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Genomic Prediction of 16 Complex 
Disease Risks Including Heart 
Attack, Diabetes, Breast and 
Prostate Cancer
Louis Lello1, Timothy G. Raben1, Soke Yuen Yong1, Laurent C. A. M. Tellier2,3 & 
Stephen D. H. Hsu1,2,3

We construct risk predictors using polygenic scores (PGS) computed from common Single Nucleotide 
Polymorphisms (SNPs) for a number of complex disease conditions, using L1-penalized regression 
(also known as LASSO) on case-control data from UK Biobank. Among the disease conditions studied 
are Hypothyroidism, (Resistant) Hypertension, Type 1 and 2 Diabetes, Breast Cancer, Prostate Cancer, 
Testicular Cancer, Gallstones, Glaucoma, Gout, Atrial Fibrillation, High Cholesterol, Asthma, Basal Cell 
Carcinoma, Malignant Melanoma, and Heart Attack. We obtain values for the area under the receiver 
operating characteristic curves (AUC) in the range ~0.58–0.71 using SNP data alone. Substantially 
higher predictor AUCs are obtained when incorporating additional variables such as age and sex. Some 
SNP predictors alone are sufficient to identify outliers (e.g., in the 99th percentile of polygenic score, 
or PGS) with 3–8 times higher risk than typical individuals. We validate predictors out-of-sample using 
the eMERGE dataset, and also with different ancestry subgroups within the UK Biobank population. 
Our results indicate that substantial improvements in predictive power are attainable using training 
sets with larger case populations. We anticipate rapid improvement in genomic prediction as more case-
control data become available for analysis.

Many important disease conditions are known to be significantly heritable1. This means that genomic predictors 
and risk estimates for a large number of diseases can be constructed if enough case-control data is available. In 
this paper we apply L1-penalized regression (LASSO) to case-control data from UK Biobank2 (UKBB) and con-
struct disease risk predictors. Similar techniques have been used for phenotype prediction in plant and animal 
genomics, as described below, but are less familiar in the context of human complex traits and disease risks. (The 
promise of genetic prediction of human complex traits has been discussed for years3–8, but the use of genome wide 
predictors for common phenotypes has yet to become commonplace). In earlier work9, we applied these methods 
to quantitative traits such as height, bone density, and educational attainment. Our height predictor captures 
almost all of the expected heritability for height and has a prediction error of roughly a few centimeters. Similar 
methods have also been employed in previous work on case-control datasets10,11

The standard procedure for evaluating the performance of a genomic predictor is to construct the receiver 
operating characterstic (ROC) curve and compute the area under the ROC curve (AUC)12. Recently, Khera et al.13 
constructed risk predictors for Atrial Fibrillation, Type 2 Diabetes, Breast Cancer, Inflammatory Bowel Disease, 
and Coronary Artery Disease (CAD). For these conditions, they obtained AUCs of 0.77, 0.72, 0.68, 0.63 and 0.81 
respectively. Note, though, that additional variables such as age and sex are used to obtain these results. When 
common SNPs alone are used in the predictors, the corresponding AUCs are smaller. For example14, obtain an 
AUC of 0.64 for CAD using SNPs alone - compared with 0.81 with inclusion of age and sex found in13. (Note that 
references13 and14 contain non-overlapping results). See also15 for a CAD meta-analysis that also predicts risk 
stratification.
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Among the disease conditions studied here are Hypothyroidism, Hypertension, Type 1 and 2 Diabetes, Breast 
Cancer, Prostate Cancer, Testicular Cancer, Gallstones, Glaucoma, Gout, Atrial Fibrillation, High Cholesterol, 
Asthma, Basal Cell Carcinoma, Malignant Melanoma and Heart Attack. We obtain AUCs in the range 0.580–0.707 
(see Table 2), using SNP data alone. Substantially higher AUCs are obtained by incorporating additional variables 
such as age and sex. Some SNP predictors alone are sufficient to identify outliers (e.g., in the 99th percentile of poly-
genic score, or PGS) with, e.g., 3–8 times higher risk than typical individuals. We validate predictors out-of-sample 
using the eMERGE dataset16 (taken from the US population), and also with different ancestry subgroups within the 
UK Biobank population as done in17. Note that the disease conditions contain a mix of self reported and diagnosed 
conditions, described in Supplemental Section B, but we do not see any distinguishable difference in the results.

Our analysis indicates that substantial improvements in predictive power are attainable using training sets 
with larger case populations. We anticipate rapid improvement in genomic prediction as more case-control data 
become available for analysis.

It seems likely that genomic prediction of disease risk will, for a number of important disease conditions, 
soon be good enough to be applied broadly in a clinical setting18–21. Inexpensive genotyping (e.g., roughly $50 per 
sample for an array genotype which directly measures roughly a million SNPs, and allows imputation of millions 
more) can identify individuals who are outliers in risk score, and hence are candidates for additional diagnostic 
testing, close observation, or preventative intervention (e.g., behavior modification).

We note the successful application of similar methods in genomic prediction of plant and animal phenotypes. 
Earlier studies have shown some success on complex human disease risk using much smaller datasets and a 
variety of methods22–24. Early work in this direction can be found in, for example25, (which highlights the utility 
of what were then referred to as dense marker data sets)3,26,27, (genome-wide allele significance from association 
studies in additive models)28–30, (regression analysis), and31 (accounting for linkage disequilibrium). For more 
recent reviews, and the current status of these approaches for plant and animal breeding, see32–34.

