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The geometry of masking in neural populations
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The normalization model provides an elegant account of contextual modulation in individual

neurons of primary visual cortex. Understanding the implications of normalization at the

population level is hindered by the heterogeneity of cortical neurons, which differ in the

composition of their normalization pools and semi-saturation constants. Here we introduce a

geometric approach to investigate contextual modulation in neural populations and study

how the representation of stimulus orientation is transformed by the presence of a mask. We

find that population responses can be embedded in a low-dimensional space and that an

affine transform can account for the effects of masking. The geometric analysis further

reveals a link between changes in discriminability and bias induced by the mask. We propose

the geometric approach can yield new insights into the image processing computations

taking place in early visual cortex at the population level while coping with the heterogeneity

of single cell behavior.
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Individual neurons in primary visual cortex respond to sti-
mulation within restricted areas of the visual field, which
define their classical receptive fields1–3. These responses can be

modulated by contextual stimuli presented within the classical
receptive field or in the surrounding regions4–6. Cross-orientation
and surround suppression are two well-known examples of
contextual modulation5,7–21.

The role that contextual modulation plays in cortical function
remains an open question. Some consider such interactions to be
directly involved in image processing, such as the detection and
enhancement of smooth, spatially extended contours22–37. Others
argue that the fundamental goal of contextual modulation is to
generate a sparse, efficient representation of natural images6,38–45.
Distinguishing between these theories is not straightforward, as
the their goals are not mutually exclusive6.

Here we focus on how contextual modulation transforms the
activity of neural populations. Contextual modulation has been
studied extensively in single neurons, leading to the development
of the influential normalization model6,46,47. Among several
phenomena, this model explains contrast invariance—the finding
that the shape of the tuning curve of individual neurons measured
at different levels of contrast are scaled versions of each other
with responses saturating at high contrasts. It also offers an
account of how tuning curves scale in the presence of a mask that,
when presented by itself, does not produce a response.

In a network composed of neurons with homogenous tuning
functions and normalization signals these properties would gen-
eralize from single cells to entire populations. For example, if all
neurons in a population are contrast invariant, and if they share
the same contrast response function, then the direction of the
population response will be invariant to the contrast of a visual
stimulus48.

Unfortunately, we know cortical neurons exhibit a wide range
of tuning properties49, contrast response functions50–52, and
normalization pools53. It is not entirely surprising, therefore, that
in a population of heterogenous neurons the properties of single
cell responses derived from the classic formulation of normal-
ization, such as contrast and subspace invariance, do not gen-
eralize to the population response48.

Here we show that, despite the heterogeneity of responses in a
cortical population, we can nevertheless capture the effects of
contextual modulation by a simple geometric transformation—at
least for the case of masking. The findings suggest that a succinct
mathematical description how neural populations behave under
contextual modulation is possible, and that its characterization
can shed light into the image processing computations performed
by early visual cortex54.

Results
Population responses in masked and unmasked conditions. We
measured the responses of neural populations in mouse primary
visual cortex using two-photon imaging (Methods). Mice were
head-restrained but otherwise free to walk on a rotating wheel.
The visual stimulus consisted of two conditions (Fig. 1a). In the
unmasked condition, a full-field sinusoidal grating was presented
while its orientation changed linearly with time θ ¼ πt=T with a
period T= 10 s. This stimulus has previously been used to mea-
sure orientation maps55. In the masked condition, the same
rotating stimulus was presented superimposed on top of a mask
consisting of a sinusoidal grating oriented vertically. We esti-
mated the spiking responses of neurons using a standard pro-
cessing pipeline involving image registration, signal extraction,
and non-linear deconvolution56. The periodic nature of the sti-
mulus was evident in the temporal responses of cells (Fig. 1b), as
neurons tuned to one orientation respond once per cycle. As

described in earlier studies57, locomotion modulated the overall
magnitude of responses in the population (Fig. 1b, shaded
regions).

Heterogenous responses of single cells in masked and
unmasked conditions. We computed the average response of
neurons in the unmasked and masked conditions over the cycle
of the stimulus (Fig. 1c, solid curves). The temporal responses
were corrected by the mean stimulus-response delay (see Meth-
ods). After this correction, the temporal profile of the response
can be interpreted as an estimate of the tuning curve of the
neuron. The mask was always present at an orientation of 90°
(Fig. 1c, dashed lines; subsequent figures omit the location of the
mask to avoid clutter). The shaded areas represent the mean
response ± 2 SEM computed over all the trials.

We observed a substantial heterogeneity of responses. Some
cells were well tuned to orientation in the unmasked condition
but were completely suppressed by the addition of the mask
(Fig. 1ca). Others did not show such dramatic suppression, but
responded with a scaled down version of their unmasked
responses (Fig. 1cb)—a behavior consistent with the classic
normalization model6,46,58. Some neurons showed little or no
difference between the responses in the two conditions (Fig. 1cc).
Another group saw their unmasked responses enhanced by the
mask (Fig. 1cd). Finally, somewhat surprisingly, a set of neurons
showed very weak or no responses in the unmasked condition but
responded vigorously in the presence of the mask (Fig. 1ce)48.

