non-

structural proteins in viral assembly (Jirasko et al. 2010;

Ma et al. 2011; Popescu et al. 2011; Stapleford and Lin-

denbach 2011; Guo et al. 2015). The C-terminal is capable
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of forming a homodimeric cysteine autoprotease with twin

composite active sites composed of two residues from one

chain and one residue from the other, that is responsible for

cis cleavage at the NS2–NS3 junction within its C-terminal

domain (Santolini et al. 1995; Yamaga and Ou 2002;

Lorenz et al. 2006), and NS3-4A processes the remainder

of the nonstructural proteins (Lindenbach and Rice 2001).

HCV NS5A is an RNA binding phosphoprotein com-

posed of three domains (Domains I, II and III) that are

separated by low complexity sequences (LCS I and LCS II)

and an N-terminal amphipathic alpha-helix (Brass et al.

2002; Penin et al. 2004; Tellinghuisen and Rice 2005;

Appel et al. 2008). This anchor helix is necessary and

sufficient to target NS5A or a heterologous fusion protein

to the endoplasmic reticulum (ER) or an ER-derived

modified compartment by a post-translational mechanism,

resulting in an integral membrane protein (Brass et al.

2002; Penin et al. 2004). Domain I and Domain II played

an essential role in HCV replication but hardly participate

in HCV particle production. In contrast, Domain III can be

deleted or replaced by green fluorescent protein with no

dramatic effect on RNA replication (Moradpour et al.

2004; Appel et al. 2005; Han et al. 2009). It has been

reported that C-terminal serine cluster of domain III has a

crucial role in HCV infectious particle assembly (Appel

et al. 2008). Two NS5A phospho variants are found, des-

ignated a basally phosphorylated form of 56 kDa and a

hyperphosphorylated form of 58 kDa according to their

apparent molecular weights (Kaneko et al. 1994; Tanji

et al. 1995). Each phosphorylation status of NS5A interacts

with multiple host and viral protein partners (Huang et al.

2007) and executes a key regulatory role in the switch

between replication and infectious virus assembly (Appel

et al. 2008; Tellinghuisen et al. 2008; Reiss et al. 2013).

PLA1A is a member of the phospholipase family.

Unlike other members of the lipase family, PLA1A has a

shorter lid (12 residues) and a shorter beta-9 loop (13

residues). The shorter loops in PLA1A gene may result in

the gene acquiring various lipase activities or host func-

tions. It should be noted that PLA1A cleaves fatty acids at

the sn-1 position of both phosphatidylserine (PS) and

1-acyl-2-lysophosphatidylserine (lysoPS) (Winkler et al.

1990; Nagai et al. 1999). In a previous study, we showed

that the PLA1A could interact with the HCV E2, NS2 and

NS5A proteins and facilitate NS2–E2 and NS2–NS5A

complex formation during virus assembly (Guo et al.

2015).

In this study, we showed that the structural determinants

of PLA1A, E2, NS2 and NS5A proteins are important for

HCV assembly by providing a detailed characterization of

various PLA1A and HCV protein mutants. These results

reveal a complex mechanism of the organization of PLA1A

in HCV assembly and shed light on the contribution of

PLA1A to complex formation of NS2–E2 and NS2–NS5A

in HCV assembly.

Materials and Methods

Patients and Biopsies

Human liver tissue samples from fine-needle biopsies were

obtained from HCV-infected patients. Normal human liver

tissue samples were obtained from either spare donor tis-

sues intended for transplantation or from normal liver tis-

sues resected from patients with benign hepatic tumors. All

human tissue samples were collected from the Liver Unit

of The First Hospital of Jilin University and Tongji

Hospital, Tongji Medical College of Huazhong University

of Science and Technology. Diagnosis of patients with

chronic HCV infection and analysis of all biopsies were

based on standard serological assays and the presence of

abnormal serum aminotransferase concentrations for at

least 6 months. All patients with HCV tested positive for

HCV antibody based on a third-generation ELISA test.

HCV infection was confirmed by detection of circulating

HCV RNA using an HCV PCR-based assay (Qiagen, Hil-

den, Germany). At the time of biopsy, liver tissue

(2–3 mm) was immediately frozen in TRIzol and stored at

- 80 �C.

Metabolite Profiling

Extraction of intracellular metabolites and nuclear mag-

netic resonance (NMR) analysis were performed (Li et al.

2015).