Methods and Data
The main dataset we use for training is the 2018 release of the UKBB35 (The 2018 version corrected some issues with 
imputation, included sex chromosomes, etc. See the Supplementary Information Sections A,B for further details). We 
use only genetically British individuals (as defined by UKBB using principal component analysis described in36) for 
training of our predictors. For out of sample testing, we use eMERGE data (restricted to self-reported white Americans) 
as well as self-reported white but non-genetically British individuals in UKBB. The specific eMERGE data set used here 

Condition

Odds Ratio

PGS % Literature New 99% Predicted

Asthma >96% — . − .
+ .2 71 0 21

0 21 . − .
+ .3 456 0 002

0 002

Atrial Fibrillation >90% 2 74 0 22
0 19. − .

+ . * 13 . − .
+ .2 81 0 24

0 24 10 8 1 6
2 1. − .

+ .

Basal Cell Carcinoma >96% — 2 64 0 36
0 36. − .

+ . 3 8 0 54
0 88. − .

+ .

Breast Cancer >96% . − .
+ .2 36 0 16

0 18* 13 . − .
+ .1 799 0 27

0 27 . − .
+ .2 5 0 10

0 14

Gallstones >96% — . − .
+ .2 41 0 56

0 56 9 7 2 1
4 5. − .

+ .

Glaucoma >96% — 1 9 0 53
0 53. − .

+ . 2 5 0 30
0 16. − .

+ .

Gout >90%/<10% 1 16 0 03
0 03. − .

+ . † 59 . − .
+ .8 2 0 28

0 32 . − .
+ .2 82 0 24

0 24

Heart Attack >96% — 2 25 0 37
0 37. − .

+ . . − .
+ .2 7 0 28

0 52

High Cholesterol >96% — . − .
+ .2 54 0 27

0 27 . − .
+ .2 29 0 38

0 58

Hypertension >90% . − .
+ .2 09 0 23

0 2760 . − .
+ .2 23 0 02

0 02 3 35 0 13
0 13. − .

+ .

Hypothyroidism >96% — . − .
+ .4 13 0 13

0 13 . − .
+ .6 74 0 36

0 36

Malignant Melanoma 1σ shift 1 36 0 15
0 16. − .

+ . 61 . − .
+ .1 35 0 26

0 26 . − .
+ .4 28 0 98

0 89

Prostate Cancer >75%/<25% . − .
+ .3 3 0 6

0 6* 62 . − .
+ .1 58 0 34

0 34 . − .
+ .4 6 0 25

0 33

Testicular Cancer >96% — 1 73 0 97
0 97. − .

+ . 1 13 0 42
1 54. − .

+ .

Type 1 Diabetes >95% 22.8* 63 . − .
+ .4 22 0 44

0 44 . − .
+ .13 73 0 79

1 16

Type 2 Diabetes >90% 2 52 0 17
0 19. − .

+ . * 13 . − .
+ .2 04 0 05

0 05 . − .
+ .2 81 0 27

0 27

Table 1.  Comparison of best known odds ratios in the literature (Literature) to the odds ratios calculated from 
UK BioBank data presented here (New). Comparison was either made at the largest possible PGS common 
to the two sets, or using whatever definition of odds ratio was used in the literature (PGS %). Additionally we 
indicate what we predict the odds ratio will be for those with 99% scores or above (99% Predicted column). 
These predictions are found by assuming the data was drawn from Gaussian distributions. We confine our 
references to the literature to specifically genetic or polygenic risk score determination of odds ratios. Other 
biological risk factors could, in the future, be combined with genetic risk to generate even better prediction. 
Further details about the literature are found in Section E. We focus here on purely genetic predictors. For many 
traits we were unaware of previous odds ratio estimates based on a purely polygenic score. For those we were 
aware of we listed the largest odds ratio in the chart above. *These predictors include a regression on non-
genetic biological information. †This article appeared on the BioRxiv shortly before our manuscript and we were 
originally unaware of the results.

https://doi.org/10.1038/s41598-019-51258-x


3Scientific Reports | (2019) 9:15286 | https://doi.org/10.1038/s41598-019-51258-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

refers to data obtained from dbGaP, under accession phs000360.v3.p1. (https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000360.v3.p1). We refer to the latter testing method as Adjacent Ancestry (AA) testing: 
the individuals used are part of the UKBB dataset, but have not been used in training and differ in ancestry from the 
training population. (The AA testing is a procedure similar to that described in17, where it is argued that this kind of 

Condition Training Set Test Set AUC Active SNPs λ*
Hypothyroidism impute UKBB 0.705 (0.009)

3704 (41) 1.406e-06 (1.33e-7)
Hypothyroidism impute eMERGE 0.630 (0.006)

Type 2 Diabetes impute UKBB 0.640 (0.015)
4168 (61) 6.93e-06 (1.73e-6)

Type 2 Diabetes impute eMERGE 0.633 (0.006)

Hypertension impute UKBB 0.667 (0.012)

9674 (55) 4.46e-6 (4.86e-7)Hypertension impute eMERGE 0.651 (0.007)

Resistant Hypertension impute eMERGE 0.6861 (0.001)

Asthma calls AA 0.632 (0.006) 3215 (16) 2.37e-6 (0.35e-6)

Type 1 Diabetes calls AA 0.647 (0.006) 50 (7) 7.9e-7 (0.1e-7)

Breast Cancer calls AA 0.582 (0.006) 480 (62) 3.38e-6 (0.05e-6)

Prostate Cancer calls AA 0.6399 (0.0077) 448 (347) 3.07e-6 (0.08e-8)

Testicular Cancer calls AA 0.65 (0.02) 19 (7) 1.42e-6 (0.04e-6)

Glaucoma calls AA 0.606 (0.006) 610 (114) 8.69e-7 (0.71e-7)