We studied the range of behaviors in single cells (Fig. 1c)
by comparing the mean response of the ith neuron
over the stimulation cycle between unmasked and masked
conditions, which we denote by μiu and μim, respectively (Fig. 2a).
There was a significant anti-correlation: the stronger a
neuron responded in the unmasked condition the weaker its
response was in the masked condition and vice versa
(n ¼ 3920; r ¼ �0:55; p ¼ 5:6 ´ 10�312). We refer to neurons at
the extremes of the distribution of behavior as grating and plaid
cells (Fig. 2a, shaded areas). These groups were formally defined
as the cells attaining the 10% lowest (grating cells) and highest
(plaid cells) ratios of log2 μim=μ

i
u

� �
(Fig. 2a, inset). These groups

represent behaviors found at the extremes of a unimodal
distribution (there was no evidence of discrete classes of neurons).

Grating and plaid cells had different preferred orientations.
Grating cells were preferentially tuned to the orientation
orthogonal to the mask in both conditions (Fig. 2b, left panels).
In grating cells, the introduction of the mask scaled down the
responses by about a third but did not affect tuning (note the
different y-scales in Fig. 2b). This is the type of responses one
might expect from the classic normalization model46,58. Plaid
cells, on the other hand, where preferentially tuned to the
orientation of the mask (90°) when probed with grating stimuli in
the unmasked condition, although their responses were relatively
weak (Fig. 2b, top right). Instead, and somewhat surprisingly,
these cells responded robustly to the orthogonal orientation (0°)
under the presence of the mask (Fig. 2b, bottom right)—in other
words, they responded best when the stimulus was a plaid with
orthogonal components.

Geometry of contextual modulation in neural populations. The
data in unmasked and masked conditions can each be represented
as a matrix where the columns represent the tuning function of
each cell (Fig. 3a). To ease visualization, we ordered neurons by
their preferred orientation. The rows of the matrix represent the
population response to a given orientation. We denote the mean
population responses (across cycles of the stimulus) as a function
of orientation in the unmasked and masked conditions by ru θð Þ
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and rm θð Þ, respectively. These vectors can be thought to describe
parametric (closed) curves in a high dimensional space as
θ 2 ½0; π� traverses the orientation domain (the dimension being
the number of neurons in the population). We aim to understand
the shape of these curves, the nature of the transformation
T : ru θð Þ ! rm θð Þ introduced by the mask, and how the outcome
affects the discriminability of stimuli and biases the estimation of
orientation in the masked condition.

We denote by du θ;φð Þ the cosine distance between ru θð Þ and
ru φð Þ (Fig. 3b, left). The cosine distance is one minus the cosine of
the angle between the two vectors. Because these vectors have
positive entries representing a spike rate, the distance is bounded
between zero and one. Similarly, we define dm θ;φð Þ as the cosine
distance between rm θð Þ and rm φð Þ (Fig. 3b, middle). As discussed
below, the measurements du θ;φð Þ and dm θ;φð Þ are related to the
ability of the population to discriminate between two angles in

each condition. Finally, dum θ;φð Þ denotes the cosine distance
between the population representation of θ in the unmasked
condition and the representation of φ in the masked condition.
This measure captures the relative positions of the two curves
which induces biases in the estimation of orientation in the
presence of a mask. Namely, biases result when the structure of
dum θ;φð Þ is not perfectly diagonal (Fig. 3b, right). We will denote
the normalized population vectors by r̂u θð Þ ¼ ru θð Þ=kru θð Þk and
r̂m θð Þ ¼ rm θð Þ=krm θð Þk.

Approximate orthogonality of signal and noise subspaces. We
selected the cosine distance as a metric because a substantial
component of neural variability in the population response occurs
along its direction59. To show this, we computed the mean and
the covariance of the responses, ru θð Þ and

P
u θð Þ. For each
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Fig. 1 Measurement of population responses in masked and unmasked conditions. a Structure of the visual stimulus. Each of the lines show a single period
of the stimulus in unmasked and masked conditions. b Examples of responses by individual neurons in both conditions. Periods of locomotion enhanced the
overall responsivity of the population (shaded regions). Traces are plotted on a z-scored scale (vertical bar= 10). Horizontal bar represents 1 min of
stimulation (or six periods of the orientation cycle). c Tuning in unmasked and masked conditions. Each trace shows the response of a neuron over the
stimulation cycle after correction for neural delay, so they can be interpreted as a sweep of the orientation tuning curve of the neuron. The dashed line
indicates the orientation of the mask. Blue traces represent the responses in the unmasked condition, while red traces represent responses in the masked
condition. Shaded areas represent the mean response ± 2 SEM
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Fig. 2 Characterization of responses in single neurons. a Anti-correlation between responses of neurons in masked and unmasked conditions. The mean
responses of cells in the unmasked condition, μu, are anti-correlated with the responses in the masked condition, μm. The inset shows the distribution of
log2 μm=μu

