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A Curriculum Learning Strategy 
to Enhance the Accuracy of 
Classification of Various Lesions 
in Chest-PA X-ray Screening for 
Pulmonary Abnormalities
Beomhee Park1,4, Yongwon Cho1,4, Gaeun Lee1, Sang Min Lee2, Young-Hoon Cho2, 
Eun Sol Lee2, Kyung Hee Lee3, Joon Beom Seo2 & Namkug Kim   1,2*

We evaluated the efficacy of a curriculum learning strategy using two steps to detect pulmonary 
abnormalities including nodule[s], consolidation, interstitial opacity, pleural effusion, and 
pneumothorax with chest-PA X-ray (CXR) images from two centres. CXR images of 6069 healthy 
subjects and 3417 patients at AMC and 1035 healthy subjects and 4404 patients at SNUBH were 
obtained. Our approach involved two steps. First, the regional patterns of thoracic abnormalities were 
identified by initial learning of patch images around abnormal lesions. Second, Resnet-50 was fine-
tuned using the entire images. The network was weakly trained and modified to detect various disease 
patterns. Finally, class activation maps (CAM) were extracted to localise and visualise the abnormal 
patterns. For average disease, the sensitivity, specificity, and area under the curve (AUC) were 85.4%, 
99.8%, and 0.947, respectively, in the AMC dataset and 97.9%, 100.0%, and 0.983, respectively, in 
the SNUBH dataset. This curriculum learning and weak labelling with high-scale CXR images requires 
less preparation to train the system and could be easily extended to include various diseases in actual 
clinical environments. This algorithm performed well for the detection and classification of five disease 
patterns in CXR images and could be helpful in image interpretation.

Chest posterior-anterior (PA)-X-ray (CXR) is considered one of the most accessible types of radiological exam-
inations to screen for and diagnose pulmonary problems and for secondary prevention. Several studies to date 
have evaluated deep learning methods to detect pulmonary disease by CXR, including evaluations of the efficacy 
of convolutional neural networks (CNNs) to screen for tuberculosis on CXR1 and the construction of a CXR 
database, called ChestX-ray14, for classification and localization of benchmark lesions2. Using these data, long 
short-term memory (LSTM)3 has been applied to the encoded features using a type of DenseNet, allowing the 
model to exploit dependencies among labels. In addition, a 121-layer CNN utilized to detect pneumonia was 
found to outperform previous state-of-the-art methods in the further evaluation of 14 diseases4. These studies, 
however, did not include a detailed validation, and concerns regarding the purity of the data entered into the 
ChestX-ray14 dataset still exist. Moreover, localization results were somewhat unclear and were not sufficient to 
resolve the suspicion about whether the network includes properly trained and complicated disease patterns. It 
would be difficult for the CNN model to directly train various sizes and types of complex disease patterns using 
entire CXR images with weak labels alone. These complex problems may be solved, at least in part, by curriculum 
learning, which involves gradual training of more complex concepts5. Using this strategy, we propose a curricu-
lum for the fine-tuning of complicated whole images after training on lesion-specified patch images. We hypoth-
esized that following patch-based training, this curriculum can guide the network toward better local minima. 
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This study therefore evaluated the efficacy of the curriculum strategy, which trains with two steps, for detecting 
pulmonary abnormalities on CXR images from two hospitals.

Results
Test data comprised 20% of the total dataset and included 1423 normal individuals and 1549 patients, includ-
ing 394 with nodules, 282 with consolidation, 286 with interstitial opacity, 465 with pleural effusion, and 253 
with pneumothorax. Considering the healthy subjects, serious data imbalance problems could occur and confuse 
accurate evaluation of the presence or absence of each disease. Therefore, six performance metrics were calculated 
separately for each disease class: area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). In addition, the performance of the model in terms of abnor-
mal screening was evaluated by combining the disease classes.

