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Late-stage trifluoromethylthiolation of benzylic
C-H bonds
Wentao Xu1, Wenliang Wang1, Tao Liu1, Jin Xie 1* & Chengjian Zhu1,2*

The benzylic positions in drugs are sites that readily react with cytochrome P450 oxidases via

single-electron oxidation. New synthetic methodologies to incorporate a fluoroalkyl group at

the benzylic site are continually being developed, and in this paper, we report a metal-free

and site-selective organophotoredox-catalyzed trifluoromethylthiolation of benzylic C-H

bonds for a wide variety of alkyl arenes and heteroarenes. The precise and predictive

regioselectivity among various C(sp3)-H bonds originates from an inner-sphere benzylic

radical initiation mechanism, and avoids the use of external oxidants or hydrogen atom

abstractors. Its practicality stems from the trifluoromethylthiolation of a series of drugs and

complex organic molecules, which is overwhelmingly selective for benzyl groups. This

operationally simple protocol can provide a general and practical access to structurally

diverse benzylic trifluoromethyl sulfides produced from ubiquitous benzylic C-H bonds. Large

scale trifluoromethylthiolation can be achieved with continuous flow photoredox technology.
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Challenges in modern drug discovery have played an
important role in the evolution of direct synthetic meth-
odology1–6. The cytochrome P450 enzymatic metabolism

of therapeutics in vivo is a common route of drug metabolism7.
Due to the unique electron-negativity and high lipophilicity, the
introduction of a trifluoromethylthio group (SCF3) into phar-
maceutical candidates can significantly protect against in vivo
enzymatic metabolism and increase the cell membrane perme-
ability8. As a consequence, the development of organic synthetic
strategies accessing trifluoromethylthiolated compounds has
gained considerable momentum in recent years9–15. Although
several trifluoromethylthiolated drugs (e.g., tiflorex, toltrazuril
and tiflorex in Fig. 1a) have been approved by FDA, the future
development of such compounds depends on the evolution of
synthetic strategies entailing versatility, diversity and availability.

Direct radical trifluoromethylthiolation of C(sp3)–H bonds can
provide a powerful platform with which to construct organo-
fluorine compounds16–19. Seminal work from Qing and co-
workers16, Chen and co-workers17, Tang and co-workers18,
and Glorius and co-workers19 has significantly stressed the
potential synthetic value of such reactions. Currently, the

regioselectivity of the reaction relies mainly on the physico-
chemical properties (e.g., exchange constants and polarity) of
intermolecular hydrogen-atom-transfer (HAT) reagents or oxi-
dants in terms of C–H bond dissociation energy and electronic
properties (Fig. 1b)20. However, based on this outer-sphere
radical initiation mechanism, it is still rather difficult to predict
the regioselectivity precisely, especially for the complex organic
molecular architectures bearing nearly resembling C(sp3)–H
bonds shown in Fig. 1b.

Benzylic C–H bonds are common in biologically important
compounds and about 25% of top-selling 200 pharmaceuticals
contain this structural motif 21. In general, the benzylic positions
in small-molecule drugs are sites easily metabolized by cyto-
chrome P450 oxidases. If a metal-free and unified benzylic C–H
bond trifluoromethylthiolation strategy is available, drug dis-
covery across of a wide range of structurally diversity compounds
could be expedited (Fig. 1c). Although benzylic radical C–H
bond functionalization has been well studied22–26, the late-stage
benzylic C–H trifluoromethylthiolation strategy remains a sig-
nificant obstacle. The use of strong external oxidants will result
in rapid oxidation of benzylic C–H bonds into a carbonyl unit27.
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Fig. 1 The state-of-the-art strategies of precise C–H trifluoromethylthiolation. a The importance of trifluoromethylthiolated drugs in the market. b Previous
strategies for C(sp3)–H bond trifluoromethylthiolation via generation of key alkyl radicals by an outer-sphere radical initiation process. c The prevalence of
the benzylic moiety in biologically important compounds. d Our work via inner-sphere radical initiation for precise benzylic C–H bond
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The only successful benzylic C–H trifluoromethylthiolation
strategy is copper-catalyzed oxidative trifluoromethylthiolation
with AgSCF3 but the reaction needs a large excess of simple
toluene analogs (60 equivalents compared to AgSCF3), and thus
this compromises its practicability and late-stage potential16. To
achieve an exclusive benzylic C–H regioselectivity, the best
approach may be the generation of a benzylic radical without
involving an intermolecular HAT process. This leads to con-
sideration of single-electron oxidation of phenyl rings. As shown
in Fig. 1d, the resultant aryl radical cation species28–36 will lead to
inner-sphere HAT with benzylic C–H bonds giving rise to
benzylic radicals. Herein, we report the development of a metal-
free, photoredox inner-sphere HAT process which predictably
generates, from natural products or drug derivatives, a benzylic
radical which can be trifluoromethylthiolated, avoiding the use of
oxidants and HAT reagents. The practicality of the method is
further illustrated by late-stage trifluoromethylthiolation of
benzylic C–H bonds under flow photochemical conditions.