� �
. Cells at the extreme of this distribution are termed grating (shaded green) and plaid (shaded pink) neurons. b Preferred orientation and

average tuning of grating and plaid cells in unmasked and masked conditions. The histograms show the distribution of the preferred orientation of the
neurons in each case. The red traces show the average tuning of neurons in each condition. The y-axis is labeled by cell count (in black) or by the amplitude
of the responses (in red)
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orientation, we compared the direction of the population
response with the direction of the eigenvectors, vk θð Þ, of the
covariance matrix (Fig. 3c) (we only present data for the ten
eigenvectors with the largest eigenvalues). Data from individual
experiments show that the first eigenvector,v1 θð Þ, (Fig. 3d, red
dots) captures about 10–50% of the variance and its direction is
close to that of the mean response, as evidenced by the cosine of
the corresponding angle being in the 0.8–1.0 range. In contrast,
eigenvectors of higher rank, v2�10 θð Þ (Fig. 3d, blue dots) explain a
significantly smaller fraction of the variance and their angles with
respect to the mean response are much larger, as indicated by the
cosine of these angles being typically around 0.3. The average
relationship between explained variance and the cosine of the
angle with respect to the mean response showed a clear depen-
dence as a function of eigenvector rank (Fig. 3e).

The variability captured by the first eigenvector is due to
fluctuations in behavioral state which modulates the magnitude of
the response vector while leaving its direction relatively
unchanged57,60,61. The direction of largest variability, v1 θð Þ, is
approximately orthogonal to the direction of the encoding, r̂0u θð Þ
at all orientations (Fig. 3f). This feature of the covariance metrics
justifies the adoption of the cosine metric and the hypothesis that
the orientation of the stimulus is coded exclusively by the
direction of the population vector46,62.

Multidimensional scaling of population responses. To gain
insight about the geometry of the curves and their relative posi-
tions we visualized them using multidimensional scaling adopting
the cosine distance as a metric (Fig. 4). The curves represent the
embeddings of r̂u θð Þ (blue) and r̂m θð Þ(red) in 3D space, while the
spheres of matching colors indicate the point where the stimulus
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Fig. 4 Multidimensional scaling (MDS) of population responses in
unmasked and masked conditions. Each row shows two viewpoints of the
result of one experiment. The curves were obtained by performing MDS
simultaneously on the population responses in unmasked and masked
conditions into 3D space using the cosine distance as a metric. The blue
curve shows ru θð Þ and the red curve shows rm θð Þ. The gray sphere
represents the origin, and colored spheres represent the beginning of the
cycle. The green arrows represent the shift in the white point between
conditions. The stimuli represent the patterns at different locations on the
curves for the two conditions (blue outline—unmasked condition, red
outline—masked condition). The icons on the bottom left represent the
configuration of the stimulus along different parts of the curves
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cycle begins. We define the mean population response over the
entire stimulation cycle as the white point, which we denote by
denote by μu and μm. The green arrows depict the shift of the
white points between unmasked and masked conditions, with the
stem of the arrow positioned at μu and the head at μm. These
examples are typical of what we observed in our experiments.

The shapes of r̂u θð Þ and r̂m θð Þ are similar, with the masked
representation being a scaled down version of the original. The
curves are farthest from each other at the beginning of the cycle,
when the pattern in the masked condition consists of an
orthogonal plaid and the one in the unmasked condition is a
horizontal grating. The two curves are closest to each other near
the middle of the cycle, when the pattern in the masked condition
is a vertical grating with 100% contrast and the one in the
unmasked condition is a vertical grating with 50% contrast. The
curve r̂m θð Þ appears to be rotated away from that of r̂u θð Þ, with
the axis of rotation passing near the representation the mask.
These features were consistent across our experiments suggesting
that a scaling and rotation may explain the transformation of
r̂u θð Þ into r̂m θð Þ induced by the mask. Of course, these
visualizations ought to be interpreted with caution, as they are
only approximate representations of the geometry of high
dimensional objects. Thus, we must check these first impressions
of the geometry by doing appropriate calculations in the
native space.

Masking shrinks and rotates population responses. To verify
our perception that curves are shrinking we computed their
lengths63, Lu ¼

R π
0 r̂
0
u θð Þdθ and Lm ¼

R π
0 r̂
0
m θð Þdθ. The arguments

represent the angular velocity at which the population changes its
orientation and represent a measure of discriminability between
nearby angles. The length, therefore, represents local discrimin-
ability summed over all orientations63,64. The mask had the
effect of reducing the overall length of the curves by a factor of
0.84 ± 0.05 (mean ± 1 SD) (Fig. 5a). As we will soon demonstrate,
this shrinkage is not uniform, but peaks near the orientation of
the mask.

