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Coupling logistic model tree and 
random subspace to predict the 
landslide susceptibility areas with 
considering the uncertainty of 
environmental features
Xiangang Luo1, Feikai Lin1, Yihong Chen2, Shuang Zhu1, Zhanya Xu1*, Zhibin Huo3, 
Mengliang Yu1,4 & Jing Peng1

Landslide disasters cause huge casualties and economic losses every year, how to accurately forecast 
the landslides has always been an important issue in geo-environment research. In this paper, a hybrid 
machine learning approach RSLMT is firstly proposed by coupling Random Subspace (RS) and Logistic 
Model Tree (LMT) for producing a landslide susceptibility map (LSM). With this method, the uncertainty 
introduced by input features is considered, the problem of overfitting is solved by reducing dimensions 
to increase the prediction rate of landslide occurrence. Moreover, the uncertainty of prediction will 
be deeply discussed with the rank probability score (RPS) series, which is an important evaluation of 
uncertainty but rarely used in LSM. Qingchuan county, China was taken as a study area. 12 landslide 
causal factors were selected and their contribution on landslide occurrence was evaluated by ReliefF 
method. In addition, Logistic Model Tree (LMT), Naive Bayes (NB) and Logistic Regression (LR) 
were researched for comparison. The results showed that RSLMT (AUC = 0.815) outperformed LMT 
(AUC = 0.805), NB (AUC = 0.771), LR (AUC = 0.785). LSM of Qingchuan county was produced using the 
novel model, it indicated that landslides tend to occur along with the fault belts and the middle-low 
mountain area that is strongly influenced by the large numbers of human engineering activities.

Landslide is a geological natural disaster usually caused by rainfall, snowmelt, groundwater, earthquake or human 
activities1. It has affected more than 5.5 million people since 1950. In China, the economic losses caused by 
landslide can reach 28.5 billion dollars every year. Due to the destructive impacts of landslides and their con-
sequences, researchers have long attempted to improve disaster prevention and management, optimize region 
planning by delineating landslide susceptible areas.

Landslide susceptibility mapping (LSM) is usually regarded as an essential part of the landslide prediction2. 
Generally, methods of LSM can be categorized into physically-based models, statistics-based analysis, and 
machine learning techniques. Physically-based models are less applied since they require various geographical, 
geological and hydrometeorological data as well as detailed mathematics and physics equations that simulating 
the dynamic process of landslide mechanism. As a result, past decades witness the development of statistical 
models for landslides susceptibility analysis. Statistical models assume that factors and landslide in the past are 
the same or similar to those in the future3. The choice and classification of landslide conditioning factors directly 
affect the result of LSM. Traditional statistical models, like logistic regression (LR), predefine an appropriate fit-
ting structure and then parameterize it using historical disaster data4,5. Machine learning methods are powerful 
data-driven algorithms, which learn the nonlinear relationship between landslide occurrence and environmental 
factors. The advantages of machine learning models lie in allowing any scale and type of independent variable, 
no normal assumption, strong nonlinear fitting capabilities, and many open-source implementations. Various 
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machine learning models for assessing landslide susceptibility like artificial neural network (ANN), classification 
and regression trees (CART), support vector machine (SVM), neuro-fuzzy (NF), native Bayes (NB), and extreme 
learning machines (ELM) are carried out intensively in recently years6–12.

However, although these machine learning classifiers have been widely used for landslide study, sometimes, 
the single classifier could perform well in one region but works badly in another. It indicates that the accuracy of 
the single classifier is variable2. Therefore, ensemble methods have been employed in classification to minimize 
the limitations of a single model. Researchers have found that ensemble techniques could boost both recognition 
precision and prediction ability by integrating multiple classifiers to improve generalization capabilities13,14.