Cell Culture

Human embryonic kidney 293T cells, African green

monkey kidney epithelial Vero cells and the derivative cell

lines, Huh-7.5.1, from human hepatoma Huh7 cells, were

maintained in Dulbecco’s Modified Eagle Medium

(DMEM) (Invitrogen, Carlsbad, USA) supplemented with

2 mmol/L L-glutamine, nonessential amino acids, and 10%

Fetal Bovine Serum (FBS) (Invitrogen), 100 U/mL peni-

cillin and 100 lg/mL streptomycin at 37 �C in a 5% CO2

incubator (Xu et al. 2012).

Primers and Plasmid Constructs

A complete list of primers is provided in Supplementary

Table S1. The HA- or Flag-tagged expression plasmids of

HCV E2, NS2 and NS5A of genotype 2a (JFH1,

AB047639) and the pXJ40-HA-PLA1A was previously

described. All deletion mutations and site-directed
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mutagenesis of PLA1A, E2, NS2 or NS5A were amplified

and inserted into the pXJ40-HA or pXJ40-Flag vectors. A

different pair of split mCherry fusion constructs for visu-

alizing protein–protein interactions were amplified and

inserted into the pMC160 or pMN159 vectors (Fan et al.

2008). pMC160 vector was digested by Hind III and Kpn I

pMN159 vector was digested by Hind III and Pst I. The

wild type or deletion mutation coding sequence of PLA1A,

E2, NS2 and NS5A was digested by the same restriction

enzymes and inserted into the corresponding sites of

pMC160 or pMN159.

Stably Overexpressing PLA1A Cell Line
Construction

The lentiviral vector pWPI-Puro has been used for cloning

of pWPI-hPLA1A plasmid for the generation of stable cell

lines under puromycin selection. The PLA1A

(NM_001206960) coding sequence was amplified by PCR

and inserted into the pWPI-Puro plasmids. The lentiviruses

were produced in 293T cells by co-transfection of the

pWPI-Puro or pWPI-hPLA1A, pCMV-dR8.91 and

pMD2.G (Addgene, http://www.addgene.org). The len-

tivirus-containing supernatants were harvested at 72 hpt.

To generate the PLA1A overexpression cell line, the Huh-

7.5.1 cells were transduced with the lentiviruses in the

presence of 20 lg/mL polybrene (Sigma), and stable over-

expressing pools were isolated by puromycin selection and

named Huh-7.5.1-hPLA1A.

Transient Transfection of DNA Expression
Constructs

293T cells were transfected with the different pXJ40-based

constructs by using Lipofectamine 2000 (Invitrogen). Cells

were seeded into 60 mm culture dish, 1 day prior to

transfection. For transfection, 10 lg plasmid was mixed

with 15 lL Lipofectamine 2000 and applied to cells as

recommended by the manufacturer. After 2 days, cells

were harvested for coimmunoprecipitation (co-IP) assay.

Virus and HCV Infection

The HCV J399EM strain was derived from the JFH-1 virus

by insertion of eGFP into the HCV NS5A region (Han

et al. 2009). For HCV infection, Huh-7.5.1 cells were

incubated with 0.1 MOI HCV J399EM virus for 6 h at

37 �C. Then cells were rinsed three times with phosphate-

buffered saline (PBS) and maintained in new medium to

indicate time points. The absolute titer values of infectious

HCV particles in culture supernatants were determined by

limiting dilution analysis (Randall et al. 2006).

Quantitative Real-time RT-PCR

Total RNA from cultured cells and HCV RNA in the

supernatant were extracted using TRIzol reagent (Invitro-

gen) and TRIzol LS reagent (Invitrogen) according to the

manufacturer’s protocols, respectively. Specific mRNAs

and HCV RNAs were quantified by one-step real-time RT-

PCR using the QuantiFast SYBR Green RT-PCR kit (Qi-

agen). The levels of mRNAs or HCV RNAs were nor-

malized to the levels of beta-actin with the standard curve

method. The forward and reverse primers used to amplify

PLA1A was previously described (Guo et al. 2015); the

primers for HCV and actin were previously described as

well (Zhu et al. 2014).

Antibodies

The following antibodies were used for Western blot,

immunoprecipitation and immunofluorescence. Mouse

monoclonal antibodies against Flag (#F1084, Sigma),

mouse monoclonal antibodies against HA (#H9658,

Sigma), rabbit polyclonal antibodies against Flag (#2368S,

Cell Signaling Technology), rabbit monoclonal antibodies

against HA (#3724, Cell Signaling Technology), rabbit

polyclonal antibodies against PLA1A (Abmart), mouse

monoclonal antibodies against anti-ApoE (#Ab1906,

Abcam) and mouse monoclonal antibodies against beta-

actin (#sc-47778, Santa Cruz). The proteins were visual-

ized using suitable HRP-conjugated secondary antibodies

(Jackson Immuno Research). The Alexa Flour 561/488/

633-conjugated secondary antibodies used for indirect

immunofluorescence staining were obtained from

Invitrogen.