To verify our impression that the mask induces a change in the
direction of the mean population activity, we defined the white-
point shift as Δ ¼ dðμu; μmÞ=ððρu þ ρmÞ=2Þ. Here, ρu represents
the average radius of the curve in the unmasked condition,
calculated as 1=πð Þ R π0 d ru θð Þ; μu

� �
dθ, and a corresponding

definition applies to ρm. In other words, we measure the shift
of the white point in terms of the average radius of the curves.
Across the population we find Δ ¼ 0:71 ± 0:15 (mean ± 1 SD)—a
relatively large fraction (Fig. 5b), which is consistent with the

visualizations from multidimensional scaling. We will see this
shift is important because it is partly responsible for generating
biases in the estimation of orientation in the masked condition

Rejection of the linear combination model. With the geometric
formalism in place, we can test a common model of population
responses, which postulates that the response to a plaid can be
written as a linear mixture of the population responses to the
individual components48,65. The implication for our experiment
is that rm θð Þ 2 span ru θð Þ; ru π=2ð Þf g (recall the mask has orien-
tation π=2). One way to test the prediction is to measure the angle
formed by the vector rm θð Þ and the plane span ru θð Þ; ru π=2ð Þf g.
The results show a significant departure from the prediction, with
angular deviations larger than 30° and significantly higher than
zero (p < 1:2 ´ 10�4; bootstrap estimate, see Methods) (Fig. 5c).
Thus, the data rule out the linear combination model, a finding
that confirms and extends a prior result48.

Masking impairs discriminability and biases the decoding of
orientation. Next, we analyzed changes in discriminability
induced by the mask. Discriminability between any two orien-
tations depends both on the distance between the mean popu-
lation vectors and the statistics of the noise. If the statistics of the
noise are uniform in the sense that they translate with the
direction of the population (Fig. 3f), we expect discriminability to
be proportional to the distances du θ;φð Þ and dm θ;φð Þ. Never-
theless, given we have 90 cycles for each condition we were able to
compute a proper d-prime measure for both masked and
unmasked conditions, which we denote by Du θ;φð Þ and Dm θ;φð Þ
(see Methods) (Fig. 6a). To measure local discriminability (or just
noticeable differences) we defined the threshold for detection in
the unmasked condition Tu θð Þ as the minimal angle Δ such that
Du θ � Δ=2; θ þ Δ=2ð Þ � 4 (Fig. 6a, iso-discriminability con-
tours); we adopted a similar definition for the threshold in the
masked condition, Tm θð Þ. Comparison of the thresholds in the
two conditions revealed that the mask elevated thresholds around
the orientation of the mask (at 90°) (Fig. 6a). Interestingly, the
thresholds around the orientation orthogonal to the mask (0°)
were not affected. A similar result is obtained if we perform a
similar analysis based on du θ;φð Þ and dm θ;φð Þ assuming uni-
formity of the noise (data not shown).

We then analyzed how the presence of the mask can lead to
biases in estimates of orientation. We used a decoder based on
population voting62,67. The estimated orientation was obtained as
θ̂ ¼ 1=2ð Þ arg R πθ¼0 1� dum θ;φð Þð Þexp i2θð Þdθ. In other words, the
population votes for each angle with a weight that depends on the
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distance to the representation of each angle in the unmasked
orientation—the smaller the distance the strongest the vote. The
bias is then b ¼ ðθ̂ � φÞmod π. We observe that except at the
orthogonal orientation the estimates are biased towards
the orientation of the mask (Fig. 6b). These biases arise
because dum θ;φð Þ does not have a non-diagonal structure—
the local minima of dum θ;φð Þ occur slightly off the main
diagonal (Fig. 6b, bottom, white contours). Similar results are
obtained using a simpler winner-takes-all decoder, where we
pick θ̂ ¼ argminθ dum θ;φð Þ.

A geometric model for population transformations under
masking. We tested if a simple geometric model66, originally

developed to explain the effects of adaptation in psychophysical
experiments, could also explain our masking data (Fig. 6c). The
model assumes that in the unmasked condition the population
response ru θð Þ describes a trajectory around the unit circle and
that the effect of the mask is to translate and scale this response to
yield rm θð Þ. Translation is towards the population direction
evoked by the mask, and the scaling is a typically a factor smaller
than one. The model assumes that orientations are identified by
the direction of the population vector, and that the decoder is
unaware of the shift in the white point of the population between
the two conditions. In other words, estimates of orientation are
based on the direction of the population vector measured relative
to the origin (which equals μu in this case) (Fig. 6c). The model
has only two parameters, the magnitude of the shift of the white

–0.6

0

0.6

0

25

–0.5

0

0.5

5

12

0 90 180
Orientation (deg)

0 90 180
Orientation (deg)

T
hr

es
ho

ld
 (

de
g)

B
ia

s 
(d

eg
)

Unmasked
Masked

0 10 16

Δ�

Du (�,�)

��

�

� �

Dm (�,�) dum (�,�)

–0.4

0

0.4

6

9

12

–0.4

0

0.4

9

12

0 90 180

Orientation (deg)

0 90 180

Orientation (deg)

B
ia

s 
(d

eg
)

B
ia

s 
(d

eg
)

T
hr

es
ho

ld
 (

de
g)

T
hr

es
ho

ld
 (

de
g)