Many hybrid models have been applied in landslide prediction research. Kanungo et al.15 developed a hybrid 
(ANN-fuzzy logic) model for landslide susceptibility assessment. Chalkias et al.16 proposed a hybrid model by 
coupling expert knowledge with statistical analysis. Peng et al.17 introduced a hybrid approach by combining 
rough set and SVM while Oh and Pradhan18 proposed a hybrid method of neuro-fuzzy for landslide suscepti-
bility zonation. Pham et al.19 ensembled the Multiple Perceptron Neural Networks and ensemble frameworks 
(AdaBoost, Bagging, Dagging, MultiBoost, Rotation Forest, and Random SubSpace) and compared performance 
of them. Bui et al.13 represented a novel soft computing approach that combined the fuzzy k-nearest neighbor 
algorithm (fuzzy k-NN) and the differential evolution (DE) optimization for spatial prediction of rainfall-induced 
shallow landslides. These hybrid models have all been proved to perform well for landslide susceptibility mapping.

To quantify the certainty of input parameters, Monte Carlo simulations have been used to assess the propaga-
tion effect of the uncertainties in digital elevation models and landslide inventory20–22. Monte Carlo simulations 
require a large number of iterations, alternatively, random subspace (RS) is a learning framework which divides 
high-dimensional environmental features dataset into several low-dimensional subspaces randomly. Multiple 
classifiers are trained on these subspaces and the results are combined to produce final decision rule23. By this 
way, the uncertainty introduced by input features is considered. Therefore, it is chosen to be a suitable ensemble 
framework to construct the prediction model with higher confidence degree.

On the other hand, overfitting is an important reason for the decline in the prediction accuracy of the basic 
model. Noisy hidden in landslide causal factors tend to affect the performance of the model. So, solving the over-
fitting problem is also a key measure to improve the accuracy of LSM. Logistic Model Tree (LMT)24 combines 
the logistic regression model and decision tree, regarded as one of the most outstanding methods. A logistic tree 
identifies a set of optimal values of input parameters assigned to each model based on the relative belief in their 
accuracy. It is opposed to the deterministic model where all weight is put on a single set of parameter values. 
But the direct application of the LMT approach can still be very time-consuming for regional mapping of land-
slide hazards. From the above analysis, by combining the method of RS and LMT, the hybrid model will have 
the advantages of decreasing uncertainty, improving accuracy and lower time-consuming. In previous landslide 
susceptibility studies, some researchers have completed similar works. Shirzadi et al.9 combined RS and NBT to 
construct a novel model and Pham et al.25 proposed a hybrid model based on RS and CART. Their models have 
improved a lot than single classifier NBT and CART and they are both promising methods for landslide suscep-
tibility mapping. But Bui et al.26 compared five landslide models and proved that LMT was a better model for 
producing LSM. So, LMT may be a better choice than NBT or CART. On the other hand, Chen et al.27 ensembled 
bivariate statistical approach and LMT and Truong et al.28 constructed the model based on Bagging and LMT, 
their models were also proved appropriate. Compared with them, RS has the advantage of decreasing uncertainty, 
it is also worth trying.

The main purpose of this research is to propose a hybrid intelligent approach RSLMT based on RS and LMT 
to produce more accurate LSM. What’s important, besides the common receiver operating characteristic (ROC) 
curve, the uncertainty of prediction will be deeply discussed with the rank probability score (RPS) series, which 
is an important evaluation of uncertainty but rarely used in LSM. The hybrid method is firstly proposed in 
Landslide susceptibility research, and it will be compared to common methods like LMT, LR, NB. This study 
attempts to decrease the uncertainty and produce more reliable data concerning LSM, which can support the land 
development and decision-making process.