Gout calls AA 0.682 (0.007) 1010 (35) 9.41e-7 (0.03e-7)

Atrial Fibrillation calls AA 0.643 (0.006) 181 (39) 8.61e-7 (0.94e-7)

Gallstones calls AA 0.625 (0.006) 981 (163) 1.01e-7 (0.02e-7))

Heart Attack calls AA 0.591 (0.006) 1364 (49) 1.181e-6 (0.002e-7)

High Cholesterol calls AA 0.628 (0.006) 3543 (36) 2.4e-6 (0.2e-6)

Malignant Melanoma calls AA 0.580 (0.006) 26 (15) 9.5e-7 (0.8e-7)

Basal Cell Carcinoma calls AA 0.631 (0.006) 76 (22) 9.9e-7 (0.3e-7)

Table 2.  Table of genetic AUCs using SNPs only - no age or sex. Training and validating is done using UKBB 
data from either direct calls or imputed data to match eMERGE. Testing is done with UKBB, eMERGE, or AA 
as described in Secs. 2 and Supplementary Information Sec. D. Numbers in parenthesis are the larger of either a 
standard deviation from central value or numerical precision as described in Sec. 2. λ* refers to the lasso λ value 
used to compute AUC as described in Sec. 2.

Figure 1.  Top plots are histograms of controls (blue) and cases (gold). The bar heights are the averages over 5 
AA testing runs. The error bars are standard deviations. On the bottom the same average case and control points 
are plotted on separate lines (1/0) for cases and controls. The height of the bars (gold and blue) represents the 
relative density of data points in that bin. Note that on the bottom, the gold and blue bars have been normalized 
using the same scale; the gold density looks small because most of the individuals in the data set are controls. 
The red dashed lines mark the 4% and 96% quartile of data, i.e. 92% of the data lies between those points. The 
x-axes are the same for top and bottom graphs: z scores, or number of standard deviations from the control 
mean. A linear (yellow) and logistic (black) curve are plotted over this range. It is clear that the difference 
between linear and logistic curves is negligible in the region where the data is concentrated.
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testing is valuable when true out of sample data is unavailable. Note this is not a detailed analysis of predictor power fall 
off as a function of ancestry genetic distance. We intend to report on such effects in a future study).

We construct linear models of genetic predisposition for a variety of disease conditions (There has been some 
attention to non-linear models for complex trait interaction in the literature37–40. However we limit ourselves here 
to additive effects, which have been shown to account for most of the common SNP heritability for human pheno-
types such as height9, and in plant and animal phenotypes41–43). The phenotype data describes case-control status 
where cases are defined by whether the individual has been diagnosed for, or self-reports, the disease condition 
of interest. Our approach is built from previous work on compressed sensing9,44,45. In this earlier work we showed 
that matrices of human genomes are good “sensing matrices” in the terminology of compressed sensing. That is, 
the celebrated theorems resulting in performance guarantees and phase transition behavior of the L1 algorithms 
hold when human genome data are used46–50. Furthermore, L1 penalization efficiently captures essentially all the 
expected common SNP heritability for human height, one of the most complex but highly heritable human traits9. 
Additionally linear methods are capable of capturing most of the so-called “missing heritability”51. It is for these 
reasons that we focus specifically on L1 methods in this paper. Initial investigations into deep learning methods 
have shown that they do not universally outperform or even compete with linear methods52.

Although we are focused on a classification problem of case/control conditions in this work, as can be seen 
in Fig. 1, the genetic scores of cases and controls have a large overlap. Because of this we found little difference in 
performance between linear vs logistic regression. We do not exclude the possibility that other methods (e.g.53) 
may work as well or better. However, our primary motivation is the construction of potentially clinically useful pre-
dictors, not methodological comparison between different algorithms.

We note that there are robust Bayesian Monte Carlo approaches that can account for a wide variety of model 
features like linkage disequilibrium and variable selection. However, it has been noted that (so far) for human 
complex traits, these methods have only produced a modest increase in predictive power at the cost of large com-
putation times54. Our methods are not explicitly Bayesian; we estimate posterior uncertainties in our predictor 
via repeated cross-validation.

For each disease condition, we compute a set of additive effects β
→⁎

 (each component is the effect size for a 
specific SNP) which minimizes the LASSO objective function:
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squares), … 1 is the L1 norm (sum of absolute values) and the term β
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 is a penalization which enforces sparsity 

of β
→

. The optimization is performed over a space of 50,000 SNPs which are selected by rank ordering the p-values 
obtained from single-marker regression of the phenotype against the SNPs. The details of this are described in the 
Supplementary Information Section F.

Predictors are trained using a custom implementation of the LASSO algorithm which uses coordinate descent for 
a fixed value of λ. We typically use five non-overlapping sets of cases and controls held back from the training set for 
the purposes of in-sample cross-validation. For each value of λ, there is a particular predictor which is then applied 
to the cross-validation set, where the polygenic score is defined as (i labels the individual and j labels the SNP)

∑ β= .
.

⁎XPGS
(2 2)

i
j

ij j

The term “polygenic score” typically refers to a simple measure built using results from single marker regres-
sion (e.g. GWAS), perhaps combined with p-value thresholding, and some method to account for linkage dise-
quilibrium. Our use of penalized regression incorporates similar features – it favors sparse models (setting most 
effects to zero) in which the activated SNPs (those with non-zero effect sizes) are only weakly correlated to each 
other9. A thorough discussion of PGS construction is given in55. A brief overview of the use of single marker 
regression for phenotypes studied here is reviewed in Supplementary Information Section D.