Lm /Lu = 0.81

Lm /Lu = 1

�m �u

S
in

gl
e 

po
pu

la
tio

n
A

ve
ra

ge
 b

eh
av

io
r

a b

c

d

e

Fig. 6 A geometric model of masking. a Discriminability (d-prime) between the representation of two orientations in unmasked (left panels) and masked
(middle panels) conditions. The top panels show results for one experiment, while the ones at the bottom show the average across all our experiments. Iso-
performance contour for the single experiment is shown at d0 ¼ 4. The iso-performance contours for the average behavior is shown at levels of d0 ¼ 4;6; 8.
The widening in the iso-performance contours in the masked condition reflect an increase in thresholds near the mask (which has an orientation of 90°).
This is best shown in the panels on the right, which show the dependence of thresholds in masked (red) and unmasked (blue) conditions as a function of a
base angle. In the average data the shaded areas represent ± 2 SEM. b Mutual distances and bias. Top panels show the mutual distance between
orientations across masked and unmasked representations (dum) and the expected bias from a decoder based on the distances. The non-diagonal structure
of dum is more evident in the average data (bottom left panel), showing the locations of the minima of the main diagonal (white, dashed line). Bottom right
panel shows the average bias across all our experiments. Shaded areas represent 2 SEM. c Two-dimensional geometric model of population coding66. The
model assumes ru θð Þ and rm θð Þ are two circles in the plane. The displacement of their centers (white points) induce changes in the mutual distances
inducing corresponding changes in threshold (middle panel) and bias (right panel). d The model can be extended by allowing displacement of the curves
along a third dimension. e Two viewpoints of the same population activity in (d) but now normalized to yield r̂u θð Þ and r̂m θð Þ
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point and a scaling factor. Its simplicity allows one to compute an
analytical expression for both the threshold and the bias66 (see
Methods). Indeed, this model captures some of the behavior of
observed in the data. First, it reproduces the dependence of
threshold with orientation in the masked condition, showing a
maximum centered around the orientation of the mask. Second, it
reproduces the shape of the bias reflecting an attraction towards
the orientation of the mask.

The model, however, fails in three fundamental ways. First, in
the model, the population responses in both conditions lie within
the same plane. As two independent vectors span the entire plane,
it has to be the case that rmðθÞ 2 span ruðθÞ; ruðπ=2Þf g (so long as
ruðθÞ≠ ruðπ=2Þ). In other words, the responses ought to be
explained by the linear mixture model65. However, we have
already shown this is not the case in the data (Fig. 5d). This is also
expected as the population activity in a homogeneous population
with tuning curves other than cosine-shaped, cannot be
embedded in 2D63. Second, in the model, both curves make a
single revolution around the origin. This means that the lengths
of the normalized responses are the same and equal to 2π,
predicting a ratio Lm=Lu ¼ 1. Another way of stating this result is
that both r̂u θð Þ and r̂m θð Þ are different parametrizations of the
unit circle. However, the data show the ratios of the normalized
lengths to be significantly less than one (Fig. 5a, tailed sign-test,
p ¼ 9:3 ´ 10�10). Third, the threshold is directly linked to how
fast the population response changes its direction with orienta-
tion, which is given by kr̂0u θð Þk and kr̂0m θð Þk. The faster the
population direction rotates the lower the thresholds for
discrimination. However, as we just pointed out the average
across all orientations is constant under this model,
R 2π
0 kr̂0u θð Þkdθ ¼ R 2π

0 kr̂0m θð Þkdθ ¼ 2π. This means that if the
mask increases discriminability for some orientations it must
decrease it for others63. This is reflected in the fact that the
threshold in the masked condition fluctuates around the mean for
the unmasked condition (Fig. 6c). The data, in contrast, indicates

that the effect of the mask is to impair the discriminability around
the orientation of the mask, while there is little or no effect at the
orthogonal orientation (Fig. 6a, right column). The data reject
the prediction that increases in threshold at some orientations
must be accompanied by decreases in threshold at other
orientations (Fig. 6c). Fourth, we know from the analysis of
single cell responses that some neurons are unresponsive in the
unmasked condition but respond robustly in the presence of a
mask (Fig. 2a). This fact alone indicates the population responses
in the masked and unmasked conditions do not lie within the
same subspace. We conclude that no model in 2D can explain
the data.

Can the 2D model be extended to account for our results? One
possible way to fix the model is to allow population activity to be
embedded in dimensions higher than two. This will enable
responses in the masked condition to move out of the subspace
defined by the unmasked responses (Fig. 6d). To see if such an
approach could work in principle, consider a toy example where
responses in the unmasked condition lie on the unit circle
whereas the one in the masked condition to be a the result of a
transformation, T rð Þ ¼ αAr þ t, where A is an orthogonal matrix
(representing a rotation), α is a scaling factor, and t a translation.
It is then possible to find parameters of the transformation that
reproduce the ratio between the lengths of the curves, as well as
the dependence of discriminability and bias on orientation
(Fig. 6d, middle and right panels). A more general affine
transformation can be represented in homogenous coordinates
as T rð Þ ¼ Ar where the population vector now has an extra
dimension to allow for translation. We can then write the
transformation of the normalized population responses as
T r̂ð Þ ¼ Ar̂=kAr̂k, which corresponds to a projective linear
transformation68 (Fig. 6e).