Study Area and Data Resource
Study area.  Qingchuan County is located in the northern part of Sichuan Province between 32°12′ and 32°56′ 
north latitude, 104°36′ and 105°38′ east longitude, with the area of 3271 km2. Figure 1 shows the study area. This 
area has very complicated geological and tectonics conditions. From the Cambrian to the Jurassic period, there 
were various sediments (limestone, sandstone, and conglomerate), magma (granite) and metamorphic rocks 
(shale, schist, gneiss). Sedimentary deposits and quaternary loess are widely exposed to dense fault structures. 
Seismic activities have occurred frequently, including the Wenchuan earthquake (2008) and Lushan earthquake 
(2013). The two earthquakes caused enormous loss, bring great threats to post-disaster reconstruction.

Qingchuan County has two active faults, Pingwu - Qingchuan fracture and Yingxiu - Beichuan fault, 
Longmenshan fault zone, 60–70 - NW is oblique thrust fault. The terrain of Qingchuan County is characterized 
by low northwest and high southeast. The central part has an altitude of 1200–1800 m. The average slope is 38°, 
the maximum slope is 80°, and the 73.9% of the area has a slope of more than 25°. Qingchuan County has a sub-
tropical monsoon climate with mild summer temperatures and southwesterly winds. The study area has abundant 
rainfall and the annual average rainfall is 1022 mm. 55% of the rainfall occurs in June to September every year29.

Landslide inventory.  The landslide inventory is an essential part of LSM, it includes historical landslide data 
and other related information like geological data, meteorological conditions, and topographical data30. The land-
slide inventory of Qingchuan was extracted from the geological disaster database which was provided by China 
Geological Survey (http://www.cgs.gov.cn/). The original scale of landslides is more than 1400. Considering 
the dramatic changes in the geographical environment, 640 landslides of the same type occurred in the latest 
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2009–2013 were selected in the study. In landslide susceptibility assessment, negative samples (non- landslide) are 
as important as positive samples. So, 629 non-landslide points were selected in the study area randomly to con-
struct a data set. All of them were processed by ArcGIS 10.2. Due to most of the landslides have a small influence 
region, all landslides were simplified as points, represented by a pixel (30 m * 30 m). In this study, 70% of the data 
was chosen randomly for model training, and the other data was used for the verification.

Landslide causal factors.  How to select appropriate landslide causal factors is an essential issue in land-
slide susceptibility mapping. There is no standard answer to this question until now31, since the cause of the 
landslide varies over the different region. Based on the analysis of local geological environment characteristics 
and relevant researches, we selected twelve landslide causal factors in this study. These factors could be divided 
into two categories: (1) internal factors, which are related to geology and topography, such as elevation, profile 
curvature, slope, plan curvature, distance to faults, aspect, distance to rivers, landform and lithology; (2) external 
factors, which usually cause landslides such as rainfall, distance to roads and seismic intensity. Moreover, these 
factors are reclassified into various categories (Table 1) for the convenience of landslide susceptibility analysis and 
avoiding the imbalance of categorical magnitudes. Each value represents a group of data with similar character-
istics. The numeric values are discrete, representing different classes. Nature breaks was used for classification 
which is a method that maximizes the differences between classes and minimizes data skew in each class. The 
elevation, slope, aspect, and curvature were extracted from DEM with 30 m spatial resolution, which could be 
downloaded from Geospatial data cloud (www.gscloud.cn). The roads, rivers, and landform were extracted from 
the Qingchuan County topographic map. The rest of the geological meteorological factors were provided by 
China Geological Survey (http://www.cgs.gov.cn/). All factors were processed using ArcGIS 10.2 and eventually 
converted to a raster format of the same resolution as DEM for further analysis. They are shown in Fig. 2.

Methodology
Outline of RSLMT for LSM.  RSLMT for LSM is carried out as follows.

	 1.	 Data extraction and preprocessing. 640 landslide points, 629 non-landslide points, and 12 landslide causal 
factor layers were extracted, and then these factors were quantified and classified. 70% of the data was cho-
sen for the training model and the rest was used for validation. Training and validation data were shown in 
Fig. 3.