Comparison with baseline model.  To assess the effectiveness of the curriculum strategy, a curriculum 
learning-based model was compared with a baseline model that was trained directly using entire images. Both 
models were found to be sufficiently trained and to converge on the validation set (Fig. 1). Because the curriculum 
learning-based model preceded training on the patch images, the convergence was rapid and stable and attained 
better local minima. Furthermore, the loss and accuracy of the Asan Medical Center (AMC) dataset were 0.116 
and 96.1% in baseline and 0.099 and 97.2% in curriculum learning, respectively. The loss and accuracy of the 
Seoul National University Bundang Hospital (SNUBH) dataset were 0.210 and 92.7% in baseline and 0.181 and 
94.2% in curriculum learning, respectively, as shown in Table 1.

As shown in Table 2, the performances of the curriculum learning-based model showed better overall results. 
The AUCs of abnormalities in the two centres on the curriculum learning-based model were 99.0% and 100.0%, 
respectively, and those on the baseline model were 96.7% and 99.9%, respectively. The disease patterns with the 
most difference between the two algorithms in terms of the AUC in the datasets of the two centres were nodule[s] 
and consolidation. Furthermore, we conducted the paired t-test between the curriculum learning-based model 
and baseline model. These results show that the performance of the curriculum learning-based model was signif-
icantly better in Table 2.

Performance evaluation.  The performance of the curriculum learning-based model on the test set was 
evaluated using weight parameters at the minimum loss point on the validation set. The six metrics were deter-
mined separately for the datasets from each of the hospitals (Table 2). The sensitivity and accuracy of pneumo-
thorax was the highest in the datasets of the two centres with sensitivities of 99.9% and 99.2%, respectively, and 
with accuracies of 99.3% and 98.3%, respectively. The specificity and AUC of pleural effusion were the high-
est in the AMC dataset (94.8% and 99.3%), with interstitial opacity having the highest specificity and AUC in 
the SNUBH dataset (96.6% and 99.8%). The sensitivity and AUC of consolidation were 98.1% and 89.3%, the 
lowest in the AMC dataset, and those of the nodule[s] were 89.9% and 82.7% in the SNUBH dataset, respec-
tively. Consolidation had the lowest specificity of 54.6% and 62.6% in the datasets of the two centres, respectively. 
Additionally, pneumothorax had the highest PPV (99.3%) in AMC and NPV (96.2%) in the SNUBH dataset.

Figure 1.  Training curves of a curriculum learning-based model and a baseline model on the tuning dataset.

Baseline Curriculum learning

Epoch 1257 199

Loss
AMC 0.116 0.099

SNUBH 0.210 0.181

Accuracy (%)
AMC 96.1 97.2

SNUBH 92.7 94.2

Table 1.  Results of the curriculum learning-based and baseline models at the minimum loss point. 
Abbreviations: AMC, Asan Medical Center; SNUBH, Seoul National University Bundang Hospital.

https://doi.org/10.1038/s41598-019-51832-3


3Scientific Reports |         (2019) 9:15352  | https://doi.org/10.1038/s41598-019-51832-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

In addition, we performed statistical analyses on the size of the nodule[s]. The size of the nodule was divided 
into three categories—3 cm or less, 3–5 cm, and 5 cm or more. As shown in Table 3, the proposed curriculum 
learning-based method showed better performance than the baseline model for each nodule size. Nodule[s] that 
were 3 cm or less in size in the AMC dataset showed the best AUC, and the AUC of nodule[s] whose size was over 
5 cm in the SNUBH dataset was the best. The accuracies of the three size categories were 90.2%, 91.9%, and 90.5% 
in the AMC dataset, respectively, and 74.7%, 77.9%, and 79.65% in the SNUBH dataset, respectively.

