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Quantifying the polygenic contribution to variable
expressivity in eleven rare genetic disorders
M.T. Oetjens1*, M.A. Kelly1, A.C. Sturm1, C.L. Martin1 & D.H. Ledbetter 1*

Rare genetic disorders (RGDs) often exhibit significant clinical variability among affected

individuals, a disease characteristic termed variable expressivity. Recently, the aggregate

effect of common variation, quantified as polygenic scores (PGSs), has emerged as an

effective tool for predictions of disease risk and trait variation in the general population. Here,

we measure the effect of PGSs on 11 RGDs including four sex-chromosome aneuploidies (47,

XXX; 47,XXY; 47,XYY; 45,X) that affect height; two copy-number variant (CNV) disorders

(16p11.2 deletions and duplications) and a Mendelian disease (melanocortin 4 receptor

deficiency (MC4R)) that affect BMI; and two Mendelian diseases affecting cholesterol:

familial hypercholesterolemia (FH; LDLR and APOB) and familial hypobetalipoproteinemia

(FHBL; PCSK9 and APOB). Our results demonstrate that common, polygenic factors of

relevant complex traits frequently contribute to variable expressivity of RGDs and that PGSs

may be a useful metric for predicting clinical severity in affected individuals and for risk

stratification.
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Most rare genetic disorders (RGDs) exhibit some degree
of variability in phenotypic presentation among affected
individuals1–4. Phenotypes of individuals with the same

rare, pathogenic variant can range from mild features that may
never cause clinical concern, to those with severe clinical mani-
festations that impact quality of life and reduce life expectancy.
Often, the modifiers of pathogenic variants are assumed to be
other genetic and/or unspecified environmental factors; however,
they are rarely identified. Many of the primary symptoms of
RGDs are actually extremes of normally-distributed phenotypes
in the general population. In traits with both monogenic and
polygenic inheritance, there is emerging evidence that the com-
mon alleles that explain variance of the trait in the general
population may also contribute to variable expressivity in some
RGDs5.

Previous studies of RGDs have examined the contribution of
familial background on variable expressivity. Turner syndrome
(45,X) is an RGD with short stature as a phenotypic hallmark
caused by loss of the pseudoautosomal short-stature homeobox-
containing gene (SHOX), which is essential for normal skeletal
maturation and growth plate fusion development6. Even though
height is severely affected in 45,X, parental height still correlates
with affected probands at similar coefficients as their unaffected
siblings7. The importance of familial background on variable
expressivity has also been demonstrated in males with increased
height caused by the presence of an extra X-chromosome (47,
XXY)7. Since height is primarily determined by genetic con-
tributions from common variants, this observation suggests that
at least a component of the heritability can remain intact even
when one copy of a haploinsufficient or triplosensitive locus in
the core biological pathway is lost or gained, respectively8. Fur-
thermore, our previous study of individuals with a 16p11.2 de
novo deletion, which increases the risk for cognitive, motor, and
behavior deficits, demonstrated that parental phenotypes (bipar-
ental mean) are predictive of the proband’s phenotype across
these dimensions9. We also observed the expected large effect of a
de novo 16p11.2 deletion on body-mass index (BMI)10 and
showed a trend between proband BMI and the biparental mean9.

Polygenic scores (PGSs) measure the cumulative effect of
common alleles identified in genome-wide association studies
(GWAS) and allow for a direct assessment of an individual’s
genetic predisposition for phenotypic expression or risk of
disease11,12. For coronary artery disease (CAD) and breast cancer,
PGSs have been reported to provide a substantial level of risk
stratification in the general population and have generated a
considerable amount of debate about their potential use as a
clinical risk prediction tool13,14. This debate stems in part from
reports of an equivalence in disease risk between an individual
having an extreme PGS or a rare pathogenic variant. However,
few studies have systematically evaluated extreme PGSs and rare
pathogenic variants in the same study population for a compar-
ison of their relative phenotypic impacts. If equivalent, these data
could provide further justification for the clinical utility of PGSs
in circumstances where rare variant testing is already incorpo-
rated into clinical care.

Recently, to explore variable expressivity, several studies have
examined whether PGSs can explain trait variance and disease
prevalence in individuals who are already at substantially elevated
risk due to an RGD. For example, a study of clinically ascertained
patients with autosomal dominant familial hypercholesterolemia
(FH) caused by pathogenic variants in the low-density lipoprotein
receptor gene (LDLR) revealed that a LDL-C PGS (PGSLDL-C)
constructed of common, genome-wide significant markers mod-
ified the low-density lipoprotein cholesterol (LDL-C)
phenotype15,16. Considering the critical role LDLR plays in the
regulation of plasma LDL-C, this finding confirms that common

variation can contribute to variable expressivity of severe RGDs.
Similar results have been demonstrated in schizophrenia, familial
breast cancer, neurodevelopmental disorders, and Alzheimer’s
disease17–20. Despite these promising examples, for most RGDs
there are limited data on the applicability of PGSs for predictions
of clinical severity, despite a pressing need.

Here, we use a genotype-first approach and leverage the
MyCode™ Community Health Initiative cohort (n= 92,455), a
health system-based population, to identify and measure the
effect size of pathogenic rare variants underlying 11 RGDs
identified through the Geisinger-Regeneron DiscovEHR Colla-
boration, which generates exome sequence data from the MyCode
cohort21. Although RGDs are formally defined as affecting fewer
than 1 in 2000 individuals in the US22, exceptions have been
made for some highly penetrant variants (e.g. Trisomy 21, 1 in
600 individuals23); therefore, for this study we include some
pathogenic rare variants with a frequency greater than 1 per 2000
individuals in our definition of RGDs. We select 11 RGDs that
affect three highly heritable and routinely measured quantitative
traits: height (sex-chromosome aneuploidies including 45,X; 47,
XXX; 47,XXY; and 47,XYY), BMI (MC4R and 16p11.2 deletions
and duplications)10,24. These traits are clinically relevant in well-
characterized and relatively prevalent RGDs and understanding
their variable expressivity may impact clinical decision making.
The focus of the present study is to explain variable expressivity
within a single genetic etiology. To that end, we limit our analysis
to RGDs prevalent enough in the MyCode cohort that we have at
least 50% power to detect a nominal association in a linear model.
We develop three PGSs from the summary statistics of external
GWAS data (PGSLDL-C, PGSHEIGHT, and PGSBMI) and optimize
them using our validation cohort of 10,000 variant-negative
patients from our health system-based population25,26. With
optimized PGSs, we compare the effect size of an extreme PGS to
RGD-causing variants to provide insight into their relative clinical
utility. Lastly, using a working definition of variable expressivity
as trait-variance among individuals with functionally equivalent
RGD-causing variants, we quantify the polygenic contribution
with linear models using PGS as predictors across the 11 RGDs.