	 2.	 2.Model building. Firstly, use the ReliefF method to rank the contributions of landslide causal factors, the 
factors with lower contributions were sequentially removed. The proposed RSLMT model and compari-
son models were built in Weka 3.9 software, to achieve the best performance, parameter optimization was 
performed.

	 3.	 Model Verification. Use area under receiver operating characteristic (AUC) and above statistical index to 
compare the performance between the new model and other models. Perform uncertainty analysis and 
chi-square test.

	 4.	 Landslide susceptibility mapping. The best performed model was selected for making landslide susceptibil-
ity map of Qingchuan county. The map was graded according to the landslide susceptibility index. Analysis 

Figure 1.  The study area, Qingchuan County in Sichuan Province China, generated by Arcgis version 10.2 in 
Windows (https://developers.arcgis.com).
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the distribution characters of landslides and explore the cause of landslides.

The outline of the study is shown in Fig. 4.

ReliefF.  ReliefF is a feature selection algorithm which was developed by Kononenko32, it is an extension of 
Relief. ReliefF first resamples the instance multiple times and then estimates the values of the attribute by con-
sidering the values of specific attributes from the most recent instance of the same and different classes. It will 
remove the factors that have lower average merit (AM) from the original dataset because these factors are consid-
ered less or even no help to the prediction of landslides.

Logistic model tree.  LMT is a combination of logistic regression model and C4.5 decision tree33, it uses 
information gain to spilt and LogitBoost algorithm to produce logistic regression model at every tree node. 
Classification and regression tree34 is used for pruning to prevent over-fitting.

The LogitBoost algorithm uses additive logistic regression with each class Ci having a least squares fit as 
follows35:

∑β β= + .
=

L x(x)
(1)C

i

n

i i
1

0

Linear logistic regression method can be used to calculate posterior probability in leaf nodes25,

Factors Classes Value Factors Classes Value

Lithology

Weak-semi-hard

1

Profile curvature

−58.61–8.89 1

thin-medium −8.89–0.53 2

phyllite −0.53–0.12 3

schist −0.12–9.50 4

slate 9.50–47.51 5

metamorphic

Plan curvature

−51.17–17.39 1

sandstone −17.39–5.03 2

Hard-semi-hard

2

−5.03–0.50 3

medium-thick layered 
limestone −0.50–8.98 4

Dolomitic limestone 8.98–53.88 5

dolomite

Slope (degree)

0–12.97 1

debris 12.97–21.84 2

21.84–29.34 3

Loosely packed soil 4 29.34–37.88 4

Hard-thin layered quartz 
sandstone

5

37.88–87.01 5

siltstone

Aspect

North 1

conglomerate Northeast 2

mudstone East 3

Rainfall (mm)

0–500 1 Southeast 4

500–800 2 South 5

800–1000 3 Southwest 6

1000–1200 4 West 7

>1200 5 Northwest 8

Seismic intensity

VII 7

Distance to faults 
(m)

0–100 1

VIII 8 100–200 2

IX 9 200–300 3

X 10 >300 4

Landform

Middle-low mountains 1

Distance to rivers 
(m)

0–100 1

Middle mountains 2 100–200 2

High-middle mountains 3 200–300 3

Elevation (m)

491–922 1 >300 4

922–1253 2

Distance to roads 
(m)

0–100 1

1253–1671 3 100–200 2

1671–2245 4 200–300 3

2245–3794 5 >300 4

Table 1.  Landslide causal factors with their classes and quantitative value.
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D is the number of classes.

Figure 2.  Maps of landslide causal factors. (a) Lithology. (b) Distance to roads. (c) Seismic intensity. (d) 
Distance to faults. (e) Rainfall. (f) Plan curvature. (g) Slope. (h) Aspect. (i) Profile curvature. (j) Distance to 
rivers. (k) Elevation. (l) Landform, generated by Arcgis version 10.2 in Windows (https://developers.arcgis.
com).
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Random subspace.  Random Subspace (RS) is a popular integrated learning approach proposed by Ho36. It 
divides the original feature set into several subsets containing partial features. randomly and trains multiple clas-
sifiers on these feature subspaces37, so it can improve the classification accuracy [10, 16, 30]. It is especially good 
at dealing with overfitting problems24. The detailed description of RS is as follows.