Results
Reaction optimization. To test our hypothesis, 2-isopentylbenzo
[b]thiophene with Phth-SCF3 (2-((trifluoromethyl)thio)isoindo-
line-1,3-dione) was chosen as the model reaction since the
electron-rich thiophene ring can usually support electrophilic
trifluoromethylthiolation37,38. As shown in Table 1, both solvent
and photocatalyst are crucial factors for successful benzylic C–H
trifluoromethylthiolation. Among the solvents examined, only

MeCN could produce a 75% yield of 3a. Other solvents gave only
trace amounts of the desired product with commercially available
4CzIPN (2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile) as the
photocatalyst (Table 1, entries 1–5). Notably, the reaction is
highly regioselective (benzylic vs methine C–H, see Supplemen-
tary Fig. 9)19. Replacement of 4CzIPN with other photocatalysts
delivered a much lower yield (Table 1, entries 5–10). The amount
of Phth-SCF3 was further decreased from 1.5 equiv to 1.3 equiv by
careful evaluation of reaction and base concentrations, affording
the desired product (3a) in 81% yield with 98:2 regioselectivity
ratio (Table 1, entry 11). Compared with previous work39, the use
of a slight excess (1.3 equiv) of a trifluoromethylthiolated reagent
enhances its synthetic value. In the absence of K2CO3, a 32% yield
of 3a along with a decreased ratio of 88:12 was obtained (Table 1,
entry 12). The role of inorganic base may benefit the deproto-
nation, generating a benzylic radical species. Control experiments
suggested that both photocatalyst and light were crucial for
benzylic C(sp3)–H trifluoromethylthiolation (Table 1, entries
13–14).

Substrate scope. With the optimal reaction conditions in hand,
we investigated the scope of aromatic hydrocarbons (Fig. 2).
Several electron-rich five-membered ring heteroaromatic
compounds, including thiophene-, furan-, and indole-based
substrates (3a–3d) are compatible with the reaction. In general,
it is challenging to realize site-selective benzylic C–H
trifluoromethylthiolation of indole substrates (3c) due to the

Table 1 Optimization of reaction conditions

Entry PC Solvent Yield (%) 3a:3a′
1 4CzIPN DCM Trace –
2 4CzIPN MeOH Trace –
3 4CzIPN DMF Trace –
4 4CzIPN THF Trace –
5 4CzIPN MeCN 75 97:3
6 Ir[dF(CF3)(ppy)]2(dtbbpy)PF6 MeCN 2 1:1
7 Ru(bpz)3(PF6)2 MeCN – –
8 Acr-Mes+ ClO4

− MeCN Trace –
9 4CzPN MeCN 46 92:8
10 DCA MeCN 32 86:14
11a 4CzIPN MeCN 81 (73) 98:2
12a,b 4CzIPN MeCN 32 88:12
13a,c 4CzIPN MeCN Trace –
14a,d 4CzIPN MeCN 0 –

Reaction conditions: 1a (0.1 mmol), Phth-SCF3 (1.5 equiv), PC (2mol%), K2CO3 (0.1 equiv), anhydrous MeCN (2mL), 45W blue LEDs, 12 h a1a (0.2 mmol), K2CO3 (0.2 equiv), Phth-SCF3 (1.3 equiv),
anhydrous MeCN (4mL) bNo K2CO3

cNo photocatalyst. dUnder dark condition. The number in parentheses is the isolated yield
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competing trifluoromethylthiolation at C3 position40,41. This
further indicates the advantages of this inner-sphere radical
initiation mechanism. When substrates contain more than one
different benzylic C–H bond, the secondary (3e), tertiary (3f), and
less acidic C–H bond (3g, 3h) were preferentially tri-
fluoromethylthioylated. Interestingly, with 4-(3-phenylpropyl)-
pyridine, excellent regioselectivity was observed, focusing on the
C–H bond in the proximity of the more electron-rich phenyl ring
rather than the pyridinyl ring (3i). Distinguishing between nearly
identical C–H bonds with traditional outer-sphere HAT strategy
remains a significant challenge. It has been reported that even the
outer-sphere HAT mechanism can robustly achieve tri-
fluoromethylthiolation of unactivated methine and methylene
C(sp3)–H bonds while failing with benzylic C–H bonds19.