Results
Effect sizes of RGD-causing variants. We identified 609 unre-
lated individuals in DiscovEHR with rare pathogenic variants
underlying one of the 11 RGDs and meeting our sample inclusion
criteria. In the testing cohort (average age at last visit= 60.42
years; 57.7% female), the mean (SD) of the three quantitative
phenotypes were LDL-C: 137.67 mg dl^-1 (41.63); female height
161.94 cm (6.66); male height: 176.69 cm (7.20); and BMI 31.94
kg m^−2 (7.72). The phenotypes of patients with RGD-causing
variants were significantly different than variant-negative patients
(n= 31,430; Supplementary Fig. 1), in accordance with the
known clinical presentation of the RGDs (Table 1).

First, we tested for associations between sex-adjusted height
and four sex-chromosome aneuploidies. Our study included 42
females with 47,XXX; 44 males with 47,XXY; 24 males with 47,
XYY; and 19 females with 45,X or 45,X/46,XX sex-chromosome
complements. Individuals with an extra X-chromosome, 47,XXX
and 47,XXY, were 0.93 SD (95% Confidence Interval [CI]: 0.64,
1.23) and 0.56 SD (95% CI: 0.26, 0.85) taller than euploid
individuals, respectively. The 47,XYY complement had the largest
increase in height among sex-chromosome aneuploidies as these
patients were 1.32 SD (95% CI: 0.92,1.72) taller than euploid
individuals. Of the 19 patients with 45,X or 45,X/46,XX, the
median logR Ratio (mLRR) and B-allele frequency (BAF) profiles
of six patients were consistent with complete to nearly complete
loss of the X-chromosome, as defined by > 80% of cells having 45,
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X (Supplementary Fig. 2 and Supplementary Fig. 3). The
remaining 13 patients were mosaic and the proportion of 45,X
in these individuals fell between 60 and 80% of the cells.
Individuals with 45,X and 45,X/46,XX were shorter than euploid
individuals by −2.54 and −1.63 SD, respectively. For sample size
considerations, 45,X and 45,X/46,XX were analyzed together and
as a group were −1.91 SD (95% CI: −2.37, −1.47) shorter than
euploid individuals. For simplicity, the combined 45,X and 45,X/
46,XX sample is referred to as 45,X in the figures and the
remainder of the text unless otherwise noted.

Next, we identified 58 individuals with rare pathogenic MC4R
variants, 44 16p11.2 deletions, and 50 16p11.2 duplications that
cause familial or de novo forms of obesity or leanness. The
presence of a rare pathogenicMC4R variant was associated with a
0.64 (95% CI: 0.39, 0.90) SD increase in BMI. We also observed
the widely reported dosage effect of the 16p11.2 copy number
variation (CNV) on BMI, where the deletion and duplication
predispose affected individuals to obesity and leanness,
respectively10,27. In DiscovEHR, the BMIs of patients with
16p11.2 deletions were 1.34 SD (95% CI: 1.05, 1.64) higher and
16p11.2 duplications were −0.52 SD (95% CI: −0.80, −0.25)
lower than variant-negative individuals from the general
population.

Lastly, we identified 146 individuals with a pathogenic LDLR
variant and 87 individuals with a pathogenic APOB variant.
Consistent with the severe phenotype of FH, the maximum
documented LDL-C in individuals with pathogenic LDLR or
APOB variants was 2.49 SD (95% CI: 2.33, 2.65) and 1.42 SD
(95% CI: 1.21, 1.62) higher than variant-negative individuals from
the general population, respectively. We also identified 95
patients with FHBL-causing variants, pLOFs in PCSK9 or APOB,
which were associated with a decrease of LDL-C by −0.72 SD
(95% CI: −1.01, −0.43) and −1.59 SD (95% CI: −1.86, −1.33),
respectively.

Variance explained by PGSs in DiscovEHR. To optimize PGSs
for the testing cohort, we identified the ρ tuning parameters that
maximized the variance explained by LDPred in the validation
cohort for each quantitative trait (Supplementary Table 1). The
performance of the optimized PGSs were consistent across vali-
dation and testing cohorts and were strong predictors of the
respective quantitative traits (Table 2). In the testing cohort, the
variance explained by PGSHEIGHT (21.71%) and PGSBMI (10.78%)
were similar to those reported in the combined GWAS meta-
analysis publication that produced the summary statistics (Sup-
plementary Notes 1 and 2)26. The variance explained by our
PGSLDL-C in the testing cohort was 7.99%.

We binned individuals into 100 groups based on percentiles of
the PGSHEIGHT to examine phenotypes at the median and tails of
the distribution (Fig. 1a). The average height of 46,XY males and
46,XX females in the 50th percentile bin was 177.45 cm and
162.04 cm, respectively, which is consistent with the U.S. national
average reported by the Center for Disease Control28. The
difference in the mean height between the 1st (bottom 1%) and
100th (top 1%) percentile bins of the PGSHEIGHT distribution was
2.40 SD (~17 cm). We next compared the heights of euploid
individuals with varying percentile bins of PGSHEIGHT to sex-
chromosome aneuploidies and observed that 45,X patients were
−0.81 SD (95% CI: −1.24, −0.37; p= 3.46 × 10−4) shorter than
the 1st percentile bin (Supplementary Table 2). On the other
hand, height increases caused by an additional X- or
Y-chromosome were approximately equal to the effect of a
PGSHEIGHT in the 100th (47,XYY), 99th (47,XXX), and 88th (47,
XXY) percentile bins in karyotypically normal individuals
(Fig. 1a).