Suppose the training data are = ... = ...X X X X i n( , , , ), ( 1, 2, , )1 2 i  and Xi is a p-dimensional vector, p is the 
number of features. Then an r-dimensional vector X̂i is carried out from a p-dimensional vector Xi <r p( ). 
r-dimensional random subspace can be described as

Figure 3.  Training data and validation data. (a) Training data. (b) Validation data, generated by Arcgis version 
10.2 in Windows (https://developers.arcgis.com).

Figure 4.  Outline of RSLMT after Pham et al.25, 2018 with modifications, which has been authorized by 
Elsevier.
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In the next step, repeat this selection several times, and some lots of r-dimensional random subspaces could 
be obtained. Finally, construct classifier C(x) in every subspace X̂, and combine the results of these classifiers with 
final decision rule by a simple majority vote. The final decision rule is as follows,

∑β δ= ∈ −
δ

x C x y y( ) arg max ( ( )), ; { 1, 1},
(4)b

b
sgn

where δ = ... = ...i n j r( 1, 2, , , 1, 2, , )i j,  is the Kronecker symbol, and ∈ −y {1, 1} is a class label (landslide or 
non-landslide).

Statistical index.  Statistic index involves accuracy, precision, F-measure, accuracy, specificity, and recall25,38. 
Accuracy is the percentage of samples that are correctly classified in the total sample, the higher the accuracy, the 
better the classifier. Precision is the proportion of samples that are predicted to be positive in the positive sample 
set. Recall is the proportion of correct classification in all positive samples. Specificity is opposite to the recall, it 
is the proportion of true classification in all negative samples. And usually precision and recall are conflicting, the 
F-measure is a weighted average of precision and recall which is considered more balanced indicator.

=
+

+ + +
Accuracy TP TN

TP FP TN FN
,

(5)

=
+

precision TP
TP FP

,
(6)

=
+

Recall TP
TP FN

,
(7)

=
+

Specificity TN
TN FP

,
(8)

− =
×

× + +
F measure TP

TP FP FN
2

2
,

(9)

where TP (true positive) and TN (true negative) are the number of samples that are correctly classified. FP (false 
positive) and FN (false negative) are the number of samples that are incorrectly classified.

Traditional statistical indexes mentioned above are usually used to assess the classification results right or not, 
without considering the uncertainty of the classification. The rank probability score (RPS) which was proposed by 
Epstein39 is a suitable measure for the uncertainty of the classification. It calculates the cumulative error between 
the predicted category and the actual category. For K categories, the RPS is defined as follows,

∑= − = −
=

RPS F O F O( ) ( ) ,
(10)k

K

k k
1

2 2

where F and O are cumulative predicted and actual vectors. Fk and Ok are defined as ∑ = Fi
k

i1  and ∑ = Oi
k

i1 , Fi is the 
forecasted probability that the point is classified into i category. Oi is the actual classification, if the category is i, 

=O 1i , if not, =O 0i . The closer the RPS is to 0, the better the classification result. The RPS of the reference model 
is calculated as same as that of the predictive model. For the reference model, we chose the widely used historical 
sample point analysis, in this way, the probability that the point is classified into i category is the ratio of the num-
ber of historical points actually belong to i category to the number of total points.