To generate a specific value of the penalization λ* which defines our final predictor (for final evaluation on 
out-of-sample testing sets), we find the λ that maximizes AUC in each cross-validation set, average them, then 
move one standard deviation in the direction of higher penalization (the penalization λ is progressively reduced 
in a LASSO regression). Moving one standard deviation in the direction of higher penalization errs on the side of 
parsimony (In this context, a more parsimonious model refers to one with fewer active SNPs). These values of λ 
are reported in Section 4, but further analysis shows that tuning λ to a value that maximizes the testing set AUC 
tends to match λ* within error. This is explained in more detail in Supplementary Information F. The value of the 
phenotype variable y is simply 1 or 0 (for case or control status, respectively).

Scores can be turned into ROC curves by binning and counting cases and controls at various reference score 
values. The ROC curves are then numerically integrated to get AUC curves. We test the precision of this pro-
cedure by splitting ROC intervals into smaller and smaller bins. For several phenotypes this is compared to 
the rank-order (Mann-Whitney) exact AUC. The numerical integration, which was used to save computational 
time, gives AUC results accurate to ~1% (This is the given accuracy at a specific number of cases and controls. As 
described in Sec. 4 the absolute value of AUC depends on the number of reported cases). For various AUC results 
the error is reported as the larger of either this precision uncertainty or the statistical error of repeated trials.

Finally we note that for the analysis of case-control phenotypes it is common to use logistic regression. We 
studied this approach for those of our phenotypes that also appear in13, but found little to no difference in AUC 
or odds ratio results between linear and logistic regression. This might suggest that the data sets are highly 
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constrained by the linear central region of the logistic function. Additionally, if we are simply interested in identi-
fying genomes corresponding to extreme outliers, a linear regression can be more conservative.

Utility of Genetic Predictors with Modest AUC
In this section we elaborate on the motivations for construction of predictors of complex disease risk. At the purely 
scientific level, the SNPs activated in the predictors give important clues to the genetic architecture and biochemical 
pathways involved in each condition. It is interesting that there is wide variation in genetic architecture: the number 
of SNPs activated can vary from a few dozen (e.g., for Type 1 Diabetes) to thousands (e.g., for Breast Cancer).

Beyond purely scientific interest, predictors of disease risk can have important practical applications. It is 
important to note that the prediction AUC need not be especially high for the predictor to have utility. This is because 
a moderate AUC might still allow for the useful identification of individuals who are outliers in risk.

Typically researchers quantify risk through an odds ratio of disease prevalence against a reference population. 
In Table 1, a summary of the odds ratios for various conditions examined in this work are computed and com-
pared to the literature. Further details about how the odds ratios are calculated can be found below, in Section 
4, and in the Supplementary Information Section G. A more in depth literature review can also be found in the 
Supplementary Information Section E.

The utility of prediction can be illustrated using odds ratios. Here we examine odds ratios and show how they 
can be translated to different sub-populations or to a generic population as in Fig. 2. Consider the general popu-
lation. Let f1(z) be the probability of polygenic score z in the case population, and f z( )0  the corresponding proba-
bility for controls. Then the probability that a random individual has score z is

=
+

+
+

=
+

+
.

.
P z

N f z
N N

N f z
N N

N f z N f z
N N

( )
( ) ( ) ( ) ( )

(3 1)
1 1

1 0

0 0

1 0

1 1 0 0

1 0

Again, this is the probability for the general population and f1 and f0 are generic distributions (i.e. we do not 
need to assume they are normal).

We can now consider representative sub-populations. Here, a representative sub-population means that for 
some sub-population, A, the number of cases and controls with score z is given by

= = .n z N f z n z N f z( ) ( ) & ( ) ( ), (3 2)
A A A A

1 1 1 0 0 0

where N A
1  and N A

0  are the total numbers of cases and controls in this sub-population.
From a sub-population we can construct a binned odds ratio, or BOR. The binned odds ratio is defined as the 

ratio number of cases to controls at a particular score value, normalized by the total number of cases and controls 
in the sub-population. If we examine two sub-populations, A and B, we see

= = = = =
.
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where we have used Eq. (3.2) to show that this BOR is independent of the number of cases and controls in the 
particular sub-population.

With these assumptions, the probability of developing a condition in one sub-population is given by

| =
+

=
+ ∗ .

P
r

(case z) n (z)
n (z) n (z)

1
1 1/( BOR) (3 4)

A 1
A

0
A

1
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A

where the odds ratio can be calculated in the testing population. Then the probability of developing the condition 
in another population is given by

| =
+ ∗

.
.

P (case z) 1
1 1/(r BOR) (3 5)

B

B

Using the odds ratio evaluated in the testing population and the (empirically known) lifetime prevalence of a 
specific condition, one can estimate the individual probability of developing a disease in the general population. 
We assume cases and controls are normally distributed in PGS score; we observed this to be empirically true (as 
described in the Supplementary Information Section E).

In Fig. 2, using the results of section 4, we display the probability that an individual will be diagnosed with 
Breast Cancer at some point in their life, conditional on PGS percentile. This is an absolute (genetic) risk – i.e., 
conditional on only genetic factors. Various risk models have been generated in the literature that involve genetic 
information, see for example the review4. While most models so far have focused on combinations of biological 
information with monogenic (GWAS) or genome-wide complex trait analysis, this work presents novel polygenic 
predictors which depend on genotype only. For individuals who are, e.g., in the top percentile in PGS, their risk 
is roughly 1 in 3, making them high risk by American Cancer Society guidelines. According to these guidelines, 
women with such PGS scores might be offered mammograms starting a decade earlier than women with average 
risk. Thus, the Breast Cancer predictor may have practical utility already despite an AUC of only 0.6 or so. A similar 
conclusion may apply to some of the other predictors described in our paper, such as hypothyroidism.