When we applied this same approach to BMI and LDL-C
(Fig. 1b, c), we again observed that the effect size of some RGD-
causing variants were larger than an extreme PGS. Relative to
variant-negative individuals in the 100th percentile bin of PGSBMI,
the effect of the 16p11.2 deletion on BMI was greater by 0.38 SD
(95% CI: −0.02, 0.77; p= 0.06), however, this difference was non-
significant. The difference is even more pronounced in our
observation of FH-causing variants. The presence of a pathogenic
LDLR variant was associated with a 1.84 SD (95% CI: 1.53, 2.14; p
= 1.60 × 10−28) and a pathogenic APOB variant was associated
with a 0.76 SD (95% CI: 0.48, 1.04; p= 1.59 × 10−7) higher LDL-
C than variant-negative individuals in the 100th percentile bin of
PGSLDL-C. On the other hand, the effect of an extreme PGS was
equivalent to rare pathogenic variants for some traits examined in
our study including MC4R variants (PGSBMI 99th percentile bin),
16p11.2 duplications (PGSBMI 6th percentile bin), and PCSK9
pLOFs (PGSLDL-C 2nd percentile bin).

Polygenic contribution to variable expressivity. We quantified
the contribution of PGSs to variable expressivity in patients with
RGD-causing variants. As shown in Table 2, in all 11 RGDs
across the three experiments, the direction of the PGS effect (β)
was positive and consistent with that of our healthcare-based
population (two-tailed binomial signs test: p= 9.77 × 10−4)
(Table 1; Supplementary Fig. 4).

The PGS was significant after correction for multiple testing in
five RGDs and three only met a nominal significance threshold
(puncorrected < 0.05). All six RGDs that did not meet Bonferroni
correction were underpowered (<80%) for even nominal

Table 1 Effect sizes of rare pathogenic variants underlying rare genetic disorders

Trait RGD Beta (95% CI) P-Value Sample Size

Height 47,XXX 0.93 (0.64, 1.23) 1.46 × 10−9 42
47,XXY 0.56 (0.26, 0.85) 2.22 × 10−4 44
47,XYY 1.32 (0.92, 1.72) 8.67 × 10−11 24
45,X −1.91 (−2.37, −1.47) 6.52 × 10−17 19

BMI MC4R Deficiency 0.64 (0.39, 0.90) 9.03 × 10−7 58
16p11.2 Deletion 1.34 (1.05, 1.64) 4.80 × 10−19 44
16p11.2 Duplication −0.52 (−0.80, −0.25) 2.09 × 10−4 50

LDL-C LDLR FH 2.49 (2.33, 2.65) 1.15 × 10−208 146
APOB FH 1.42 (1.21, 1.62) 7.39 × 10−42 87
PCSK9 FHBL −0.72 (−1.01, −0.43) 1.55 × 10−6 42
APOB FHBL −1.59 (−1.86, −1.33) 8.49 × 10−33 53

RGD Rare Genetic Disorder
CI Confidence Interval
FH Familial Hypercholesterolemia
FHBL Familial Hypobetalipoproteinemia
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significance (Table 2). In our analysis, the effect size of the
primary variant was not a predictor of the preservation between
the PGS and the affected traits. Even in individuals with a rare
and pathogenic LDLR variant which caused on average an
increase in LDL-C of ~2.5 SD, we found evidence that the PGS

still correlates with variable expressivity (pcorrected= 0.03, r= 0.2).
On the other hand, the models of the PGS in patients with
pathogenic APOB variants were not significant even at a nominal
threshold. However, for this RGD we were slightly underpowered
to detect an association (Table 2). A non-parametric analysis of

Table 2 Effect size of polygenic scores in patients with rare genetic disorders

Trait SNPs in PGS RGD Beta* (95% CI) P-Value P-Value (Corrected) R2 Power

Height 1,176,426 Euploid 0.46 (0.45, 0.47) <1 × 10−300 − 0.22 −
47,XXX 0.52 (0.22, 0.82) 1.33 × 10−3 5.32 × 10−3 0.21 0.89
47,XXY 0.47 (0.16, 0.77) 3.87 × 10−3 1.55 × 10−2 0.15 0.9
47,XYY 0.28 (−0.21, 0.77) 2.56 × 10−1 1 0.02 0.65
45,X 0.96 (0.20, 1.70) 1.57 × 10−2 6.28 × 10−2 0.26 0.54

BMI 1,177,440 Variant-Negative 0.33 (0.32, 0.34) <1 × 10−300 − 0.11 −
MC4R Deficiency 0.54 (0.23, 0.85) 9.28 × 10−4 2.78 × 10−3 0.17 0.73
16p11.2 Deletion 0.37 (−0.10, 0.83) 1.12 × 10−1 3.66 × 10−1 0.03 0.6
16p11.2 Duplication 0.31 (0.11, 0.52) 3.71 × 10−3 1.11 × 10−2 0.15 0.66

LDL-C 1,189,443 Variant-Negative 0.28 (0.27, 0.29) <1 × 10−300 − 0.08 −
LDLR FH 0.55 (0.17, 0.93) 7.69 × 10−3 3.08 × 10−2 0.04 0.94
APOB FH 0.16 (−0.12, 0.45) 2.59 × 10−1 1 0 0.76
PCSK9 FHBL 0.38 (−0.07, 0.69) 1.85 × 10−2 7.40 × 10−2 0.28 0.54
APOB FHBL 0.30 (0.06, 0.53) 1.39 × 10−2 5.56 × 10−2 0.12 0.45

RGD Rare Genetic Disorder
CI Confidence Interval
PGS Polygenic Score
FH Familial Hypercholesterolemia
FHBL Familial Hypobetalipoproteinemia
*Per 1 SD increase of the PGS
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Fig. 1 Comparison of PGS and RGDs across three quantitative traits. Mean height (a), BMI (b), and LDL-C (c) in variant negative individuals by percentile of
the polygenic score. Points are colored from light to dark blue with an increasing PGS. Mean phenotypes of the 1st, 50th, and 100th percentile bins are
indicated in non-standardized units. For comparison, the mean phenotype of RGD-causing variants are indicated as red (positive effect) and blue (negative
effect) dashed lines
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variable expressivity is presented in the supplement (Supplemen-
tary Table 3). Given the widespread effect of the PGS in
individuals with RGDs, we recalculated effect sizes of RGD-
causing variants adjusted for the respective PGS. Overall, we
found that the confidence intervals generally tightened around
the estimate and the resulting p-values were lower than the model
without PGS adjustment (Supplementary Table 4).