Based on these observations we fit the affine model to the data
in individual experiments (see Methods). As a first step, we
embedded the data in a lower dimensional space using
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Fig. 7 A simple geometric transformation accounts for the effects of masking in neural populations. a Multidimensional scaling indicates the data can be
faithfully embedded in five dimensions. The y-axis represents the correlation between mutual distances in the native space and the low-dimensional
embedding. Solid curve represents mean across all experiments; shaded area represent ± 2 SEM. b Fits of an affine model to low-dimensional
representations of r̂u θð Þ and r̂m θð Þ in four different experiments. In each case, r̂u θð Þ represents the population response in the unmasked condition (blue),
r̂m θð Þ represents the population response in the masked condition (red), and ~rm θð Þ is the best fit to the response in the masked condition by means of an
affine transform. The curves are 2D projections of the five-dimensional fits. (c) Distribution of the correlation between the mutual distances between points
in r̂m θð Þ and corresponding points in the fit ~rm θð Þ: The high correlation values agree with the visual impression in (b) that the fits are of excellent quality
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multidimensional scaling (Fig. 7a). On average, the correlation
between mutual distances in the native space and the embedding
saturated when the embedding had five dimensions, a selection
we applied in the analyses of all the experiments. In each case,
given population responses in the unmasked condition, we could
find an affine transformation nicely accounted for the measured
responses in masked condition (Fig. 7b). The quality of the fits
can be evaluated by the correlation between mutual distances in
the measured and predicted curves, which were higher than 0.92
in all our experiments (Fig. 7c).

Discussion
Understanding how populations of neurons encode a physical
attribute of a sensory stimulus, and how responses are trans-
formed by contextual modulation is an important question in
system neuroscience54. Here we considered the simpler problem
of how the orientation of a sinusoidal grating is transformed by
an additive mask.

At the single cell level, we observed a wide range of responses
(Figs. 1c, 2). Interestingly, we found a group of neurons that do
not respond to gratings in the unmasked condition but respond
strongly to plaids in the masked condition (Fig. 2a). The maximal
response of these plaid neurons occurs when the pattern is an
orthogonal grating (Fig. 2b). Because this set of cells is only active
in the masked condition their responses cannot be written as a
linear mixture of their responses to gratings, as the neurons were
not responsive to them. In other words, the responses in masked
and unmasked conditions do not lie within the same subspace.
This explains why the linear model (Fig. 5c) and the 2D geo-
metric model (Fig. 6c) fail to account for the data. Grating and
plaid cells are reminiscent of pattern and component cells69,70.
Here, we use different terms because the definitions are not
equivalent. We note, however, that the pattern index used to
classify cells as pattern/component correlates with the plaid/
grating response we use here71 and that mouse primary visual
cortex contains a larger proportion of pattern cells than found in
non-human primates72. Thus, we suspect that the neurons
engaged during masking, that do not respond strongly to gratings
in the masked condition, could represent pattern cells.

We observed that plaid cells, when probed with a single
component in the unmasked condition, responded optimally
(albeit weakly) to the orientation of the mask (Fig. 2b). While
somewhat puzzling, the behavior in the masked condition might
be explained if the addition of a grating orthogonal to a cell
preferred orientation (as defined with single gratings) increases its
response by releasing it from inhibition from oblique orientations
in a ring model of orientation tuning73.

The heterogeneous behavior of individual neurons makes it
difficult to understand how the population behaves as single unit
in unmasked and masked conditions. One approach to answering
this question is to fit the normalization model individually to each
cell and make sense of the distribution of model parameters and
co-variation and their implications for the population. Here we
used a geometric approach48,66, which draws on ideas from the
field of representational geometry74,75, to study contextual
modulation of neural populations directly. The analysis revealed
that, despite a substantial heterogeneity in the behavior of indi-
vidual cells, the map relating population responses in masked and
unmasked conditions can be approximated as an affine trans-
formation. When considering normalized responses, the corre-
sponding map is a projective linear transformation68. The finding
is so-far limited to masking, but we conjecture it may hold for
other types of contextual modulation, such as interactions
between the classical receptive field and the surround and sensory

adaptation. Indeed, a 2D model which accounts for psychophy-
sical data on adaptation66 (Fig. 6c) is an instance of an affine
transform.

The geometric approach proved helpful in understanding
several important properties of how population responses are
modified by the introduction of a mask. First, it offered a rigorous
test (and rejection) of a linear combination model65. The result
can be understood as the mask having the effect of moving the
population activity out of its original subspace. Second, the
analyses revealed that the transformation cannot be a repar-
ameterization of the same curve, of which the 2D model is a
special case66 (Fig. 6c). The reason is that all reparameterizations
of the circle leave the length of the normalized curves invariant
(thus predicting Lm=Lu ¼ 1). In contrast, the mask was observed
to shrink the length of the normalized representation (Fig. 5a).
The shrinking of the normalized responses is not simply pre-
dicted by the known scaling of tuning curves in the normalization
model. Third, we showed that the shift in the white point of the
population is relatively large compared to the radius of the curve
(Fig. 5c). This explains how a decoder which is unaware of such
shift is bound to generate biased estimates. Finally, it clarified
how a simple transformation can introduce changes in dis-
criminability and bias in decoding (Fig. 6).