Future work should investigate the cost-benefit characteristics of population-level inexpensive genotyping. 
Below, we give a very simplified version of this kind of analysis, which suggests that the benefits from Breast 
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Cancer screening alone might pay for the cost of genotyping the entire female population. Of course, such a sig-
nificant conclusion requires much more detailed analysis than we provide here.

We can define a simple financial cost-benefit equation (per individual in the population) as follows:

X T FB C G( )
(3 6)i

i i i i∑= − − .
.

Here the sum runs over different disease conditions i for which predictors have been developed, using geno-
typing data that costs G per individual. If the i-th item in the sum is not positive, we can simply opt not to use that 
specific disease condition. Under this assumption each term in the sum is either positive or zero.

Ti is defined to be a fraction of the population above a chosen PRS cutoff. Ci is the cost of an intervention (e.g., 
early mammograms) applied to all of these high risk individuals. Fi is the fraction of these high risk individuals 
who actually develop the condition (e.g., Breast Cancer), and Bi is the financial benefit to the health care system 
from early detection in those individuals.

In the case of breast cancer, we make the following estimates for these parameters. G $100=  (inexpensive common 
SNP array), = .T 0 01 (top percentile in risk), = .F 0 33 (one in three develop Breast Cancer), C $1000=  (cost of an 
extra decade of mammograms), and =B k$30  (cost savings from early detection, estimated in56) [The potential for this 
kind of cost savings is already being discussed in non-technical sources, e.g. https://theconversation.com/
population-dna-testing-for-disease-risk-is-coming-here-are-five-things-to-know-112522]. When these values are used 
in (3.6), the single term in the sum from breast cancer alone is similar in size to the =G $100 cost of inexpensive gen-
otyping. This suggests that population-level genotyping might already be cost-benefit positive given already available 
predictors.

Previous researchers have pushed for a similar approach57. In our view the above discussion provides strong 
motivation for our research, and future research, on the construction of PRS for a broad variety of disease 
conditions.

Figure 2.  Probability of developing breast cancer or hypothyroidism given a specific polygenic score - shown 
in SD units and percentile. The lifetime population prevalence of both breast cancer and hypothyroidism are set 
to be 12%. Deviation from the red line, particularly at large and small PGS percentile, is likely an artifact of low 
statistics in these regions.

https://doi.org/10.1038/s41598-019-51258-x
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Main Results
The LASSO outputs can be used to build ROC curves, as shown in Fig. 3, and in turn produce AUCs and Odds 
Ratios. Figure 4 shows the evaluation of a predictor built using the LASSO algorithm. Five non-overlapping sets 
of cases and controls are held back from the training set for the purposes of in-sample cross-validation. For each 
value of λ, there is a particular predictor which is then applied to the cross-validation set. The value of λ one 
standard deviation higher than the one which maximizes AUC on a cross-validation set is selected as the defini-
tion of the model.Models are additionally judged by comparing a non-parametric measure, Mann-Whitney data 
AUC, to a parametric prediction, Gaussian AUC.

Each training set builds a slightly different predictor. After each of the 5 predictors is applied to the in-sample 
cross-validation sets, each model is evaluated (by AUC) to select the value of λ which will be used on the test-
ing set. For some phenotypes we have access to true out-of-sample data (i.e. eMERGE), while for other pheno-
types we implement adjacent ancestry (AA) testing using genetically dissimilar groups17. This is described in the 
Supplementary Information Sections C,D. An example of this type of calculation is shown in Fig. 4, where the 
AUC is plotted as a function of λ for Hypertension.

Table 2 below presents the results of similar analyses for a variety of disease conditions. We list the best AUC 
for a given trait and the data set which was used to obtain that AUC.

In Figs 5, 6, 7 and 8, the distributions of the polygenic score are shown for cases and controls drawn from the 
eMERGE dataset. In each figure, we show on the left the distributions obtained from performing LASSO on 
case-control data only, and on the right an improved polygenic score which includes effects from separately 
regressing on sex and age. The improved polygenic score is obtained as follows: regress the phenotype =y (1, 0) 
against sex and age, and then add the resulting model to the LASSO score. This procedure is reasonable since SNP 
state, sex, and age are independent degrees of freedom. In some cases, this procedure leads to vastly improved 
performance.

Figure 3.  The receiver operator characteristic curve for case-control data on Hypothyroidism. This example 
includes sex and age as covariates.

Figure 4.  AUC computed on 5 holdback sets (1,000 each of cases and controls) for Hypertension, as a function 
of λ. A. UK Biobank and B. eMERGE.

https://doi.org/10.1038/s41598-019-51258-x
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The distribution of PGS among cases can be significantly displaced (e.g., shifted by a standard deviation or 
more) from that of controls when the AUC is high. At modest AUC, there is substantial overlap between the 
distributions, although the high-PGS population has a much higher concentration of cases than the rest of the 
population. Outlier individuals who are at high risk for the disease condition can therefore be identified by PGS 
score alone even at modest AUCs, for which the case and control normal distributions are displaced by, e.g., less 
than a standard deviation.

In Table 3 we compare results from regressions on SNPs alone, sex and age alone, and all three combined. 
Performance for some traits is significantly enhanced by inclusion of sex and age information.

For example, Hypertension is predicted very well by age + sex alone compared to SNPs alone whereas Type 
2 Diabetes is predicted very well by SNPs alone compared to age + sex alone. In all cases, the combined model 
outperforms either individual model.