As a descriptive measure for stratification of RGDs by clinical
severity, we compared mean trait values across tertiles of PGSs
(Fig. 2, Supplementary Table 5). Patients in the lowest tertile of
PGSHEIGHT with an additional X-chromosome, 47,XXX and 47,
XXY, were moderately taller (0.39 SD) or nearly the same height
(0.11 SD) as euploid individuals from the general population on
average (Fig. 2a), respectively. However, the relationship between
variable expressivity and PGS is perhaps best exemplified in our
observation that a low PGSBMI can effectively balance the effect of
a pathogenic MC4R variant. The mean BMI of the 1st tertile in
affected individuals is approximately equal to that of the general
population (−0.02 SD) (Fig. 2b). When we examined variable
expressivity of FH, we observed a 1.05 SD (45.46 mg dl^−1)
difference between the first and third tertile of the PGSLDL-C in
patients with pathogenic LDLR variants (Fig. 2c).

Discussion
In this study, we used a genotype-first approach to identify
patients with 11 RGDs to demonstrate their effect size in a U.S.
health system-based population. The effect sizes of 45,X on
height, 16p11.2 deletions on BMI, and FH-causing LDLR variants
on LDL-C were the largest for each of the three traits studied,
with 45,X and LDLR variants meeting statistical significance for a

more severe effect than an extreme PGS (1st or 100th percentile
bins). On the other hand, we did observe in some cases an
equivalence between RGD-causing variants and variant-negative
individuals with an extreme PGS. Mean trait values for patients
with pathogenic MC4R variants, PCSK9 FHBL variants, and an
additional X-chromosome (47,XXX and 47,XXY) were all
equivalent to a high or extreme PGS.

Our within-gene analyses of the most penetrant causes of
autosomal dominant FH (LDLR and APOB) revealed a sig-
nificantly larger effect size of pathogenic variants than any per-
centile bin of the PGSLDL-C. Patients with pathogenic LDLR
variants had an LDL-C~2 SD (~75 mg dl^-1) higher than variant-
negative individuals in the 100th percentile bin of the PGSLDL-C.
This stands in contrast to an analysis by the NHLBI TOPMed
Lipids Working Group, who reported a ~30 mg dl^-1 effect size
for both a pathogenic variant in a Mendelian hypercholester-
olemia gene (LDLR, APOB, PCSK9, ABCG5, ABCG8, and
LDLRAP1) and an extreme PGSLDL-C ( > 95th percentile) in
European Americans29. While we agree that an extreme PGSLDL-
C in variant-negative individuals can approach some clinically-
relevant hypercholesterolemia variants, we did not find evidence
that an extreme PGSLDL-C is equivalent to rare pathogenic var-
iants in two canonical FH genes, which have specialized guide-
lines for screening and clinical management30. Across the two
studies, the difference in the effect size of a rare pathogenic
variant and PGSLDL-C may be the result of our narrow list of
canonical FH genes considered or stricter criteria we applied to
pathogenic/likely pathogenic (P/LP) missense variants (at least
two-stars in ClinVar). Importantly, we found that including
variants with assertions of pathogenicity, but lacking assertion
criteria or evidence of a consensus interpretation across clinical
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Fig. 2 Individuals with rare genetic disorders stratified by PGS. Mean standardized height (a), BMI (b), and LDL-C (c) per tertile of the polygenic score
within individuals with an RGD. Error bars indicate the standard error of the mean. Coloring of the bars and points yellow, orange, and red indicates a low,
medium, and high polygenic score, respectively. FH Familial Hypercholesterolemia, FHLB Familial Hypobetalipoproteinemia
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laboratories in ClinVar (zero- and one-star variants), can reduce
the overall effect size of the presence of a pathogenic variant in a
Mendelian disease gene (Supplementary Figure 5).

In another study examining the risk for developing coronary
artery disease (CAD), the PGSCAD was proposed to identify
individuals with a risk equivalent to a FH-causing variant13. The
authors report that the odds ratio of a high PGSCAD (top 8%) in
the UK Biobank and FH-variants in DiscovEHR were both
approximately equal to a three-fold increase in risk with respect
to the general population31. The DiscovEHR FH-variant effect
size referenced in that comparison is based on an inclusive
definition of FH variants that lumps known and predicted
pathogenic variants in three canonical FH genes (LDLR, APOB,
and PCSK9) for the risk of CAD across the lifespan. However, in
the same study the presence of a pathogenic variant in LDLR was
associated with a 7-fold increase of risk for premature CAD
(defined as males ≤ 55 years and females ≤ 65 years) and when
further limiting the analysis to LDLR loss-of-function variants, a
10-fold increase was observed31. This observation underscores the
importance of variant classification and disease onset of Men-
delian disorders, which should be taken into consideration if
effect sizes of rare pathogenic variants are to be used as a
benchmark for demonstrating the clinical utility of PGSs.