For more detailed evaluation, the variables embedded in the highest layer of the network were visually eval-
uated after two-dimensional reduction using the t-distributed stochastic neighbour embedding (t-SNE) tech-
nique6. Figure 2 shows the formation of manifolds according to the disease, the hospital, and the manufacturer of 
the X-ray machine. The formation of manifolds for each disease and hospital was visualized to assess whether the 
model correctly trained each disease pattern (Fig. 2). The manifold for each disease was found to be well formed 
(Fig. 2a). In contrast, the manifolds according to the hospital were found to have a slightly different marginal 
distribution, as shown in (Fig. 2b). To the best of our knowledge, this phenomenon could be caused by various 
factors such as the manufacturer of the X-ray machine, radiation exposure time, and image reconstruction algo-
rithm. The most prominent of these factors was the manufacturer, and the formation of the manifold according 
to the manufacturer was confirmed, as shown in (Fig. 2c). The AMC and SNUBH datasets consisted primarily of 
data from GE and Philips, respectively, which allowed us to identify different marginal distributions according 
to the manufacturers.

Localization using class activation maps.  Figure 3 shows the classification results and localization using 
class activation maps (CAM) for five lung diseases subjected to curriculum learning. Although the CAM results 
generally coincided with the AUC results drawn by thoracic experts, our CAM algorithms yielded misclassifi-
cations in several patients with nodule[s] or consolidation (Fig. 4). Although localization of the disease pattern 
was visually appropriate, some nodules were classified as consolidations and some consolidations as nodule[s]. 

AMC SNUBH

AUC Acc Sen Spe PPV NPV AUC Acc Sen Spe PPV NPV

Nodule
Baseline 86.7 83.8 83.9 83.5 97.9 35.7 79.3 70.6 69.1. 77.4. 92.6 37.7

Curriculum
learning 92.8 96.1 98.2 75.8 97.4 82.1 82.7 85.3 89.9 66.5 91.7 61.6

Consolidation
Baseline 87.3 90.8 92.2 68.9 97.9 37.4 84.5 77.7 77.2 80.4 95.7 38.4

Curriculum
learning 89.3 95.3 98.1 54.6 97.0 65.7 91.2 89.7 94.5 62.6 93.5 66.7

Interstitial
opacity

Baseline 97.5 98.1 98.4 88.5 99.7 60.5 98.9 96.1 96.5 94.4 98.4 88.0

Curriculum
learning 98.2 98.7 99.2 80.8 99.5 75.0 99.8 97.7 98.0 96.6 99.0 93.0

Pleural
effusion

Baseline 99.1 97.6 98.2 94.4 99.0 89.8 97.7 93.1 92.6 95.4 98.9 73.9

Curriculum
learning 99.3 98.1 98.6 94.8 99.1 92.1 98.9 95.3 95.1 96.4 99.2 81.1

Pneumothorax
Baseline 94.8 97.2 97.9 80.0 99.3 57.8 97.1 95.6 96.4 91.4 98.2 84.3

Curriculum
learning 95.3 99.3 99.9 81.5 99.3 96.4 99.1 98.3 99.2 94.1 98.8 96.2

Abnormalities
Baseline 96.7 92.2 80.2 98.8 97.5 90.2 99.9 98.2 98.4 99.5 99.9 92.8

Curriculum
learning 99.0 94.7 85.4 99.8 99.7 92.5 100.0 98.3 97.9 100.0 100.0 92.0

Table 2.  Classification of subjects in the test dataset using the curriculum learning-based and baseline models. 
*Paired t-test; overall abnormalities: p < 2.667e-10, nodule[s]: p < 5.705e-05, consolidation: p < 0.002456, 
interstitial opacity: p < 0.01225, pleural effusion: p < 0.04229, and pneumothorax: p < 0.01329. Abbreviations: 
AMC, Asan Medical Center; SNUBH, Seoul National University Bundang Hospital.