In addition to RPS, RPS score (RPSS)40 is also used to estimate the uncertainty of models. It could measure 
how well the prediction model improves relative to the reference model. For RPSS, the maximum value 1 repre-
sents a perfect model, whereas a value of 0 represents the model is no better than the reference model, a negative 
value indicates the model performs worse than the reference model. RPSS is calculated as follows:

= −RPSS RPS
RPS

1 ,
(11)

m

r

where RPSm and RPSr are average RPS values of the predictive model and reference model. A positive RPSS value 
indicates that the predictive model is better than the reference model.
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Results
Landslide causal factors analysis.  ReliefF was implemented on the prepared twelve factors. The result 
indicated that seismic intensity, distance to faults, distance to rivers, profile curvature had lower contribution. 
To find the factors that should be removed, these factors were removed one by one in the RSLMT model using 
10-fold cross-validation. AUC values are 0.771, 0.774 and 0.768 when removing the lowest one, two, three factors, 
respectively. The performance is better when removing two factors, profile curvature and distance to rivers. The 
variance inflation factor (VIF) and tolerance38,41 were used to examine the multicollinearity within the remaining 
ten factors. A VIF above 5 or tolerance of less than 0.2 indicates the existence of multiple collinearity42. As shown 
in Table 2, the minimum tolerance among the factors is 0.257, and the highest VIF is 3.891. There is no multicol-
linearity between these factors. So, ten factors were left for further analysis.

Model validation and comparison.  Using the training data, RSLMT, NB, LR, LMT were constructed and 
the performance of these models was evaluated by validation data. After the trial-and-error process, the optimum 
parameters used by these models are shown in Table 3. AUC results with training data and validation data are 
shown in Fig. 5, and results of statistical index are shown in Table 4.

AUC on training data represents the goodness of fit of model14. Among these models, RSLMT model 
(AUC = 0.815) shows the best goodness of fit, followed by the LMT model (AUC = 0.805), the LR model 
(AUC = 0.785), the NB model (AUC = 0.771). And the AUC on validation data represents prediction abilities of 
models, the results show that the prediction ability of RSLMT model (AUC = 0.769) is the best and that of LMT 
model (AUC = 0.742) is the worst, the AUC of NB model and LR model are 0.743 and 0.754. For statistical index 
in training data, the accuracy of RSLMT model is the highest (0.738), followed by the LMT (0.727), LR (0.716), 
NB (0.703) models. For validation data, the accuracy of RSLMT model is still the highest (0.697), followed by the 
LR (0.694), NB (0.686), LMT (0.674) models. LR model has the highest precision (0.653), followed by the RSLMT 
(0.639), NB (0.630), LMT (0.625) models. For more, the RSLMT model has also the highest F-measure and recall 
among the models. In summary, it can be inferred that RSLMT has the best performance both in training and 
validation data.

The uncertainty analysis results of these models are shown in Table 5. It can be observed that the RPS of 
RSLMT is the smallest, showing a smaller range of uncertainty, followed by LR (RPS = 0.203), LMT (RPS = 0.207), 
NB (RPS = 0.231) models. And the RSLMT model also has the highest RPSS value, indicating that the RSLMT 
model has the biggest improvement compared to the reference model. Moreover, statistical differences between 
these models were tested using Chi-Square. In case the Chi-Square value is greater than 3.841 and the significance 
level value (p) is smaller than 0.05, the assumptions of two significantly different models are correct, so the differ-
ence of these models is statistically significant43. The Chi-Square test results of the RSLMT model compared with 
others are shown in Table 6. It could be found that all Chi-Square values exceed 3.841 and all p-values are less than 
0.5. It means that the performance of RSLMT is significantly different from other models and the RSLMT model 
is comparable to other models.

Landslide causal factors

Multicollinearity statistics

Tolerance VIF

Rainfall 0.896 1.116

Seismic intensity 0.885 1.130

Lithology 0.846 1.182

Landform 0.259 3.860

Distance to faults 0.962 1.039

Distance to roads 0.736 1.359

Elevation 0.257 3.891

Plan curvature 0.981 1.019

Slope 0.853 1.172

Aspect 0.970 1.031

Table 2.  Multicollinearity of the causal factors.