There are challenges in comparing the effect size of PGSs and
rare pathogenic variants across cohorts when the affected phe-
notype is modifiable. High LDL-C levels are a risk factor for CAD
and often treated with statins (57.17% have electronic healthcare
record (EHR) documentation of statin usage in testing cohort),
which may attenuate the effect size of the PGSLDL-C and rare
pathogenic variants, resulting in differences between treated and
untreated populations. In our analysis, the 100th percentile bin of
the PGSLDL-C was associated with a 3.03 (95% CI: 2.30, 4.14; p=
9.01 × 10−14) times higher odds of having a documented statin
prescription (cases= 13,597; controls= 18,147) relative to the
remainder of the testing cohort, demonstrating a significant risk
for hypercholesterolemia. Despite an increase in treatment for
hypercholesterolemia, individuals in the 100th percentile bin of
the PGSLDL-C had a 1.53 (95% CI: 1.13, 2.05; p= 5.03 × 10−3)
higher odds of EHR-documented CAD (cases= 5539; controls=
16,803). This suggests that while individuals with a polygenic
susceptibility to hypercholesterolemia are more likely to be
treated with statins at some point, there is still a residual increase
in CAD risk. This may be the result of non-compliance, under-
dosing, underprescribing or limitations to statin efficacy. Here, we
approximated the uncontrolled state by using maximum EHR-
documented LDL-C as a phenotype, consistent with a previous
study of FH in DiscovEHR31. However, further study into the
predictive accuracy of PGSs in the context of ongoing medical-
treatment is warranted32.

Most importantly, our study demonstrated that variable
expressivity can have a polygenic component for RGDs affecting
three distinct quantitative traits. This finding corroborates over 50
years of research on the relationship between RGDs and familial
background1,7,9,33,34. These past studies demonstrated that
inclusion of the biparental mean with the RGD provides a more
accurate prediction of clinical severity in the proband than the
primary variant alone. Here, we were able to effectively substitute
PGSs for the biparental mean and confirm that transmitted alleles
outside the primary locus significantly contribute to this phe-
nomenon. Notably, we observed correlations between PGSs and
phenotypic severity of several RGDs previously reported to
exhibit variable expressivity, including obesity caused by mela-
nocortin 4 receptor deficiency (MC4R pathogenic variants), tall
stature in 47,XXX and 47,XXY, and hypercholesterolemia caused
by pathogenic LDLR variants2,35–37. For most of the RGDs in the
present study (sex-chromosome aneuploidies, melanocortin 4

receptor deficiency, 16p11.2 CNVs, and FHBL), we provide novel
examples of using a PGS to explain variable expressivity. We
demonstrate that PGSs can account for the differences between
asymptomatic and severely affected individuals with the same
RGD-causing variant. For example, we observed that the average
BMI of patients with pathogenic MC4R variants and a favorable
PGS (1st tertile of the PGSBMI) were approximately equal to the
population mean −0.02 SD (Fig. 2b), while those with an unfa-
vorable PGS (3rd tertile of the PGSBMI) had an average BMI 1 SD
above the mean.

MyCode is one of few cohorts with large-scale array-based
genotype and exome-sequence data in a healthcare-based popu-
lation. This resource provided data to simultaneously measure the
effect sizes of PGSs and RGD-causing variants in the same study
population rather than relying on published estimates. With
92,455 patients and utilizing a genotype-first approach, we were
able to identify 609 unrelated individuals with RGDs. A genotype-
based definition of RGDs from the general population is critical
for studies of variable expressivity since clinical ascertainment (i.e.,
recruitment limited to specialty clinics) of probands typically
narrows the study population to the most severely affected.
Analyses without an accurate representation of genotypic and
phenotypic diversity in their study population can therefore
underestimate the role of genetic background on variable
expressivity. As a case in point, the difference we observe between
the first and third tertiles of the PGSLDL-C (47.62 mg dl^-1, Fig. 2c)
in individuals affected with pathogenic LDLR variants was three
times greater than the value reported from an analysis performed
on FH subjects attending a lipid clinic (15.5 mg dl^-1)15.

The analyses presented here have limitations that should be
addressed in future PGS-based studies of variable expressivity.
First, to acquire enough samples to achieve adequate power, we
combined different classes of variants (i.e., missense, pLOF, CNV,
etc.). In a post-hoc analysis, we re-tested the association between
the PGSLDL-C only including a subset of individuals with a
putative loss-of-function (pLOF) variant in LDLR (n= 56). As
expected, LDLR pLOFs have a larger effect size, 3.22 SD (95% CI:
2.96, 3.48) SD, than when including P/LP missense variants, 2.54
SD (95% CI: 2.38, 2.70). Even in this small sample, the PGS
predicted an increase in LDL-C of 0.66 SD (95% CI: 0.03, 1.29; p
= 0.04) per unit increase. This result suggests that analyses lim-
ited to a single variant class will likely reproduce similar findings
described here, although further study is warranted. Second, since
patients in DiscovEHR are primarily of European descent (95.9%
based on genetic ancestry) we limited our analysis to patients of
this genetic ancestry38. The majority of individuals in GWAS are
of European ancestry, and accuracy of the PGS weakens with
increased genetic distance from the discovery GWAS study
population, thus reducing the utility in individuals of non-
European descent39. Therefore, larger GWAS of under-
represented populations are critical to further generalize the
potential clinical significance of the PGS in patients with RGDs.
Third, further study into the relationship between rare pathogenic
variants and common variation may reveal deviations from
additivity. In an exploratory analysis, we tested for interactions
between the PGS and the presence of an RGD causing variant
(Supplementary Table 6). However, the results for these tests were
non-significant and likely require even larger cohorts of indivi-
duals with RGDs to achieve the needed statistical power.

As discussions about incorporating PGSs into clinical care and
risk prediction gain momentum, our study shows that special
attention should be given to their clinical utility in patients
affected with RGDs. In clinical practice, RGD-causing variants are
reported to the patient based on variant interpretation standards
and the known or suspected pathogenicity of the reportable
variant(s). In this study, we have shown that addition of a PGS
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could improve risk stratification, predict clinical severity, and
help guide preventive care recommendations for individuals with
pathogenic MC4R and LDLR variants. This may be especially
important for the counseling of children and their parents, who,
among the conditions explored here, may be advised to begin
obesity prevention strategies, consider growth hormone treatment
for height, or take lipid-lowering medications. Here, we were able
to demonstrate that common, polygenic factors contribute sig-
nificantly to variable expressivity, however, further research is
necessary to specifically identify which PGSs and in what contexts
meet an appropriate standard for use in clinical care14.