AMC SNUBH

AUC Acc Sen Spe PPV NPV AUC Acc Sen Spe PPV NPV

Nodule
(<3 cm)

Baseline 81.1 78.4 78.4 82.8 99.7 5.6 53.3 59.7 60.1 46.4 97.7 2.9

Curriculum
learning 89.9 90.2 90.2 89.7 99.8 12.5 64.6 74.7 75.3 53.8 98.5 5.1

Nodule
(≥3 cm and 
<5 cm)

Baseline 82.1 80.6 80.4 83.9 99.0 17.1 71.2 64.5 63.3 79.1 97.2 15.6

Curriculum
learning 87.0 91.9 92.4 81.6 99.0 34.1 71.7 77.0 77.9 65.5 96.4 19.9

Nodule
(≥5 cm)

Baseline 81.5 79.8 79.6 83.3 99.2 12.9 72.8 65.8 64.2 81.4 97.1 19.1

Curriculum
learning 81.2 90.5 91.2 71.2 98.9 22.6 77.3 79.2 79.6 75.0 96.9 27.2

Table 3.  Classification of pulmonary nodules per nodule size in the test dataset using the curriculum learning-
based and baseline models.
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Figure 5 also shows the results for patients with multiple diseases. The results of CAM for all trained classes were 
independently extracted, with the CAMs for the inferred diseases being individually extracted and consistent 
with the region of interest drawn by the expert.

Discussion
In this study, we evaluated the efficacy of a two-step curriculum strategy for detecting pulmonary abnormalities 
on CXR images from two hospitals and found that curriculum learning could guide the model toward a better 
local minimum. The curriculum learning-based model was investigated using the minimum loss point on the 
validation set to assess weight parameters on the test set. In general, large disease patterns including interstitial 
opacity, pleural effusion and pneumothorax showed better performances in this study. Especially, pneumotho-
rax had the highest sensitivity and accuracy in the datasets of the two centres. Furthermore, PPV and NPV of 
pneumothorax were the best. The specificity of pleural effusion was the highest in the AMC dataset, whereas the 
specificity of interstitial opacity was the highest in the SNUBH dataset. The AUC of pleural effusion was the high-
est among other disease patterns. Otherwise, the sensitivity of consolidations was the lowest in the AMC dataset, 
whereas the specificity of nodule[s] was the lowest in the SNUBH dataset. In addition, the specificity of consol-
idation was the lowest in the datasets of the two centres and the lowest accuracy in the AMC dataset. Nodule[s] 
had the lowest accuracy in the SNUBH dataset. Additionally, PPV and NPV results showed better results in the 
other three lesions than both nodule[s] and consolidation. As shown in Table 2, the curriculum learning-based 
model showed significantly better overall results. Specifically, the AUCs of abnormalities in the datasets of the 
two centres on the curriculum learning-based model showed better overall results. Nodule[s] and consolidation 
showed the most differences between the two algorithms in terms of AUC.

In addition, we conducted various statistical analyses on the size of the nodules. As shown in Table 3, the 
curriculum learning-based model surpassed the baseline. In our strategy, nodule[s] over 5 cm had the worst AUC 
in AMC. In addition, as the specificity showed the lowest results, the AMC dataset seems to be confused with 
consolidation because of the mass type contained in nodule[s]. In contrast, AUC of nodule[s] over 5 cm in the 
SNUBH dataset was the best. As the nodule[s] size increased, the AUC and accuracy improved. However, overall, 
the accuracy of nodule[s] was lower than the other disease patterns. Evaluations of the location and classification 
of nodule[s] and consolidation found that, although CAMs of the disease patterns were appropriately visualised, 
the two lesions may be misclassified as each other. This may result from similar image patterns with different sizes 
of nodule[s] and consolidation on CXR images. Differentiating between nodule[s] and consolidation may be 
difficult in CXRs, suggesting the need for merged labelling criteria.