In contrast, our strategy addresses this unresolved problem
(3j–3l). Also, the predicted regioselectivity is obtained with sub-
strates bearing competitive methine C–H and the α-C–H of a
heteroatom (3l).

Subsequently, we examined the generality of this protocol with
substrates containing primary, secondary, or tertiary benzylic
C–H bonds. Substrates bearing electron-withdrawing functional
groups on the phenyl rings tolerated the reaction conditions,
furnishing the desired products (3m, 3o–3q) in satisfactory
yields. A wide variety of alkyl arenes are good coupling partners
and uniformly afford the desired products (3r–3cc) in moderate
to good yields with exclusive regioselectivity. The length of an
alkyl chain on the aromatic ring has no influence on the
regioselectivity and reaction efficiency. Another advantage of this
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redox-neutral strategy is that it can successfully trifluoro-
methylthiolate easily oxidized diphenylmethanes and benzylic
ethers (3v–x). Importantly, PinB-substituted alkyl arenes are
tolerated, albeit with moderate isolated yields (3z, 3dd), and can
participate in a variety of downstream diversification reactions.
With 2.5 equivalents of Phth-SCF3 reagents, double trifluoro-
methylthiolation can be realized (3ee, 3ff). With fluorenes, this
affords direct access to the gem-trifluoromethylthiolation product
(3ee) in moderate yield.

Late-stage and flow chemistry. Distinct from previous outer-
sphere radical initiation C–H trifluoromethylthiolation reactions,
an inner-sphere mechanism can exclusively generate a benzylic
radical without depending on external strong oxidants. To
demonstrate the generality and practice of the reaction, we
applied this redox-neutral strategy to achieve late-stage benzylic
trifluoromethylthiolation of biologically important natural pro-
ducts and drugs, with an aim of modularly constructing tri-
fluoromethylthioylated drug candidates (Fig. 3a). A variety of
complex molecules can be trifluoromethylthioylated at the
benzylic position in satisfactory yield with excellent functional
group compatibility. The inner-sphere benzylic radical generation
process allows competing C–H bonds little influence in complex
molecules. For example, one of the top selling drugs, pirfenidone
can undergo benzylic C–H trifluoromethylthiolation exclusively
to give the desired product (4) in 63% yield. The methyl ester
of ibuprofen, an anti-inflammatory drug can incur this

transformation at the more electron-rich benzylic C–H bond in
81% yield (11). The less sterically hindered benzylic C–H bond in
gemfibrozil and D-phenylalanine derivatives can be preferentially
trifluoromethylthiolated (13, 14). Complex alkyl arenes bearing
an amide NH moiety are also good substrates for highly site-
selective benzylic C–H trifluoromethylthiolation (14–16), and
late-stage trifluoromethylthiolation can be scaled up to 1 mmol
with shorter reaction times by the use of continuous micro-tubing
reactors42,43, thus enhancing its utility in synthetic applications
(Fig. 3b).

Synthetic application. A large number of benzyl sulfides were
synthesized during research of pesticides44 and the benzophenone
benzyl trifluoromethyl sulfide is a core substructure in such
compounds. With our protocol, a series of benzyl trifluoromethyl
sulfide analogs were successfully obtained from aryl (4-ethyl-
phenyl)methanones in 51–73% yield under mild reaction condi-
tions (Fig. 3c).

Mechanistic studies. To elucidate the possible reaction
mechanism, electron paramagnetic resonance (EPR) experiments
with N-tert-butyl-α-phenylnitrone (PBN) as the electron-spin
trapping reagent were carried out. A significant EPR signal was
observed for the model reaction, indicating a possible radical
pathway (Fig. 4a). To further validate this, a radical clock
experiment with cyclopropylbenzene as a substrate was per-
formed and the results (Fig. 4b) clearly demonstrated the
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involvement of a benzylic radical. In addition, the KIE result (kH/
kD= 6.9) suggests that C–H cleavage is involved in the rate-
determining step. Luminescence quenching experiments suggest
that 1a may be the quencher in the reductive quenching cycle
(Fig. 4d). The quantum yield of a model reaction was determined
to be 0.33 and thus a radical chain pathway is less likely.