In order to implement PGSs as part of the management of
patients with RGDs, evidence-based guidelines, in conjunction
with decision support tools in the electronic health record, could
assist clinicians providing care for these patients11,39. Specialized
communication strategies, both verbal and visual, can be devel-
oped to explain the relevance of the PGS in the context of a rare
variant of larger effect size40. For example, the incorporation of
the PGS into the return of pathogenic LDLR variants may help
bridge the reported disconnect in understanding the difference
between a diagnosis of high cholesterol and FH40. In the special
case of reporting pathogenic variants to individuals without the
phenotype of hypercholesterolemia, refining risk assessments
with a PGS can provide a more precise explanation for their
current disease status and a more accurate appraisal of future
risk41. In addition, while the biparental mean has provided
information regarding clinical expression in some patients with
RGDs, the promise of PGSs to provide more accurate risk pre-
diction information warrants future studies into clinical transla-
tion so that precision genomic counseling can be provided to
patients and their families. This information has the potential to
motivate patients with an unfavorable PGSs in addition to a
pathogenic variant to adhere to medications, especially if their
affected relatives may have milder phenotypes due to PGS at
lower tails of risk. In conclusion, these results generalize a
potential use for PGSs in medically vulnerable individuals across
RGDs where appropriate early interventions can dramatically
change the course of disease.

There are potential biases and patient characteristics related to
the use of the MyCode cohort that should be considered in the
interpretation of our results. First, patient-participants in
MyCode were recruited from the Geisinger healthcare system.
MyCode undersamples adults younger than age 30 years and
oversamples patients in the age range of 60–8921. Consequently,
the oversampling of older individuals may bias us toward the
mild end of the clinical spectrum for some RGDs that cause a
significant increase in mortality, notably 45,X and FH. Never-
theless, eligibility to participate does not depend on any particular
diagnosis or insurance policy and outside these limitations the
MyCode participants provide a reasonably good sampling of the
Geisinger adult patient population. Secondly, our selection of
RGDs for this study was limited by the sample size of individuals
currently sequenced through DiscovEHR (n= 92,455), and
therefore we could only study RGDs with a high enough pre-
valence to perform within-disorder analyses. Similarly, trait
selection was limited to those traits captured in the EHR as part
of routine healthcare. However, several RGDs in this study have
broad phenotypic effects on traits that would only be measured in
a minority of individuals in specialty clinics, such as the motor
and behavioral deficits caused by the 16p11.2 deletion. Future
studies of the polygenic contribution to these traits could be
tested through genotype-based ascertainment or in epidemiolo-
gical cohorts where these are routinely measured through in-
person assessments or questionnaires. Our study was under-
powered to detect an association for several RGDs and we
acknowledge where we failed to reject the null hypothesis of no

association and cannot definitively conclude that variable
expressivity in these cases does not have a polygenic basis. Sta-
tistical power will likely be an ongoing problem for studies of
specific RGDs, even with access to large-scale cohorts linked to
genotypic data. For example, in the UK Biobank, only 30 indi-
viduals were identified with 45,X out of 244,848 females, likely
caused by an undersampling due to an ascertainment bias
towards healthy individuals42. Lastly, we did not provide a
replication analysis of our results in an independent sample. Even
with ascertainment bias, the UK Biobank is an attractive cohort
for future studies of many RGDs. Exome-sequencing of the
500,000 participants is currently underway, which in combination
with the already generated array data, can be utilized in an
analogous way to the genotype-first approach of variable
expressivity described here43.

The mechanism behind the polygenic contribution to variable
expressivity of RGDs is an intriguing topic that warrants further
study. At the moment, the mechanism behind PGS in the general
population remains elusive, although hypotheses, such as the
omnigenic model have been proposed44. Interaction studies
between RGD-causing variants and polygenic scores may
potentially reveal insights into this area of research. Here, our
data, and other published data, across RGD/trait pairs is
most consistent with a model of the PGSs and monogenic var-
iants being additive and independent. However, larger sample
sizes of these and other RGDs may reveal significant interaction
effects.

Methods
Setting and study participants. All patient-participants provided written or
electronic informed consent for participation in the MyCode™ Community Health
Initiative under a protocol approved by the Geisinger Institutional Review Board.
This protocol allows use of participant’s EHR and other clinical data and the ability
to generate genomics data linked to this clinical data. The MyCode cohort is a U.S.
healthcare-based population based in central and northeastern Pennsylvania and
has been described in detail previously21. DiscovEHR is a collaboration between
Geisinger and the Regeneron Genetics Center to generate whole-exome sequence
(WES) and single-nucleotide polymorphism (SNP) genotype data paired with
participants clinical data for discovery research45.

Sample inclusion. Genomic analyses for this study were limited to unrelated
individuals of European descent with EHR-documentation of the phenotypes
studied (Supplementary Fig. 1). We removed one sample from each pair of first-
and second-degree relationships (PI_HAT > 0.1875) identified by genome-wide
identity by descent calculations using Plink v1.946. Additionally, one sample from
each third-degree degree related pair (PI_HAT > 0.09875) was removed if the
relationship was identified in a first-degree family network reconstructed by PRI-
MUS47. We limited our analysis to non-Latino white patients of European descent
confirmed by genetic ancestry and EHR-documentation of ethnicity and race.
Genetic relatedness and ancestry of DiscovEHR and the methodology for assess-
ment has been reported in detail elsewhere38. Four samples were excluded from
this analysis based on phenotype: two samples 10 cm tall indicating a data entry
error and two samples below 121 cm tall after a review of EHR data revealed the
ICD-9 code for phantom limb syndrome (353.6), which may indicate height
measurements were complicated by amputation of lower limbs.