Western Blotting and Immunoprecipitation

Cells for both Western blotting and immunoprecipitation

were lysed in immunoprecipitation (IP) buffer containing

50 mmol/L Tris (pH 7.5), 1 mmol/L EGTA, 1 mmol/L

EDTA, 1% Triton X-100, 150 mmol/L NaCl, 100 lmol/L

phenylmethylsulfonyl fluoride (PMSF), and a protease

inhibitor cocktail (Complete Mini, Roche) for 30 min (Xu

et al. 2012). Cell lysates were centrifuged at 14,000 9g for

1 min at 4 �C and quantified using the Bradford method

(#500-0006, BioRad). For Western blotting, the super-

natants were recovered and boiled in loading buffer. For

immunoprecipitation, the supernatants were recovered and

mixed with 2 lg of primary antibody per 1 mg protein

samples and then incubated overnight at 4 �C. The reaction
mixtures were then mixed with protein G agarose

(#2549373, Millipore) and incubated for an additional 2 h

at 4 �C. Protein G agarose-bound immune complexes were
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collected by centrifugation at 14,000 9g for 1 min, washed

at least five times with IP buffer, and boiled in loading

buffer. Then the samples were centrifuged at 14,000 9g

for 1 min and loaded onto 12% SDS–polyacrylamide gels.

The proteins were separated at a constant voltage (120 V),

then the gels containing proteins were transferred onto a

nitrocellulose filter membrane (Millipore). Membranes

were blocked by incubation with 5% nonfat milk, and

proteins were detected by using primary antibodies and

secondary antibodies conjugated with horseradish peroxi-

dase. The proteins were visualized using suitable HRP-

conjugated secondary antibodies (Jackson Immuno

Research) and SuperSignal-Femto chemiluminescent sub-

strate (Pierce).

The mCherry-based BiFC Assay

The Vero cells were plated in 35-mm tissue culture dishes

at 70%–80% confluence, 1 day before transfection. The

cells were transfected with a pair of split mCherry fusion

constructs, using Lipofectamine 2000 reagent (Invitrogen;

USA) according to the manufacturer’s instructions.

Transfected cells were incubated at 37 �C (5% CO2) for

12 h and continued at 25 �C overnight (5% CO2) before

imaging. Twenty-four hours after transfection, cells were

fixed and stained with DAPI. The signal representing

interaction was analyzed by confocal microscope.

Immunoprecipitation of HCV Particles

Huh-7.5.1 cells were infected with infectious HCV

J399EM virus at MOI 0.1 for 48 h. Subsequently, normal

rabbit IgG (4 lg), ApoE- and PLA1A-specific antibody

were each mixed with 1 mL HCVcc (cell culture produced

HCV) supernatant and rotated overnight at 4 �C. After

incubation, 60 lL washed protein G-conjugated agarose

beads (#2549373, Millipore) was added to each group, and

sequentially, the samples were rotated for 4 h at 4 �C.
Unbound HCV particles were removed by at least five

washes in IP buffer as described above. HCV particles-

antibody-beads complex were resuspended into 250 lL
nuclease-free water, and HCV RNA was extracted with

750 lL TRIzol LS reagent (#10296-028, Invitrogen). HCV

RNA copy numbers were quantified by one step real-time

RT-PCR as described above. The groups of rabbit IgG and

ApoE-specific antibody served as negative and positive

controls, respectively.

Immunofluorescence Analysis and Confocal
Microscopy

Immunofluorescence protocol was performed as described

elsewhere (Xu et al. 2012). In brief, Huh7.5.1 cells were

grown on glass coverslips and electroporated with tran-

scribed HCV J399EM RNA in vitro. At various time points

after electroporation, Huh7.5.1 cells were fixed, perme-

abilized and blocked. Samples were incubated overnight

with the primary antibodies in various combinations. Alexa

Fluor 561/488/633-conjugated secondary antibodies (di-

luted 1:1000; Invitrogen) were added for 1 h. Then the

coverslips were washed three times with PBS and stained

with DAPI (Invitrogen). Images of the samples were taken

using an UltraView Vox confocal microscope (Perkin

Elmer, USA).