Algorithm Parameters

RSLMT Minimum subspace 0.5 Seed 1 Iteration 8

Execution slots 1 Instances in node 21 LogitBoost iterations 7

NB /

LR Maximum number of iterations 8 Ridge value in the log-likelihood 10−8

LMT Minimum of instances in node 15 LogitBoost iterations 3 Weight trimming value 0.0

Table 3.  The calculated parameters of algorithms utilized in this study.

https://doi.org/10.1038/s41598-019-51941-z
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Landslide susceptibility mapping.  After the validation and comparison, the best performed model 
RSLMT were used to produce LSM. Study area was conversed to a raster map using ArcGIS 10.2 with 30 m 
resolution. Then, landslide susceptibility index (LSI) was calculated as the probability of landslide occurrence 
using RSLMT model. Each pixel was assigned unique LSI. Finally, LSM was classified into 5 categories through 
Geometrical Interval (GI) method44, very low susceptibility (VLS), low susceptibility (LS), moderate susceptibility 
(MS), high susceptibility (HS), very high susceptibility (VHS). LSM is shown in Fig. 6.

To estimate the precision of the LSM, relative landslide density was calculated. The relative landslide density is 
the ratio of the percentage of landslides in the sensitive area to the total number of landslides and the percentage 
of the sensitive area to the total study area. The relative landslide density is shown in Table 7.

From the table, it can be found that the VHS area which occupies only 21.24% area has the 52.03% of land-
slides, however, only 0.47% of landslides are distributed in the VLS area which occupies the 18.35% of the area.

Figure 5.  AUC of the models. (a) Training data. (b) Validation data.

Statistic index

RSLMT NB LR LMT

T V T V T V T V

Accuracy 0.738 0.697 0.703 0.686 0.716 0.694 0.727 0.674

Precision 0.715 0.639 0.682 0.630 0.714 0.653 0.713 0.625

Recall 0.826 0.801 0.808 0.790 0.760 0.729 0.800 0.746

Specificity 0.641 0.606 0.589 0.596 0.667 0.663 0.648 0.611

F-measure 0.766 0.711 0.740 0.701 0.736 0.689 0.754 0.680

Table 4.  Performance of models using training and validation data. T = training data; V = validation data.

Model RPSm RPSr RPSS

RSLMT 0.196 0.286 0.315

NB 0.231 0.286 0.192

LMT 0.207 0.286 0.276

LR 0.203 0.286 0.290

Table 5.  The RPS and RPSS values of the models.

Comparative pairs Chi-square values p-value

RSLMT vs. NB 604.063 0

RSLMT vs. LR 539.001 0

RSLMT vs. LMT 543.939 0

Table 6.  Performance of the RSLMT model compared to other models using Chi-Square test.
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Discussion
The selection of landslide causal factors is an essential issue in landslide modeling10. Based on the comprehensive 
analysis, twelve factors were selected. Then these factors were reclassified using Nature Breaks which is applied 
in many studies and proved to have no effect on the results. The ReliefF model was used for computing the con-
tribution of factors to the occurrence of the landslide. After sequentially removing the factors with lower average 
merits using RSLMT model, it had been found that RSLMT had the best performance removing distance to rivers 
and profile curvature. So, it is necessary to select factors before applying ensemble learning method, even if RS has 
the ability to reduce dimensions. Pham et al.25 used the LSVM to optimize input data and found the same conclu-
sion. Some factors could have a negative impact on some feature subspace, and reduce the accuracy of the model.

In the past, scholars mainly used statistical techniques or machine learning methods to make landslide predic-
tion. These single classifiers performed well in many regions. In recent years, hybrid models are beginning to be 
applied in this field. Many review papers indicate that hybrid models are more efficient than traditional individual 
classifiers like SVM, LR, DT for landslide spatial prediction because hybrid model could integrate multiple clas-
sifiers to improve generalization capabilities13. Moreover, Pham et al.19 stated that hybrid techniques – in certain 
conditions – can improve the performance of individual classifiers for landslide susceptibility analysis.