Exome sequencing and variant calling. Sample preparation and whole exome
sequencing were performed at RGC38,45. Exome capture was performed using
either NimbleGen SeqCap EZ VCRome (n= 61,062) or xGen Integrated DNA
Technologies (n= 31,393) kits according to the manufacturer’s recommended
protocol. The captured DNA was PCR amplified and quantified by qRT-PCR
(Kapa Biosystems). Multiplexed samples were sequenced using 75 basepair (bp)
paired-end sequencing on an Illumina v4 HiSeq 2500 to a coverage depth sufficient
to provide greater than 20× haploid read depth of over 85% of targeted bases in
96% of samples (~80× mean haploid read depth of targeted bases). Raw sequence
data from each Illumina Hiseq 2500 run were uploaded to the DNAnexus platform
for sequence read alignment and variant identification. Reads were aligned to the
GRCh38 reference genome using BWA-mem48. Variants were called separately by
VCRome and xGen exome capture in groups of 200, including a pseudo-sample
with all single nucleotide variants (SNVs) and indels identified across all samples.
Resulting variants were filtered on QC metrics: indels were excluded if quality by
depth (QD) < 5.0 and depth (DP) < 10; SNVs were excluded if QD < 3 and DP < 7;
and all variants with an allelic balance below 0.15 were excluded. The final VCF
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was annotated with dbNSFP (version 3.3a), Variant Effect Predictor (VEP) (version
93)49, and ClinVar (downloaded January 26, 2018)50. Copy number variants
(CNVs) were called from WES using the CLAMMS algorithm51,52.

Genotype arrays. All patients included in this study were genotyped on either
Illumina HumanOmniExpress (HOEE; n= 59,499) or Global Screening Array
(GSA; n= 31,062) platforms. Upon completion of scanning, raw GTC files from
each Illumina iScan run was gathered in local RGC buffer storage and uploaded to
the DNAnexus platform for automated analysis. Sample-level Plink PED files,
signal files (LRR and BAF) and QC metrics were generated. Following completion
of cohort scanning, a project-level VCF (pVCF) and Plink BED/BIM/FAM files
were generated for downstream analysis. The files were created utilizing the merge
function in Plink. Data analysis and review ensured the REF and ALT alleles, for
SNPs and INDELs, are reflected accurately in both the plink and PVCF files. By
platform, genotypes were imputed to the Human Reference Consortium Panel53

(r1.1) via the Michigan Imputation Server54. Variants passing an INFO > 0.7 on
both platforms were merged and strict quality control was applied to the combined
dataset. A full description of our workflow describing pre- and post- imputation
quality control is presented in Supplementary Fig. 6.

Variant curation for RGDs. To identify individuals with FH-causing variants, we
screened all samples based on variant annotations in two genes, LDLR
(NM_000527.4) and APOB (NM_000384.2), using gene-level criteria. We defined
all “high impact” variants called by VEP as putative loss-of-function variants
(pLOFs) and CNVs that overlapped with a previously reported tandem duplication
in LDLR (exon 13 to 17) as predicted pathogenic. Initiation codon variants (start
loss) were not considered for pathogenicity. Missense variants were included if they
were annotated in the ClinVar database as “Pathogenic”, “Likely pathogenic”, or
“Pathogenic/likely pathogenic” (P/LP). Variants only affecting the last or penulti-
mate exon were not considered for pathogenicity. To assess the utility of using
ClinVar review status of P/LP variants to identify bona-fide FH-causing variants,
we compared the LDL-C of patients with zero-star (P/LP submission(s) without
assertion criteria),one-star missense (single P/LP submission with assertion cri-
teria), and two-star missense variants (multiple P/LP submissions with assertion
criteria) in LDLR. We observed that the LDL-C of patients with zero- and one-star
missense variants was over 1.5 SDs lower than those with two-star missense var-
iants (Supplementary Figure 5). Since this finding may be indicative of incorrect
assertions or variants of weak penetrance, we limited our analysis of pathogenic
missense variants to those with at least two stars in ClinVar. In the remainder of
the text, predicted and known pathogenic variants are collectively referred to as
pathogenic. Two APOB missense variants from a previous study of FH in Dis-
covEHR31, p.Arg3527Gln (ClinVar ID: 17890) and p.Arg3527Trp (ClinVar ID:
40223), were also included in the present analysis as FH-causing variants. We note
that while p.Arg3527Trp is currently annotated in ClinVar as “conflicting inter-
pretations”, since one research lab interpreted it as a variant of uncertain sig-
nificance (VUS), several clinical genetic testing laboratories submitted “pathogenic”
assertions and no laboratory provided “Benign” or “Likely Benign” assertions of
interpretation.

We also considered FH-causing gain-of-function missense variants in PCSK9
(NM_174936.3) for inclusion in the present analysis. We identified two PCSK9
variants present in DiscovEHR, p.Arg215His (ClinVar ID: 201127) and p.
Ser465Leu (ClinVar ID: 403292), called P/LP by at least one clinical genetics
laboratory in ClinVar. However, we only identified a single individual with the p.
Arg215His variant in DiscovEHR and the interpretation of the p.Ser465Leu variant
in ClinVar is in conflict between two clinical genetics laboratories. Since we were
unable to identify an adequate sample size for gain-of-function PCSK9 variants
with strong evidence for pathogenicity, this gene was not included as a monogenic
form of FH in our study.

Two monogenic forms of familial hypobetalipoproteinemia (FHBL) were
included in this analysis. pLOFs in APOB or PCSK9 were defined as pathogenic
FHBL-causing variants using the same gene-level criteria used for FH-causing
variants described above.

We included two RGDs of obesity in our study, melanocortin 4 receptor
deficiency caused by pathogenic MC4R (NM_005912.2) variants and recurrent
16p11.2 BP4-BP5 deletions (GRCh38/hg38 chr16: 29,638,675-30,188,534)10,24.
Recurrent 16p11.2 BP4-BP5 duplications of the same region were included in our
study as an RGD cause of leanness10. All 16p11.2 BP4-BP5 CNVs that passed this
criterion overlapped at least 95% of the pathogenic region, consistent with non-
homologous allelic recombination mediated by segmental duplications. 16p11.2
deletions and duplications called by CLAMMS were orthogonally confirmed by
external clinical testing or by confirmation testing using the array data. 16p11.2
CNVs were called from the array data using PennCNV55 or by manual inspection
of the signal intensity data within 16p11.2 recurrent region.

Our criteria for predicted and known MC4R pathogenic SNVs were the same as
LDLR described above: pLOFs or P/LP missense variants with two stars in ClinVar.
A predicted pathogenic deletion of the full MC4R gene (GRCh38/hg38
chr18:60371350-60372776) called in the WES data by CLAMMS was also included.
We excluded one pLOF (p.Leu328Ter) variant near the 3’ end of the MC4R
transcript demonstrated to result in a normal functioning receptor35.