Statistical Analysis and Software

Differences between groups were evaluated using the two-

tailed, unpaired Student’s t test (GraphPad Software, Inc.,

La Jolla, CA). Coprecipitation efficiency and fluorescence

images were analyzed using Image J (National Institutes of

Health, USA). P-values were calculated, and statistical

significance was reported as highly significant with

*(P\ 0.05). Analytic results are presented as mean ± SD.

Results

Upregulated PLA1A Expression in HCV-infected
Patients

In previous studies, we had identified that PLA1A

expression was enhanced by 20 fold in JFH-1 infected cells

(Guo et al. 2015). To confirm the results, we examined

PLA1A expression in liver biopsy samples from HCV-in-

fected patients. The demographic and clinicopathological

characteristics of 42 biopsies obtained from HCV-infected

patients and 10 biopsies from normal control patients

included in the study are shown in Supplementary

Table S2. We observed a statistically significant increase in

PLA1A expression in liver biopsies from HCV-infected

patients (Fig. 1A). In the group of 42 HCV-infected

patients, PLA1A mRNA expression levels were positively

associated with HCV viral loads in the liver or the serum

(Fig. 1B). The multivariate logistic regression analysis

showed that PLA1A mRNA level and HCV RNA in serum

(OR = 9.037; CI 95% 1–36, P\ 0.01) or HCV RNA in

liver (OR = 43.18; CI 95% 1–36, P\ 0.001) were

dependent variables associated with HCV infection. To

gain insight into the potential metabolic signature associ-

ated with PLA1A overload, we examined the influence of

HCV infection on the metabolites involved in PS from

HCV-infected cells using ELISA. The metabolic profile of

HCV-infected cells demonstrated a clear shift toward lyso-
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PS compared with mock-infected counterparts in 72 hpi.

HCV-infected cells, which showed lower levels of PS and

produced more cellular or secreted Lyso-PS (18:0), which

are the substrate or product of PLA1A (Fig. 1C). These

results were in agreement with a previous report on the

increased expression of PLA1A in HCV life cycle and

demonstrated that PLA1A was upregulated in vivo.

PLA1A Interacts with E2, NS2 and NS5A
via Multiple Interaction Sites

A previous report has highlighted the importance of the

interaction of PLA1A with HCV E2, NS2 and NS5A

proteins for the assembly and release of infectious HCV

particles (Guo et al. 2015). This result was perplexing due

to the membrane topologies of the proteins. So we aimed to

investigate structural determinants of PLA1A, E2, NS2 and

NS5A proteins important for HCV assembly by providing a

detailed characterization of different PLA1A and HCV

protein mutants. Firstly, using HCV FLAG-tagged E2

(FLAG-E2), FLAG-tagged NS2 (FLAG-NS2) or FLAG-

tagged NS5A (FLAG-NS5A) proteins as bait, interactions

with endogenously expressed PLA1A were detected by

immunoprecipitation and Western blot assay in Huh-7.5.1

cells (Fig. 2A). We further identified the PLA1A-E2,

PLA1A-NS2 and PLA1A-NS5A interactions using the

mCherry-based red bimolecular fluorescence complemen-

tation (BiFC) system (Fan et al. 2008), which is based on

fusion proteins with complementary fragments (MC160

and MN159) of the monomeric fluorescent construct.

When the MC160 fragments are in close proximity due to

the protein–protein interaction, the MN159 fragments form

a beta-barrel structure and emit red fluorescence. MC160-

mp53-MN159-mLTag and MC160-p53-MN159-Ltag

served as negative and positive controls, respectively. Vero

cells were transfected by indicated pair of mCherry fusion

constructs as shown in Fig. 2B. Thus, the result further

represented structures with PLA1A with HCV E2, NS2 and

NS5A proteins in close proximity in cells. Furthermore, the

result showed structures with PLA1A and E2 in close

proximity than NS2 and NS5A, and strongly suggest

PLA1A-E2 physical interaction in cells.

To determine the specific sequences of PLA1A inter-

action with E2, NS2 or NS5A in mammalian cells, we

constructed various deletions within HA-tagged PLA1A

(HA-PLA1As; Fig. 2C). FLAG-E2, FLAG-NS2 or FLAG-

NS5A was co-expressed in 293T cells together with HA-

PLA1As, respectively. Subsequently, cell lysates were

submitted to co-immunoprecipitation and Western blot

with indicated antibodies. The result showed that all

mutants of PLA1A still could interact with E2 (Fig. 2D),

NS2 (Fig. 2E) and NS5A (Fig. 2F), suggesting multiple

regions of PLA1A involved in their interaction.