Figure 5.  Distribution of PGS, cases and controls for Hypertension in the eMERGE dataset using SNPs alone 
and including sex and age as regressors.

Figure 6.  Distribution of PGS score, cases and controls for Resistant Hypertension in the eMERGE dataset 
using SNPs alone and including sex and age as regressors.

Figure 7.  Distribution of PGS score, cases and controls for Hypothyroidism in the eMERGE dataset using SNPs 
alone and including sex and age as regressors.

https://doi.org/10.1038/s41598-019-51258-x
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The results thus far have focused on predictions built on the autosomes alone (i.e. SNPs from the sex chromo-
somes are not included in the regression). However, given that some conditions are predominant in one sex over 
the other, it seems possible that there is a nontrivial effect coming from the sex chromosomes. For instance, 85% 
of Hypothyroidism cases in the UK Biobank are women. In Table 4 we compare the results from including the 
sex chromosomes in the regression to using only the autosomes. The differences found in terms of AUC is neg-
ligible, suggesting that variation among common SNPs on the sex chromosomes does not have a large effect on 
Hypothyroidism risk. We found a similarly negligible change when including sex chromosomes for AA testing.

Figures 5, 6, 7 and 8 suggest that case and control populations can be approximated by two overlapping normal 
distributions. Under this assumption, one can relate AUC directly to the means and standard deviations of the case 
and control populations. If two normal distributions with means μ1, μ0 and standard deviations σ1, σ0 are assumed 
for cases and controls ( =i 1, 0 respectively below), the AUC can be explicitly calculated via (The details of the fol-
lowing calculations are in the Supplementary Information Section G. Some of the results can be found in58).
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Figure 8.  Distribution of PGS score, cases and controls for type 2 diabetes in the eMERGE dataset using SNPs 
alone and including sex and age as regressors.

Condition Test set Age + Sex Genetic Only
Age + Sex + 
genetic

Hypertension UKBB 0.638 (0.018) 0.667 (0.012) 0.717 (0.007)

Hypothyroidism UKBB 0.695 (0.007) 0.705 (0.009) 0.783 (0.008)

Type 2 Diabetes UKBB 0.672 (0.009) 0.640 (0.015) 0.651 (0.013)

Hypertension eMERGE 0.818 (0.008) 0.651 (0.007) 0.851 (0.009)

Resistant Hypertension eMERGE 0.817 (0.008) 0.686 (0.007) 0.864 (0.009)

Hypothyroidism eMERGE 0.643 (0.006) 0.630 (0.006) 0.697 (0.007)

Type 2 Diabetes eMERGE 0.565 (0.006) 0.633 (0.006) 0.651 (0.007)

Table 3.  AUCs obtained using sex and age alone, SNPs alone, and all three together.

Condition With Sex Chr No Sex Chr

Hypothyroidism 0.6302 (0.0012) 0.6300 (0.0012)

Type 2 Diabetes 0.6377 (0.0018) 0.6327 (0.0018)

Hypertension 0.6499 (0.0008) 0.6510 (0.0008)

Resistant Hypertension 0.6845 (0.001) 0.6861 (0.001)

Table 4.  AUCs with and without SNPs from the sex chromosomes. All tested on eMERGE using SNPs as the 
only covariate.
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Under the assumption of overlapping normal distributions, we can compute the following odds ratio OR(z) 
as a function of PGS. OR(z) is defined as the ratio of cases to controls for individuals with PGS ≥ z to the overall 
ratio of cases to controls in the entire population. In the formula below, 1 = cases, 0 = controls.

∫ ∫
= =

− Φ

− Φ .

μ

σ

μ

σ

∞ ∞ −

−

( )
( )

z
dx n f x dx n f x

n n
OR( )

( ( ))/ ( ( ))

/

1

1 (4 2)

z z

z

z

1 1 0 0

1 0

1

1

0

0

We compute means and standard deviations for cases and controls using the PGS distribution defined by the 
best predictor (by AUC) in the eMERGE dataset. We can then compare the AUC and OR predicted under the 
assumption of displaced normal distributions with the actual AUC and OR calculated directly from eMERGE 
data.

AUC results are shown in Table 5, where we assemble the statistics for predictors trained on SNPs alone. In 
Table 6 we do the same for predictors trained on SNPs, sex, and age.

The results for odds ratios as a function of PGS percentile for several conditions are shown in Figs 9, 10, 11 and 
12. Note that each figure shows the results when (1) performing LASSO on case-control data only and (2) adding 
a regression model on sex + age to the LASSO result. The red line is what one obtains using the assumption of dis-
placed normal distributions, i.e. Equation 4.2, and for the rightmost graphs also contains information on age and 
sex. (Whether this approximation holds is of independent interest here. To the extent that it does, it allows simple 
extrapolation into the tail of the risk distribution). Overall there is good agreement between directly calculated 
odds ratios and the red line. Odds ratio error bars come from (1) repeated calculations using different training 
sets and (2) by assuming that counts of cases and controls are Poisson distributed. (This increases the error bar or 
estimated uncertainty significantly when the number of cases in a specific PGS bin is small).