Accordingly, a plausible mechanism is proposed and is
shown in Fig. 4e. 4CzIPN is a commercially available organic
photocatalyst, and it is reported that photoexcited 4CzIPN is a
strong oxidant (1/2E=+1.35 V). Although alkyl arenes hold
higher oxidative potential45, the potential overlap between the
excited 4CzIPN and alkyl arenes could promote the single-
electron oxidation for irreversible inner-sphere HAT as the
driving force (see Supplementary Figs. 31 and 32)46. The aryl
radical cation species that is formed (25 or 25′) will lead to an
intramolecular 1,2-HAT with benzylic C–H bonds and
subsequent deprotonation47 of cyclohexadienyl cation (26)
with base gives rise to a benzylic radical (27). This benzylic
radical can couple with a Phth-SCF3 anion radical (28) to
deliver the desired benzylic trifluoromethylthiolation products
(3) and a Phth anion (29). Generation of the Phth anion can
further abstract one proton from the cyclohexadienyl cation
(26) to yield phthalimide and this can explain why a catalytic
amount of K2CO3 can initiate the reaction. Alternatively, the
radical addition of benzylic radical (27) to electrophilic Phth-
SCF3 reagent is also a likely candidate19 for the generation of
trifluoromethylthiolation products (3).

Discussion
In conclusion, we have developed an organophotoredox-
catalyzed reaction for site-selective benzylic C–H bond tri-
fluoromethylthiolation of a wide variety of alkyl arenes and
heteroarenes through an inner-sphere radical initiation
mechanism, affording structurally diverse benzylic tri-
fluoromethyl sulfides with moderate to good yields. The broad
scope, excellent functional group compatibility, and predictable
regioselectivity allow for efficient late-stage benzylic C–H tri-
fluoromethylthiolation of a variety of drug candidates and
complex molecules. We believe that this strategy will expedite
precise benzylic C–H functionalization in complex molecules
and that it will promote the construction of a library of benzylic
trifluoromethyl sulfide leads for drug discovery.

Methods
General procedure for benzylic trifluoromethylthiolation. Substrate 1 (0.2 mmol),
Phth-SCF3 (64.3mg, 0.26 mmol), 4CzIPN (3.2mg, 0.004mmol), and K2CO3

(5.52mg, 0.04mmol) were placed in a transparent Schlenk tube equipped with a
stirring bar. The anhydrous MeCN (4.0 mL) was added under argon atmosphere. If
the substrate 1 is liquid, anhydrous MeCN and 1 were added in turn. The reaction
mixture was stirred under the irradiation of two 45W blue LEDs (distance app.
4.0 cm from the bulb) at room temperature for 12–24 h. When the reaction finished,
the mixture was quenched with water and extracted with ethyl acetate (3 × 10mL).
The organic layers were combined and concentrated under vacuo. The product was
purified by flash column chromatography on silica gel (petroleum ether:ethyl
acetate).

General procedure for flow chemistry. Complex molecule (1.0 mmol), Phth-
SCF3 (321 mg, 1.3 mmol), 4CzIPN (16 mg, 0.02 mmol), and K2CO3 powder
(120 mesh, 27.6 mg, 0.2 mmol) were placed in a sample bottle (20 mL). After
placing in the glove box, anhydrous MeCN (20.0 mL) was added and the yellow
mixture was then transferred into the syringe (20 mL) in the glove box. Next, the
reaction mixture was subjected to the irradiation of three 45W blue LEDs (distance
app. 4.0 cm) with a small fan at room temperature in the mode of perfusion/
extraction at the speed of 2.0 mL/h. When the reaction finished, the mixture was
quenched with water and extracted with ethyl acetate (3 × 10 mL). The organic
layers were combined and concentrated under vacuo. The product was purified by
flash column chromatography on silica gel (petroleum ether:ethyl acetate).

Data availability
The authors declare that all other data supporting the findings of this study are available
within the article and Supplementary Information files, and also are available from the
corresponding author upon reasonable request.
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