E2 Interacts with PLA1A through its Carboxy
Terminal but Not ER Lumen Region

Since E2 interacts with PLA1A, we tried to determine the

region in E2 that is responsible for PLA1A binding. We

constructed various truncation mutants of E2 (Fig. 3A) and
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Data presented here is representative of three independent experiments.
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Fig. 3 Characterization of E2 binding to PLA1A. A A schematic

representation of the HCV E2 domain and deletion mutations. B 293T

cells were co-transfected with the Flag-tagged E2 expression plasmid

in the presence of HA-PLA1A expression plasmid, as indicated at the

top. An empty plasmid was used as a negative control. Cell lysates of

the transfected cells were immunoprecipitated with anti-Flag anti-

body. The resulting precipitates and whole cell lysates used in

immunoprecipitation (IP) were examined by immunoblotting using

anti-FLAG- or anti-HA antibody. 10% cell lysates were used for

normalization of input levels. C Detection of the PLA1A-E2

interaction in Vero cells using the mCherry-based red BiFC system.

Scale bars represent 10 lm. D The percentage of cells with brilliant

redness. E Huh-7.5.1 cells were infected with infectious HCV

J399EM virus at MOI 0.1 for 48 h. Subsequently, the cells

supernatants (sup) from the control cells or HCV infection cells were

subjected to coprecipitate using anti-ApoE antibody (1:100 dilution),

anti-IgG (1:100 dilution) or anti-PLA1A antibody (1:100 dilution).

Total RNA and protein were extracted from the coprecipitated

samples and analyzed for HCV RNA by quantitative RT-PCR. The

Western blot indicated the standardization of the sample. Rabbit-IgG

and ApoE antibody served as negative and positive controls,

respectively. Results presented are representative of three indepen-

dent experiments.
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the binding domain was determined by co-immunoprecip-

itation and Western blot assay. Figure 3B shows that

PLA1A binds to E2 mutant harboring carboxyterminal end

but not with mutant harboring endoplasmic reticulum

lumen region, suggesting that the E2 region spanning aa

336–367 is involved in its interaction with PLA1A. The

amount of PLA1A coprecipitating with E2 was quantified

and normalized to PLA1A input levels. It is remarkable

that the C-terminal transmembrane domain (TMD) of E2

that serves as a membrane anchor was required for the

interaction with PLA1A, as E2 mutant aa 1–272, lacking

this TMD, similarly loses its ability to bind PLA1A

(Fig. 3B). We further identified the above interaction by

the mCherry-based red BiFC system. Co-expression of

MC160-E2 or MC160-E2/1–336 and MN159-PLA1A

fusion proteins in Vero cells, showed only MC160-E2 and

MN159-PLA1A reconstituted red cellular fluorescence as

shown in Fig. 3C. The percentage of cells with the brilliant

redness was counted and shown in Fig. 3D. The finding

suggested that the TMD region of E2 is involved in the

interaction with PLA1A.

Although PLA1A is a secreted protein and the lipase

activity has been verified, its extracellular functions still

remain unknown in HCV infection. The results strongly

suggest PLA1A-E2 physical interaction in cells. Thus, we

infected Huh-7.5.1 cells with 0.1 MOI of J399EM for 48 h.

Subsequently, the cells supernatant was subjected to

coprecipitate using anti-ApoE antibody, anti-IgG or anti-

PLA1A antibody. Total RNA was then extracted and

analysed for HCV RNA by quantitative RT-PCR and the

sample were homogeneous by Western blot for relative

antibody (Fig. 3E). ApoE associate with mature HCV

virions and play an important role in virion infectivity

(Jiang et al. 2012; Hueging et al. 2014; Zhu et al. 2014).

Rabbit-IgG antibody served as negative control. This result

suggested that PLA1A may participate in the formation of

HCV mature particles.