In this paper, a novel hybrid model called RSLMT was proposed, and it was used to produce LSM based on the 
following assumptions: the landslide mechanism is the same for all the landslides in the test set; there is no spatial 
heterogeneity in the relationship between conditional factors and landslide susceptibility45,46; there are no mutual 
relationships between conditioning factors; the mechanism responsible for past landslides in the study area will 
introduce future landslides; the output LSM presents only the predicted spatial distribution of landslides and not 
its temporal probability.

Comparison between the proposed model and other excellent machine learning classifiers had been done. 
AUC was used to estimate the performance of models in both training and validation data. The RSLMT model 
outperformed the LMT, LR, NB models on training data, it indicated the better goodness of fit. For the valida-
tion data, the RSLMT model had the best AUC of 0.769, followed by the LR, NB, LMT models. The results can 

Figure 6.  Landslide susceptibility map in Qingchuan county using the RSLMT model, generated by Arcgis 
version 10.2 in Windows (https://developers.arcgis.com).

Classes
Percentage of 
area (%)

Percentage of 
landslide points (%)

Relative 
landslide density

VLS 18.35 0.47 0.0256

LS 20.11 5.78 0.2874

MS 24.98 20.16 0.8070

HS 15.32 21.56 1.4073

VHS 21.24 52.03 2.4496

Table 7.  Relative landslide density of each class in LSM.
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prove that the RS method can improve the performance of individual classifier significantly. This could be found 
in many studies9,19,25. Abedini et al.47 ensembled Bayesian Logistic Regression (BLR) and ensemble method RS, 
Adaboost, Multiboost and Bagging and compared the accuracy of these models, they found that RS-BLR per-
formed best. It proved that the RS model is one of the best ensemble methods. On the other hand, it is worth 
noting that the LMT model had the second-highest AUC on training data but had the worst prediction ability 
on validation data just as the finding of Bui et al.26. Serious overfitting problem existed in LMT. And the RSLMT 
performed well both on training and validation data, it could be inferred that RS method can avoid the overfitting 
problem of the classifier. It can be found that RSLMT has the advantages of decreasing uncertainty, improving 
accuracy and reducing time-consuming compared with other models and it can be a promising method for land-
slide susceptibility mapping, and it can also be applied to other landslide-prone regions.

Although the RSLMT outperformed than other models in this study, there is still room for improvement. The 
model performance was only demonstrated in one region, which cannot prove its adaptability. Therefore, the 
model performance in regions featured with different geological environment characteristics needs to be further 
studied and verified when data are available.

From the produced landslide susceptibility map in Qingchuan county, it can be found that landslides occurred 
mostly in the VHS area. Comparing the LSM with faults map, it is obvious that landslide tends to be distributed 
along with the fault belts, especially along the Yingxiu-Beichuan fault. And comparing the LSM with landform 
and roads map, middle-high mountains area is usually safer because of the stable geologic environment. On 
the contrary, the middle-low mountains have the highest susceptibility index due to a large number of human 
engineering activities. Reducing human damage to the geological environment may be an important measure for 
preventing the occurrence of the landslide.

Conclusion
The prediction of landslide occurrence is important, it is vital to propose new models to enhance the ability to 
predict. In this paper, a novelty ensemble learning models based on the random subspace and logistic model tree 
namely RSLMT model was developed for producing landslide susceptibility map of Qingchuan county, China. In 
the research, 12 landslide causal factors were chosen based on relevant analysis and local geological environment 
characteristics. After the selection with ReliefF method, distance to rivers and profile curvature were removed 
because of lower contribution to landslide occurrence. Then, the AUC and a set of statistical indexes were used 
to evaluate and compare RSLMT model with NB, LR, LMT. Results show that RSLMT model has the best perfor-
mance. Finally, LSM was produced by RSLMT model and classified into 5 categories. This map will contribute to 
land use, hazard management, and decision making.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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