Although previous studies7 have evaluated the classification of each type of lesion, they were unable to accu-
rately determine the locations of various lesions on CXR images during initial diagnosis. The present study 
included weakly supervised deep learning with curriculum methods that can simultaneously detect multi-labelled 
lesions of various sizes and disease patterns on large CXR images. Finally, CAM8 was used to localise and visualise 
abnormal patterns. Knowing whether an evaluation of multiple lesions on CXR images by this method yields 
results like those diagnosed by experts is important. This curriculum-based, weakly supervised strategy may be 
promising in patients with different types of lesions because it may be used to determine the location and classi-
fication of multiple classes of lesions in multi-centre datasets. This result is shown in Fig. 5(a–c). This study had 
several limitations. Although we have developed a robust model by collecting and training data from datasets of 
two centres, data need to be collected and evaluated from more hospitals to cover a large number of X-ray varia-
tions. Figure 4 shows that untrained X-ray variations would have different marginal distributions and additional 
generalization methods could be required. Additionally, only five types of lesions were evaluated, suggesting a 
need to assess the practical utility of this strategy in patients with additional diseases, including cardiomegaly, 
tuberculosis, rib fracture, and mediastinal widening. In conclusion, this deep learning-based CAD system with 
high-scale CXR images from two centres, which was evaluated by curriculum learning and weak labelling only, 

Figure 2.  Visualization of manifolds using t-distributed stochastic neighbour embedding (t-SNE), (a) 
manifolds for normal individuals and five types of image patterns of the diseases; (b) manifolds for each 
hospital; (c) manifolds according to the manufacturer. (Abbreviations: AMC, Asan Medical Center; SNUBH, 
Seoul National University Bundang Hospital).
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required less preparation to train the system. This system could therefore be easily extended to include various 
kinds of diseases in actual clinical environments. In addition, our algorithm performed well for the simultaneous 
detection and classification of five disease patterns—nodule[s], consolidation, interstitial opacity, pleural effusion, 
and pneumothorax—on CXR images.

Figure 3.  Visualization of the class activation map (CAM) for five pulmonary diseases, (a) original images, 
(b) annotations by experts for each disease, and (c) visualization by CAM. (Abbreviations: NM, normal; ND, 
nodule; CS, consolidation; IO, interstitial opacity; PLE, pleural effusion; PN, pneumothorax; CAM, class 
activation map).
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Methods
The overall procedure for curriculum learning involved two steps. First, the regional patterns of abnormalities 
were identified by initial learning with patch images, specifically training the network on regional patterns of 
abnormalities. Second, the network was fine-tuned using entire images. Resnet-50 architecture9 was selected to 
train weak supervisions and modified for multi-label, non-multiclass problems to detect various disease patterns. 
Finally, class activation maps (CAMs)8 were extracted to localise and visualise the abnormal patterns. Figure 6 
shows a schematic of the overall procedure.

Dataset.  CXR images of adults were collected from two hospitals, AMC and SNUBH. CXR images of 6069 
healthy subjects and 3417 patients at AMC were obtained, with the latter including 944, 550, 280, 1364, and 331 
patients with nodule[s], consolidation, interstitial opacity, pleural effusion, and pneumothorax, respectively. CXR 
images of 1035 healthy subjects and 4404 patients were obtained at SNUBH, with the latter including 1189, 853, 
1009, 998, and 944 patients with nodule[s], consolidation, interstitial opacity, pleural effusion, and pneumotho-
rax, respectively. Normal and abnormal datasets with nodule[s] (including mass)/consolidation or interstitial 
opacities were confirmed by chest CT and pleural effusion, and pneumothorax on CXRs were determined by 
consensus of two thoracic radiologists with corresponding chest CT images. For training and validation of the 
model, each abnormal lesion was confirmed and manually drawn by expert thoracic radiologists. The data were 
randomised, 70% for training, 10% for validation, and 20% for testing. All patient identifiers were removed. The 
study protocol was approved by the institutional review board for human investigations at AMC and SNUBH, and 
the requirement for informed consent was waived owing to the retrospective nature of this study.