The ER Lumen and C-terminus Sequences of NS2
Involved in Binding to PLA1A

To identify the region within NS2 involved in the inter-

action with PLA1A, we tested different deletion mutants of

NS2 for their capacity to bind PLA1A. Full-length FLAG-

NS2 and its deletion mutants were constructed as recom-

binant fusion proteins (Fig. 4A). The co-IP and immuno-

blot assay in 293T cells showed that at least two regions

encompassing aa 49–73 between NS2 TMDII and TMDIII

and C-terminal aa 199–217 of NS2 support interaction with

PLA1A (Fig. 4B–4D). The amount of PLA1A coprecipi-

tated with NS2 was quantified and normalized to PLA1A

input levels. The data obtained in the IP assay were further

confirmed by the mCherry-based red BiFC system. Co-

expression of MC160-NS2 or dual deletions of NS2

(D49–73 and D197–217) and MN159-PLA1A fusion pro-

teins in Vero cells, showing that only full length NS2 could

reconstitute red cellular fluorescence (Fig. 4E). The per-

centage of cells with the brilliant redness are shown in

Fig. 4F. This result is consistent with the above observation

that the C-terminal domain is required for E2 in the

interaction with PLA1A. Thus, PLA1A can facilitate the

formation of the NS2–E2 complexes (Guo et al. 2015),

which was also verified here. These results suggest that the

ER lumen and C-terminus regions of NS2 are essential to

the interaction with PLA1A.

NS5A Interacts with PLA1A through its Anchor
Helix and DI Regions

Previously, we found that PLA1A directly interacts with

HCV NS5A. To map the NS5A binding region, we

designed several deletion mutants within full length NS5A

(Fig. 5A). The co-IP and immunoblot assay in 293T cells

showed all of mutants with AH depletion could impair

PLA1A binding (Fig. 5B).

To determine that the AH region binding to PLA1A was

sequences or structures dependent, we constructed a NS5A

mutant (1–213 ? D5–11) which deleted two a-helix turns

within the membrane anchor domain and examined its

binding ability with PLA1A. Figure 5C shows that NS5A

(aa 1–213 ? D5–11) receded the interaction with PLA1A,

which indicated that the AH region played important roles

in the interaction of NS5A with PLA1A. PLA1A is a

glycosylated protein, the amino acid sequence contains

three possible sites for N-linked glycosylation (Junken

Aoki et al. 2002). Two PLA1A phenotypes were found and

designated a nonglycosylated form of 45 kDa and a gly-

cosylated form of 50 kDa according to their apparent

molecular weights. To narrow down the NS5A binding

region within DI domain, we constructed two deletion

mutants’ subdomain I A (DSDI A) and subdomain I B

(DSDI B) within full length NS5A. The result showed

thatDSDI A and DSDI B could bind with two PLA1A

forms, respectively (Fig. 5D).

The conclusions were further identified by the

mCherry-based red BiFC system. Co-expression of

MC160-NS5A, -NS5A DI or -DIIDIII and MN159-

PLA1A fusion proteins, showing that NS5A and NS5A DI

but not with mutant harboring DIIDIII reconstituted red

cellular fluorescence (Fig. 5E). The percentage of cells

with redness was counted and shown in Fig. 5F. Overall,

these results suggested that the very N-terminal 28aa and

D1 of NS5A contained sequence elements involved in the

binding of PLA1A.
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PLA1A Stabilizes the NS2–E2 and NS2–NS5A
Complex

Our previous reports have indicated that the interaction of

NS2 with E2 is independent of PLA1A, but the interaction

of NS2 with NS5A could be enhanced by PLA1A. Mean-

while, the NS2–NS5A interaction was important for the

assembly of infectious HCV particles (Guo et al. 2015). To

further verify whether PLA1A utilized the TMD region of

E2 and the AH and DI regions of NS5A to participate in the

formation of NS2–E2 and NS2–NS5A complex, we

transfected the plasmids containing Flag-tagged wild-type

or truncated of E2 or NS5A together with HA-tagged NS2

in the presence or absence of HA-PLA1A in 293T cells.

NS2 and PLA1A could be co-immunoprecipitated by

FLAG-specific antibody (E2 or NS5A) (Fig. 6A, 6C). The

protein–protein interactions were confirmed with reverse

immunoprecipitation using HA-specific antibody (Fig. 6B,

6D). Only the NS2 and PLA1A were co-immunoprecipi-

tated by the wild-type E2 or NS5A, suggesting these

sequences detected played essential roles in formation of

E2-NS2-PLA1A or NS2-PLA1A-NS5A complexes. The

above result was further analyzed by BiFC system. Specific

enhanced signals indicated the important role of PLA1A

(Fig. 6E).

To determine the specific interaction of NS2 with NS5A,

we constructed the deletion mutants of NS2 and NS5A

(Fig. 7A, Fig. 7D) and the interaction regions of NS2–

NS5A were confirmed with co-immunoprecipitation. Sub-

sequently, cell lysates were immunoprecipitated with anti-

Flag antibody, suggesting that the NS2 ER lumen region

and NS5A AH region were involved in the interaction

between NS2 and NS5A (Fig. 7B, 7C, 7E, 7F). These

results, together with the above findings, suggest that

PLA1A is required for or facilitates the formation of the

membrane-associated E2-NS2-PLA1A and NS2-PLA1A-

NS5A complexes, and NS2–NS5A interact using ER lumen

region and AH region.