Our finding of a white-point shift appears to be at odds with
the idea that adaptation keeps the mean population response
invariant (population homeostasis)76. In our terminology,
population homeostasis would have predicted that μu ¼ μm,
meaning no white-point shift. We suspect one reason for this
discrepancy is rooted in the different stimuli used across studies.
In the referenced study, a sequence of gratings with randomly
chosen orientations was presented to the population. In one
condition, the orientations were uniformly distributed; in the
second condition, one orientation (the adapter) appeared more
frequently than the others. In both conditions, any one stimulus
consists of a single grating. It is possible that such design failed to
engage the plaid cells that clearly play an important role in
shifting the white point. Similarly, a previous report65 selected
cells to be analyzed only if their orientation tuning in response to
a grating showed good selectivity (circular variance less than
0.85). Perhaps, plaid cells that were either unresponsive or weakly
responsive to gratings failed to pass this criterion. The result
would be biased towards gratings cells and it is possible that a
linear combination model could be satisfactory when applied to
this subpopulation of neurons. The shift in the white-point,
however, is consistent with prior geometric models of psycho-
physical performance under adaptation or in the tilt illusion66,
and expected from the modulatory effect of masks on the tuning
curve of individual neurons66,77,78.

The affine class of transformations allows for a large variety of
relationships between discriminability and bias. Surprisingly, the
our data appear to conform with a recent theory79 predicting a
link between the threshold for discrimination and bias:
b θð Þ / T θð Þ2� �0

. The relationship is derived under certain
assumptions on efficient coding and decoding. As predicted, we
find the extrema of the bias function aligning with regions of fast
change in threshold, and the zero crossings of the bias aligning
with the extrema of the threshold (Fig. 6). Thus, our data suggest
that efficient encoding/decoding may be implemented by a simple
geometric transformation of the population responses in early
sensory areas.

Altogether the findings suggest that by analyzing the patterns
of activity across large population of neurons we might be able to
discover general principles of sensory representation, including
topological80 and geometrical transformations, that are unde-
tectable at the single cell level. These patterns can allow us to
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describe the transformations of representations in a simple way,
as we demonstrated for masking, and shed light into more
complex computations performed by cortical populations.

Methods
Animals. All procedures were approved by UCLA’s Office of Animal Research
Oversight (the Institutional Animal Care and Use Committee) and in accord with
guidelines set by the US National Institutes of Health. A total of 5 tetO-GCaMP6s
mice (Jackson Labs), both male (3) and female (2), aged P35–56, were used in this
study. Mice were housed in groups of 2–3, in reversed light cycle. Animals were
naïve subjects with no prior history of participation in research studies. We imaged
30 different fields, and obtained data for 3920 cells, for a median of 111 cells per
field (range: 50 to 275).

Surgery. Carprofen and buprenorphine analgesia were administered pre-
operatively. Mice were then anesthetized with isoflurane (4–5% induction; 1.5–2%
surgery). Core body temperature was maintained at 37.5 C using a feedback heating
system. Eyes were coated with a thin layer of ophthalmic ointment to prevent
desiccation. Anesthetized mice were mounted in a stereotaxic apparatus. Blunt ear
bars were placed in the external auditory meatus to immobilize the head. A portion
of the scalp overlying the two hemispheres of the cortex (approximately 8 mm by 6
mm) was removed to expose the underlying skull. After the skull was exposed it
was dried and covered by a thin layer of Vetbond. After the Vetbond dried
(approximately 15 min), it provided a stable and solid surface to affix the alumi-
num bracket with dental acrylic. The bracket was then affixed to the skull and the
margins sealed with Vetbond and dental acrylic to prevent infections.

Imaging and signal extraction. Imaging was performed using a resonant, two-
photon microscope (Neurolabware, Los Angeles, CA) controlled by Scanbox
acquisition software (Scanbox, Los Angeles, CA). The light source was a Coherent
Chameleon Ultra II laser (Coherent Inc, Santa Clara, CA) running at 920 nm. The
objective was an x16 water immersion lens (Nikon, 0.8NA, 3 mm working dis-
tance). The microscope frame rate was 15.6 fps (512 lines with a resonant mirror at
8 kHz). We monitored locomotion using a rotary, optical encoder (US Digital,
Vancouver, WA) connected to the rotation axel. The quadrature encoder was read
by an Arduino board. We performed motion stabilization of the images, followed
by signal extraction and deconvolution to estimate the spiking of neurons. The
details of these methods are described elsewhere56,60,81. We used the average delay
(387 ms) measured in reverse correlation experiments to correct for the stimulus-
response delay in the data81. All cells that could be segmented were included in the
analysis. We did not impose any criteria on inclusion—such as requiring neurons
to be tuned to orientation. Segmentation was based on the temporal correlation of
nearby pixels over time. This, of course, requires cells to be active to be segmented.