The inclusion of the theoretically predicted red line in Figs 9, 10, 11 and 12 serves several purposes. Note, that 
in the higher PGS range, the fluctuations in the measured odds ratio become quite large - this is due to the small 
sample size in the higher PGS range - i.e., there are few data points available for individuals in the extreme range. 
The predicted values given by the red line provide a reasonable expectation for the odds ratios of individuals who 
fall in the high PGS tail of the distribution. This can be used to give estimated odds ratio targets for proposed 
future studies with higher counts of cases or for use in the interpretation of genetic testing. As mentioned above, 
much of the proposed clinical utility for PGS comes from risk stratification57, i.e. the hope to identify individuals 
at high or low risk. However, the cutoff for high risk is not a priori known and will vary from condition to condi-
tion. Another purpose of the red curves is to provide a rough test of the normality assumption - if the predicted 
curve and observed data deviate from each other substantially, this would provide some evidence that the nor-
mality assumption is invalid. Below we offer a χ2 test of the Gaussian nature of these distributions. While all con-
ditions were well modeled with this distribution, this does not preclude the possibility that there are interesting 
non-Gaussian features.

Hypothyroidism Type 2 Diabetes Hypertension Res HT

μcase 0.0093 0.0271 0.0240 0.0392

μcontrol −0.0038 −0.0141 −0.0470 −0.0448

σcase 0.0284 0.0901 0.1343 0.1270

σcontrol 0.0276 0.0866 0.1281 0.1219

Ncases/Ncontrols 1,084/3,171 1,921/4,369 2,035/1,202 1,358/1,202

AUCpred 0.630 (0.006) 0.629 (0.006) 0.649 (0.006) 0.683 (0.007)

AUCactual 0.630 (0.006) 0.633 (0.006) 0.651 (0.007) 0.686 (0.006)

Table 5.  Mean and standard deviation for PGS distributions for cases and controls, using predictors built from 
SNPs only and trained on case-control status alone. Predicted AUC from assumption of displaced normal 
distributions and actual AUC are also given.

Hypothyroidism Type 2 Diabetes Hypertension Res HT

μcase 0.1516 0.1431 0.7377 0.7525

μcontrol 0.1185 0.0924 0.4375 0.4366

σcase 0.0437 0.0948 0.1829 0.1830

σcontrol 0.0474 0.0943 0.2250 0.2258

Ncases/Ncontrols 1,035/3,047 1,921/4,369 2,000/1,196 1,331/1,196

AUCpred 0.696 (0.007) 0.648 (0.006) 0.850 (0.009) 0.862 (0.009)

AUCactual 0.697 (0.007) 0.651 (0.007) 0.852 (0.009) 0.864 (0.009)

Table 6.  Mean and standard deviation for PGS distributions of cases and controls, using predictors built from 
SNPs, sex, and age, and trained on case-control status alone. Predicted AUC from assumption of displaced 
normal distributions and actual AUC are also given.
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In our analysis we tested whether altering the regressand (phenotype y) to some kind of residual based on age 
and sex could improve the genetic predictor. In all cases we start with =y 1, 0 for case or control respectively. 
Then we use the three different regressands:
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Figure 9.  Odds ratio between upper percentile in PGS and total population prevalence in eMERGE for 
Hypothyroidism with and without using age and sex as covariates.

Figure 10.  Odds ratio between upper percentile in PGS and total population prevalence in eMERGE for 
Hypertension with and without using age and sex as covariates.

Figure 11.  Odds ratio between upper percentile in PGS and total population prevalence in eMERGE for 
Resistant Hypertension with and without using age and sex as covariates.
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For each case, we tested this including and excluding the sex chromosomes during the regression. As with the 
previous results, the best prediction accuracy is not appreciably altered if training is done on the autosomes alone. 
The results are given in Table 7.

The distributions in Figs 5–7 appear Gaussian under casual inspection, and were further tested against a nor-
mal distribution. We illustrate this with Atrial Fibrillation and Testicular cancer - these two conditions represent 
respectively the best and worst fits to Gaussians. For control groups, results were similar for all phenotypes. For 
example assuming “Sturge’s Rule” for the number of bins, Atrial Fibrillation controls lead to 
χ = .5, 359 29/56, 772dof

2  with a p-value × −7 10 1013 when tested against a Gaussian distribution. For cases, we 
also found extremely good fits. Again, Atrial Fibrillation cases lead to χ = .35 181/418dof

2  and p-value 0.0192. 
Even for phenotypes with very few cases we find very good fits. For Testicular Cancer cases we find a 
χ = .35 1429/89dof

2  and p-value 1.18 × 10−4. For predicted AUCs and Odds Ratios using Eqs (4.1) and (4.2) we 
find very little difference between using means and standard deviations from empirical data sets or using fits to 
Gaussians.

As more data become available for training we expect prediction strength (e.g., AUC) to increase. Based on 
estimated heritability, predictors in this study are still far from maximum possible AUCs, such as: type 2 dia-
betes (0.94), coronary artery disease (0.95), breast cancer (0.89), prostate cancer (0.90), and asthma (0.88)12. 
We investigate improvement with sample size by varying the number of cases used in training. For Type 2 

Figure 12.  Odds ratio between upper percentile in PGS and total population prevalence in eMERGE for Type 2 
Diabetes with and without using age and sex as covariates.

Condition CC Status Mod 1 Mod 2

Hypothyroidism

  SNPs alone 0.6300 (0.0012) 0.6046 (0.0025) 0.6177 (0.0042)

  Age/Sex Alone 0.6430

  With Age/Sex 0.6966 (0.0009) 0.6489 (0.0173) 0.6884 (0.0021)

Type 2 Diabetes

  SNPs alone 0.6327 (0.0018) 0.6378 (0.0018) 0.6327 (0.0018)

  Age/Sex Alone 0.5654

  With Age/Sex 0.651 (0.0014) 0.6283 (0.0039) 0.651 (0.0014)

Hypertension

  SNPs alone 0.651 (0.0008) 0.6495 (0.0004) 0.6497 (0.0005)

  Age/Sex Alone 0.8180

  With Age/Sex 0.8518 (0.0003) 0.8519 (0.0003) 0.8516 (0.0001)

Table 7.  Table of prediction results using three types of regressands. All results are on eMERGE and show 
results for using SNPs, Age, Sex and combinations of such.
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Diabetes and Hypothyroidism, we train predictors with 5 random sets of 1k, 2k, 3k, 4k, 6k, 8k, 10k, 12k, 14k, 
and 16k cases (each of these trials uses the same total set of controls as described in the supplementary mate-
rials). For Hypertension, we train predictors using 5 randoms sets of 1k, 10k, 20k, …, and 90k cases. For each, 
we also include the previously generated best predictors which used all cases except the 1000 held back for 
cross-validation. These predictors are then applied to the eMERGE dataset and the maximum AUC is calculated.