Colocalization of PLA1A with E2, NS2 and NS5A

To support and extend the interaction patterns described

above with a visual way, we performed colocalization

studies of PLA1A with E2, NS2 and NS5A in the HCVcc

system. Due to limited endogenous specific antibody of

PLA1A, we generated a highly permissive Huh-7.5.1-

derived cell pool with stable overexpression of PLA1A

(Huh-7.5.1-hPLA1A) for better observation of colocaliza-

tion of these four proteins with each other (Supplementary

Figure S1).

Next the HCV RNA was imported into the control cells

or Huh-7.5.1-hPLA1A cells by electroporation and the

cells were fixed with antibodies against the PLA1A and

HA-tag for indirect immunofluorescence analysis

(Fig. 8A). The degree of localization of PLA1A with the

viral proteins was quantified (Fig. 8B–8E), each dot in the

graph corresponds to one cell. We found that the local-

ization of PLA1A with NS2 was time-independent, but the

dynamic localization of PLA1A with NS5A was time-de-

pendent. As above described, the localization of PLA1A

with E2 was carried out by the same method. The result

suggested that localization of PLA1A with E2 is also time-

independent (Fig. 9A–9D).

Taking these findings together, we concluded that the

localization of PLA1A with NS2 or E2 is time-indepen-

dent, but with NS5A was time-dependent change and

gradual increase of a strong punctate phenotype was

observed among these proteins.

Discussion

Previously, PLA1A was shown to interact with the HCV

E2, NS2 and NS5A proteins and facilitate NS2–E2 and

NS2–NS5A complex formation during HCV assembly

(Guo et al. 2015). In this study, we revealed that HCV

infection could up-regulate the PLA1A expression in vivo.

The key domains of E2, NS2 and NS5A involved in

PLA1A interaction to their lumenal domains and mem-

branous parts were mapped, through which they form oli-

gomeric protein complexes to participate in HCV

assembly.

HCV assembly requires complex protein–protein inter-

actions between HCV proteins and host factors. It has been

generally accepted that the Core-driven LD and the repli-

cation complex (RC) are brought together through the

interaction of Core and NS5A, which is very important at

an early step of HCV assembly. NS2 protein is required for

virus assembly as a scaffold recruiting viral envelope

proteins to the assembly sites in close proximity to LD. The

E1-E2-NS2-p7 complex migrates to a position close to the

bFig. 5 Characterization of NS5A binding to PLA1A. A A schematic

representation of domain structure of NS5A and deletion mutations.

B–D 293T cells were co-transfected with the different Flag-tagged

deletions, NS5A expression plasmid in the presence of a HA-PLA1A

expression plasmid, as indicated at the top. An empty plasmid was

used as a negative control. Cell lysates of the transfected cells were

immunoprecipitated with anti-Flag antibody. Numbers at the bottom

indicate the coprecipitation efficiency of PLA1A with individual

NS5A deletions compared to NS5A wt. E Detection of the PLA1A-

NS5A interaction in Vero cells using the mCherry-based red BiFC

system. Scale bars represent 10 lm. F The percentage of cells with

brilliant redness. Data presented here is representative of three

independent experiments.
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Fig. 6 PLA1A coordinates the interaction of NS2–E2 or NS2–NS5A.

A–D 293T cells were co- transfected with the Flag-tagged E2 wt, E2-

1-336, NS5A wt or NS5A 214-466 expression plasmid and HA-NS2

expression plasmid in the presence or absence of HA-PLA1A

expression plasmid, as indicated at the top. An empty plasmid was

used as a negative control. Cell lysates of the transfected cells were

immunoprecipitated with anti-Flag antibody. The resulting precipi-

tates and whole cell lysates used in immunoprecipitation (IP) were

examined by immunoblotting using anti-FLAG- or anti-HA antibody.

10% cell lysates were used for normalization of input levels. Numbers

at the bottom indicate the coprecipitation efficiency of NS2 with

individual NS5A deletions compared to NS5A wt. E Detection of

PLA1A coordinates the interaction of NS2–E2 or NS2–NS5A in Vero

cells using the mCherry-based red BiFC system. Scale bars represent

10 lm. Data presented here is representative of three independent

experiments.
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RC through the interaction between NS2 and NS5A. The

argument is that the interaction between NS2 and NS5A

was thought to be a transient or unstable interaction. This

study provides a detailed characterization of the interaction

between PLA1A and NS2, E2 or NS5A. PLA1A played an

essential role as a bridge in HCV assembly by recruiting

the NS2 complex together with E1-E2 glycoprotein to

core-containing LDs via the interaction with NS2 and

NS5A (Fig. 10).