Visual stimulation. We measured the responses of neural populations in mouse
primary visual cortex using two-photon imaging in tetO-GCaMP6s mice (Jackson
Labs #024742). The visual stimulus consisted of two conditions. In the first,
unmasked condition, a sinusoidal grating (50% contrast and a spatial frequency in
the range 0.04–0.06cpd) was presented with an orientation that changed linearly
with time θ ¼ πt=T , and a period T=10 s. These parameters lead to 156 samples
per period of the orientation cycle, as two-photon imaging was acquired at 15.6 fps.
The spatial phase of the grating was updated every Tϕ ¼ 783 msec by
ϕ ϕþ π=2þ n, where n was a random variable distributed uniformly
n � U �π=8;þπ=8ð Þ. In other words, the grating underwent a “noisy contrast
reversal” as its orientation changed continuously with time. This ensured that
different spatial phases were present during different cycles of the stimulus. The
unmasked condition was displayed for 15 min for a total of 90 cycles around the
orientation domain. Immediately after, we added a vertical mask. The vertical mask
also underwent a noisy contrast reversal with a period of 717 ms. A TTL pulse was
generated by an Arduino board at the beginning of each stimulus cycle. The pulse
was sampled by the microscope and time-stamped with the frame and line number
being scanned at that time.

The screen was calibrated using a Photo-Research (Chatsworth, CA) PR-650
spectro-radiometer, and the result used to generate the appropriate gamma
corrections for the red, green and blue components via an nVidia Quadro K4000
graphics card. The contrast of the stimulus was 99%. The center of the monitor was
positioned with the center of the receptive field population for the eye contralateral
to the cortical hemisphere under consideration. The locations of the receptive fields
were estimated by an automated process where localized, flickering checkerboards
patches, appeared at randomized locations within the screen. This measurement
was performed at the beginning of each imaging session to ensure the centering of
receptive fields on the monitor.

Data analysis. We computed discriminability between two angles θ and φ as
follows. Consider the responses in the unmasked condition. Let riu θð Þ be the
response of the population in the ith cycle to a given orientation and let μu θð Þ be the
mean population response across all trials. We define diu θ;φð Þ ¼ dðμu θð Þ; riu φð ÞÞ.

We then compute the indices Fi
θ ¼ ðdiu θ; θð Þ � diu θ;φð ÞÞ=ðdiu θ; θð Þ þ diu θ;φð ÞÞ and

Fi
φ ¼ �ðdiu φ;φð Þ � diu φ; θð ÞÞ=ðdiu φ;φð Þ þ diu φ; θð ÞÞ. Finally, we compute

Du θ;φð Þas the difference in the means of these distributions normalized by the
average standard deviation. The same calculation was applied for the masked
condition.

Fitting the geometric model to experimental data. Note that the affine model in
d dimensions has a total of d(d + 1) parameters. Our data consists of s ¼ 155
equally spaced samples (10 s period at 15.5 fps) of the continuous curves ru θð Þ
and rm θð Þ. Each sample provides d constraints on the transform. Thus, we must
have d d þ 1ð Þ � ds or d þ 1ð Þ � s to ensure the problem is not under-
constrained. We handled this constraint by embedding the data in R5 which
faithfully represented the mutual distances in the dataset (Fig. 7a). We then fit
the affine transform in this space. When visualizing the data (Fig. 7b), we plot
2D projections 2D the high dimensional curves. Similar results are obtained if,
instead of multidimensional scaling, we use the first five principal components of
the singular-value decomposition in the dimension-reduction step of the
analysis.

Analytic computation of threshold and bias. In the simple geometric model of
Fig. 6c it is possible to compute the threshold and bias. Consider a two-
dimensional population code for orientation in the unmasked condition
ru θð Þ ¼ cos θ; sin θð Þ, which is transformed by a scaling and translation along the
x-axis under the presence of the mask rm θð Þ ¼ aþ b cos θ; b sin θð Þ. Then, the
velocity of rm θð Þ is

kr0m θð Þk ¼ b bþ a cos θð Þ
a2 þ b2 þ 2ab cos θð Þ

The threshold will be inversely proportional to the velocity Tm θð Þ / 1=kr0m θð Þk.
Given a population direction in the masked condition, which in the plane is
simply given by an angle φ, a decoder without knowledge of the white point shift
will estimate the orientation by measuring the angle θ formed between the
population vector with respect to μu (Fig. 6c), which a little geometry shows it is
given by θ ¼ arctan aþ b cosφð Þ= sinφð Þ. Thus, the bias is given by

bias φð Þ ¼ arctan aþ b cosφð Þ= sinφð Þ � φ½ �mod2π:

Bootstrap estimate of angular deviations. The population responses ru θð Þ and
rm θð Þ were obtained as the average over 89 cycles of the stimulus (we discarded the
first cycle to ensure the measurements were done in steady state). We want to test
the null hypothesis rm θð Þ 2 span ru θð Þ; ru π=2ð Þf g. To do this, we selected a random
vector in the span and measured its angular distance from span �ru θð Þ;�ru π=2ð Þf g,
where �ru θð Þ represents the mean responses in a dataset obtained by randomly
sampling trials (cycles) with replacement. This was done 50 times for each
orientation. The distributions of angular distances were pooled over all orienta-
tions. We find that, under the null hypothesis, the probability of angular distances
being larger than 30° is less than p ¼ 1:2 ´ 10�4. All the values of the curve in
Fig. 5c are above this level and, therefore, are significantly different than zero,
thereby rejecting the null hypothesis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw data containing spiking activity for each population in unmasked and masked
conditions is available along with sample Matlab code the a Figshare repository: https://
figshare.com/articles/The_Geometry_of_Masking/9922478
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