Implementation details and training strategy.  Original CXR images have a high resolution of about 
2000 × 2000 pixels. Use of this image size could be problematic because the receptive fields of the model are 

Figure 4.  Examples of misclassified nodules and consolidations, (a) original images, (b) annotations by experts, 
and (c) visualization by CAM. (Abbreviations: NM, normal; ND, nodule; CS, consolidation; IO, interstitial 
opacity; PLE, pleural effusion; PN, pneumothorax; CAM, class activation map).
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designed for general natural images, including memory problems. Therefore, all images were converted using 
bi-linear interpolation to a fixed size of 1024 × 1024 pixels. Because the pixel values of X-ray images have no phys-
ical meaning and the noise varies, careful pre-processing was required. The images were adjusted by the average of 
pixel values for the entire image at that windowing level, and a standard deviation of 3.5 pixel values was used for 
windowing width, normalizing the range of pixel values for each image. The standard deviation of 3.5 pixel values 
was selected empirically as a parameter for data augmentation during training by adjusting to a random floating 
point between 3 and 4. Sample-wise standardization was performed by subtracting the average pixel value of each 
image. Because patterns on X-ray images may differ among manufacturers, a sharpening and blurring technique 
was randomly applied to images during training, allowing the model to be robust to these image variations. We 
used the data in training and included additional data augmentation techniques, such as rotation (±10°), zoom 
(±10%), and shifting (±10%). The model was implemented in Keras with a Tensorflow backbone and a sto-
chastic gradient descent optimizer with learning and decay rates of 5e-5. In the weakly supervised classification 
problem, Resnet has been the most widely used CNN architecture because it showed good performance in the 
ImageNet Large Scale Visual Recognition Competition (ILSVRC). As the layer becomes deeper, high perfor-
mance could be expected. However, because of the trade-off with training time, this study used a 50-layer archi-
tecture (Resnet-50), which showed appropriate training time and performance. Resnet-50 designed in ILSVRC 
employs a softmax function as a classifier for multiclass problems. By contrast, the detection of various disease 
patterns on CXR should be regarded as a multi-label problem because various diseases can exist independently3. 
Therefore, the classifier was modified by multiple sigmoid functions:
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Figure 5.  CAMs for patients with multiple diseases, (a) original images, (b) annotations by experts, and (c) 
visualization by CAM. (Abbreviations: NM, normal; ND, nodule; CS, consolidation; IO, interstitial opacity; 
PLE, pleural effusion; PN, pneumothorax; CAM, class activation map).

https://doi.org/10.1038/s41598-019-51832-3


8Scientific Reports |         (2019) 9:15352  | https://doi.org/10.1038/s41598-019-51832-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

where K and N represent the total numbers of classes and samples, respectively, and w is a weight term dealing 
with imbalance. By default, under-sampling was performed to adjust the class distribution of a dataset by ran-
domly sampling the data of the remaining classes based on the class with the smallest number of images during 
training. Even then, there was a difference of (the number of classes + 1) times considering healthy subjects 
between the numbers of positive and negative samples in a class. To solve this problem of imbalance, the loss 
corresponding to each class was multiplied by its weight. Weakly supervised learning for image classification 
generally requires a considerable amount of data, with more required as complexity increases. Direct training 
with entire CXR images could lead to the wrong local minima because overlapping patterns of organs, tissues, and 
bones make the problem more difficult. A simple curriculum learning strategy was employed, consisting of two 
steps to train the complex disease patterns. In the first step, the Resnet-50 network, which was pre-trained on the 
ILSVRC dataset10, was trained using lesion-specific patch images. These patch images were extracted around the 
points selected by expert thoracic radiologists to better train the regional patterns of lesions (Fig. 7). The size of 
each patch image was defined as half its original size to contain a sufficient percentage of each disease pattern, as 
well as patterns surrounding each lesion. Subsequently, the network was fine-tuned using entire images because 
of the difference in distribution between patches and entire images.

Figure 6.  Schematic diagram of the curriculum learning strategy, (1) training patch images, (2) fine-tuning 
with entire images, and (3) class activation map (CAM). (Abbreviations: NM, normal; ND, nodule; CS, 
consolidation; IO, interstitial opacity; PLE, pleural effusion; PN, pneumothorax; CAM, class activation map).

Figure 7.  Lesion-based patch extraction for the curriculum learning in chest X-rays (CXRs).
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