NS2 interaction protein was reported to mediate NS2–

E2 complex formation, contributing to the HCV assembly

process. It had been reported that NS2 is not essential for

RNA replication; however, NS2 could bring together the

viral E1-E2 glycoprotein complex, p7, and the NS3-4A

enzyme complex. The interaction between NS2 and E1-E2

envelope protein has been shown using biochemistry and

genetic data. A similar function for PLA1A in the NS2–E2

interaction was found in this research because PLA1A

interacts with both E2 and NS2. Meanwhile, the interac-

tions of PLA1A with NS2 or E2 were time-independent,

but the interaction with NS5A was time-dependent.

PLA1A could contribute to NS2–E2 and NS2–NS5A

complex formation or stabilize the complex, demonstrating

the functional importance of PLA1A in HCV assembly.

PLA1A specifically acts on phosphatidylserine (PS) and

1-acyl-2-lysophosphatidylserine (lyso-PS) to hydrolyze
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Fig. 7 Characterization of NS2

binding to NS5A. A A

schematic representation of

domain structure of NS2 and

deletion mutations. B,
C Characterization of NS5A

binding to NS2. The indicated

Flag-trigged deletion mutants of

NS2 and HA-trigged NS5A

were co-transfected in 293T

cells. An empty plasmid was

used as a negative control. Cell

lysates of the transfected cells

were immunoprecipitated with

anti-Flag antibody. The

resulting precipitates and whole

cell lysates used in

immunoprecipitation (IP) were

examined by immunoblotting

using anti-FLAG- or anti-HA

antibody. 10% cell lysates were

used for normalization of input

levels. D A schematic

representation of domain

structure of NS5A and deletion

mutations. E–F The indicated

Flag-trigged deletion mutants of

NS5a and HA-trigged NS2 were

co-transfected in 293T cells.

The experiments were

performed as B. Data presented

here is representative of three

independent experiments.
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Fig. 8 Kinetics of subcellular distribution and colocalization of

PLA1A with NS5A and NS2. A Control cells and Huh7.5.1 cells

stably overexpressing PLA1A were electroporated with HCV

J399EM RNA and at the indicated times post-electroporation cells

were fixed and probed with antibodies against the PLA1A and HA-tag

for indirect immunofluorescence analysis. NS5A carried green

fluorescence protein. The nuclei were stained with DAPI. Scale bars

represent 10 lm or 5 lm in regular and magnified images, respec-

tively. B–E The degree of colocalization of PLA1A with given viral

proteins was quantified. Each dot in the graph corresponds to one cell.
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Fig. 9 Kinetics of subcellular distribution and colocalization of

PLA1A with E2 and NS5A. A Control cells and Huh7.5.1 cells

stably overexpressing PLA1A were electroporated with HCV

J399EM RNA and at the indicated times post-electroporation, cells

were fixed and probed with antibodies against the PLA1A, and E2 for

indirect immunofluorescence analysis. NS5A carried green fluores-

cence protein. The nuclei were stained with DAPI. Scale bars

represent 10 lm or 5 lm in regular and magnified images, respec-

tively. B–D The degree of colocalization of PLA1A with given viral

proteins was quantified. Each dot in the graph corresponds to one cell.
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fatty acids at the sn-1 position of these phospholipids. We

had proved PLA1A could be upregulated in vivo. Thus,

PLA1A may also contribute to HCV particle production

through the cleavage products of fatty acids such as

arachidonic acid. As a secreted enzyme, PLA1A may also

hydrolyze phosphatidylserine on the cell surface and pro-

duce lyso-PS, as HCV was previously shown to induce

apoptosis of infected cells. lyso-PS had been described as a

potent activator of histamine release from mast cells, as a

growth inhibitor of T cells, and as a chemotactic substance

for fibroblasts and tumor cells. So PLA1A makes a

tremendous contribution to HCV lifecycle and

pathopoiesia.

In summary, as a bridge, PLA1A, was identified as a

participant in the HCV assembly process. Data from this

study demonstrate detailed domains of PLA1A, NS2,

NS5A and E2 involved in the interaction. These results

provide clues for understanding the details of the molecular

mechanism of assembly and formation of infectious HCV

particles.
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