To identify patients with a sex-chromosome aneuploidy, we calculated the per
sample median Log R ratio (mLRR) (Supplementary Fig. 2) of X- and Y-
chromosomes genotyped on the HOEE and GSA SNP array panels. Y-chromosome
markers were included if they fell within the male-specific region of the Y-
chromosome (GRCh37/hg19 chrY:2694521-59034049). The GSA contains
16,879 X-chromosome and 1456 Y-chromosome markers and the HOEE contains
21,112 X-chromosome and 1165 Y-chromosome markers. Following a previous
study of sex-chromosome aneuploidy56, we limited our calling of aneuploidies to
high-quality genotype arrays as inferred from chromosome 1 mLRR SD and
removed samples with a value above 0.28 (n= 7,250). Additionally, one HOEE
genotyping batch showed exceptional variance in X-chromosome intensity and was
excluded from further analysis (n= 2,666). Since the distribution of X- and Y-
chromosome density differed across the GSA and HOEE platforms (Supplementary
Figure 2), mLRR thresholds for aneuploidy were considered separately.

45,X and 45,X/46,XX cases were identified as EHR-documented females with
extremely low X-chromosome mLRRs, which corresponded to a value below −0.28
and −0.20 on the HOEE and GSA platforms, respectively. Females with loss of X-
chromosome or Y-chromosome at conception or early in development can be
identified by a strong deviation chromosome-wide from expected levels of
heterozygosity (0.5) relative to a 46,XX karyotype. Samples with age-related loss of
X-chromosome also have decreased mLRRs. However, the BAF profile does not
deviate from expected levels of heterozygosity (0.5) since a random X-chromosome
is lost at each event42. Therefore, to identify germline mosaicism we confirmed
complete loss of heterozygosity in all cases by visual inspection of BAF
chromosome-wide (Supplementary Fig. 3). To estimate the proportion of 45,X-to-
46,XX in 45,X/46,XX cell lines, we calculated the ratio of the sample mLRR relative
to the minimum female 45,X mLRR on the corresponding array42. In our final set
of cases, we only included samples with at least a 0.60 45,X/46,XX ratio since this
value approximated the upper bound of the male 46,XY X-chromosome mLRR
distribution. The mLRR thresholds used to identify 47,XXY; 47,XXX; and 47,XYY
are described in Supplementary Table 7. We excluded two individuals with 48,
XXXY and one individual initially characterized with a 47,XXX karyotype who
after inspection of the X-chromosome logR and BAF profiles revealed an
isochromosome for the long arm of the X-chromosome.

All SNVs included in this study are shown in Supplementary Data 1. The
prevalence of all variants underlying RGDs in DiscovEHR before applying sample
inclusion criteria are shown in Supplementary Table 8.

Construction and tuning of PGSs. We constructed three PGSs, a per-sample
genetic load of trait-increasing alleles based on SNP effect sizes reported in publicly
available GWAS summary statistics25,26. The PGSs were developed from these data
using the Bayesian computational algorithm LDPred, which adjusts the weighting
of the effect sizes with the turning parameter (ρ), a prior based on linkage dis-
equilibrium (LD) and fraction of non-zero effects57. Similar to a prior analysis of
PGSs in the UK Biobank, we optimized PGSs in a validation cohort for which we
randomly selected 10,000 DiscovEHR individuals13. The ρ with the most variance
explained (coefficient of determination, R2) in the validation cohort was then
selected for use in the testing cohort (Supplementary Fig. 7). PGSs were calculated
with weights generated by LDPred using PLINK version 1.946.

Phenotype definitions. Quantitative phenotypes were developed from outpatient
EHR measurements (Supplementary Fig. 8). Median values were calculated for
height and BMI phenotypes, and the maximum documented value was calculated
for LDL-C. Participants were assigned a CAD case or control status using an
electronic phenotyping algorithm described in a previous publication58.

In brief, CAD criteria was defined as a history of coronary revascularization in
the EHR, acute coronary syndrome, ischemic heart disease, or exertional angina
with angiographic evidence of obstructive coronary atherosclerosis.

Statistical analyses. All quantitative traits were pre-adjusted for age, six principal
components of ancestry, and genotype batch separately by sex. Association testing
between RGD-causing variants/PGSs with standardized quantitative measurements
were performed with linear regression models and Spearman’s rank correlation in
the testing cohort. For the multiple testing criterion, PGS analyses in three
quantitative measurements were considered as separate experiments. Here, statis-
tical significance was defined at a Bonferroni corrected p-value for the number of
RGDs tested within each trait (Height: 4; BMI: 3; LDL-C: 4) and nominal sig-
nificance was considered at an uncorrected p-value of 0.05. Statistical power for
linear models was calculated using the pwr R package using the maximally per-
forming R2 in the validation cohort. The association between cardiovascular disease
and an extreme PGSLDL-C was with logistic regression including the same covari-
ates as the linear models. P-values reported in the text are from two-tailed tests of
association using linear regression models unless otherwise stated. All analyses
measuring the effect sizes of RGD-causing variants and PGSs presented in the main
text were performed in the testing cohort (Supplementary Fig. 1).

Interactions between the PGS and RGD-causing variants were calculated by
testing for equality of the PGS beta-estimates in RGD-positive and RGD-negative
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models using the normally distributed test statistic below59:

Zdiff ¼
βRGD� � βRGDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se βRGD�
� �� se βRGDþ

� �

q ð1Þ

All statistical analyses were conducted using R version 3.4.1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Height and BMI polygenic scores were derived from publicly available GWAS summary
statistics provided by the Genetic Investigation of ANthropometric Traits (GIANT)
consortium available through their website. The LDL-C polygenic score was derived from
publicly available GWAS summary statistics provided by the Global Lipids Genetics
Consortium (GLGC) available through their website. Additional information on the
DiscovEHR study is available through the DiscovEHR browser. Data from this study can
be obtained by contacting the investigators directly.
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