In order to gain a sense of how predictive capability improves with larger data sets, in Fig. 13 we plot the 
average maximum AUC among the 5 training sets against the log of the number of cases (in thousands) used in 
training. Note that in each situation, as the number of cases increases, so does the average AUC. For each disease 
condition, the AUC increases roughly linearly with log N as we approach the maximum number of cases availa-
ble. Of course, this is just a rough observation but suggestive of a general trend. The main point is that there is no 
evidence of approach to an asymptotic (maximum) AUC with current levels of data. The rate of improvement for 
Type 2 Diabetes appears to greater than for Hypertension or Hypothyroidism, but in all cases there is no sign of 
diminishing returns. There is obviously a ceiling to the amount of improvement, determined by the heritability of 
the specific condition12, but we see no evidence that we are approaching that limit.

By extrapolating this linear trend, we can project the value of AUC obtainable using a future cohort with a 
larger number of cases. In this work, we trained Type 2 Diabetes, Hypothyroidism and Hypertension predictors 
using 17k, 20k and 108k cases, respectively. If, for example, three new cohorts were assembled with 100k, 100k 
and 500k cases of Type 2 Diabetes, Hypothyroidism and Hypertension respectively, then the linear extrapolation 
suggests AUC values of 0.70, 0.67 and 0.71 respectively. This corresponds to 95 percentile odds ratios of approx-
imately 4.65, 3.5, and 5.2. In other words, it is reasonable to project that future predictors will be able to identify 
the 5 percent of the population with at least 3–5 times higher likelihood for these conditions than the general 
population. This will likely have important clinical applications, and we suggest that a high priority should be 
placed on assembling larger case data sets for important disease conditions.

We focused on the three traits above because we can test out of sample using eMERGE. However, using the 
adjacent ancestry (AA) method, we can make similar projections for diseases which may 1) be more clinically 
actionable or 2) show more promise for developing well separated cases and controls. We perform AA testing 
while varying the number of cases included in training for Type 1 Diabetes, Gout, and Prostate Cancer. We train 
predictors using all but 500, 1000, and 1500 cases and fit the maximum AUC to log(N/1000) to estimate AUC in 
hypothetical new datasets. For Type 1 Diabetes, we train with 2234, 1734 and 1234 cases - which achieve AUC of 
0.646, 0.643, 0.642. For Gout we train with 5503, 5003 and 4503 cases achieving AUC of 0.0.681, 0.676, 0.0.673. 
For Prostate Cancer, we train with 2758, 2258, 1758 cases achieving AUC of 0.0.633, 0.628, 0.609. A linear extrap-
olation to 50k cases of Prostate Cancer, Gout, and Type 1 Diabetes suggests that new predictors could achieve 
AUCs of 0.79, 0.76 and 0.66 (respectively) based solely on genetics. Such AUCs correspond to odds ratios of and 
11, 8, and 3.3 (respectively) for 95th percentile PGS score and above.

Discussion
The significant heritability of most common disease conditions implies that at least some of the variance in risk 
is due to genetic effects. With enough training data, modern machine learning techniques enable us to construct 
polygenic predictors of risk. A learning algorithm with enough examples to train on can eventually identify 
individuals, based on genotype alone, who are at unusually high risk for the condition. This has obvious clinical 
applications: scarce resources for prevention and diagnosis can be more efficiently allocated if high risk individ-
uals can be identified while still negative for the disease condition. This identification can occur early in life, or 
even before birth.

In this paper we used UK Biobank data to construct predictors for a number of conditions. We conducted 
out of sample testing using eMERGE data (collected from the US population) and adjacent ancestry (AA) testing 
using UK ethnic subgroups distinct from the training population. The results suggest that our polygenic scores 
indeed predict complex disease risk - there is very strong agreement in performance between the training and 
out of sample testing populations. Furthermore, in both the training and test populations the distribution of 
PGS is approximately Gaussian, with cases having on average higher scores. We verify that, for all disease condi-
tions studied, a simple model of displaced Gaussian distributions predicts empirically observed odds ratios (i.e., 

Figure 13.  Maximum AUC on out-of-sample testing set (eMERGE) as a function of the number of cases (in 
thousands) included in training. Shown for type 2 diabetes, Hypothyroidism and Hypertension.
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individual risk in test population) as a function of PGS. This is strong evidence that the polygenic score itself, 
generated for each disease condition using machine learning, is indeed capturing a nontrivial component of 
genetic risk.

By varying the amount of case data used in training, we estimate the rate of improvement of polygenic predic-
tors with sample size. Plausible extrapolations suggest that sample sizes readily within reach of population genet-
ics studies will result in predictors of significant clinical utility. Additionally, extending this analysis to exome and 
whole genome data will also improve prediction. The use of genomics in Precision Medicine has a bright future, 
which is just beginning. We believe there is a strong case for making inexpensive genotyping Standard of Care in 
health systems across the world.
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