
Effects of a Hypocaloric, Nutritionally Complete, Higher Protein 
Meal Plan on Regional Body Fat and Cardiometabolic 
Biomarkers in Older Adults with Obesity

Monica C. Serraa, Daniel P. Beaversb, Rebecca M. Hendersonc, Jessica L. Kellehera, 
Jessica R. Kield, Kristen M. Beaverse

aDepartment of Medicine, Atlanta VA Medical Center, Emory University School of Medicine, 
Atlanta, GA, USA

bDepartment of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 
USA

cDepartment of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA

dMedifast, Inc., Baltimore, MD, USA

eDepartment of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA

Abstract

Background: Whether improvements in cardiometabolic health following weight loss (WL) are 

associated with changes in regional body fat distribution (gluteal vs. android) is not well 

documented.

Methods: Older (age: 70 ± 4 years; mean ± SD) adults with obesity were randomized to a 6-

month WL program (WL; n = 47), accomplished using a hypocaloric, nutritionally complete, 

higher protein (targeting ≥1.0 g/kg/day) meal plan, or a weight stability (WS; n = 49) program. 

Android, gynoid, visceral, and subcutaneous abdominal fat masses (via dual energy X-ray 

absorptiometry ) and fasting glucose and lipid profiles were assessed at baseline and 6 months.

Results: The WL group lost more body weight (WL: −8.6% vs. WS: −1.7%, p < 0.01), resulting 

in a reduction in fat mass at each region only following WL (all p < 0.05). The decline in the ratio 

of android/gynoid fat mass also was significant only following WL, resulting in greater declines 

than WS (mean [95% CI]; WL: −0.026 [−0.040 to −0.011] vs. WS: 0.003 [−0.012 to 0.019] g, p < 

0.01). The change in the ratio of visceral/subcutaneous abdominal fat mass was not significant in 

either group and did not differ between groups (WL: 0.65 [−0.38 to 1.68] vs. WS: 0.05 [−1.00 to 

1.10] g, p = 0.42). In general, the improvements in glucose and lipid profiles were associated with 
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declines in fat mass at the gynoid and android regions (r’s = 0.20–0.42, all p < 0.05), particularly 

the visceral depot but not the ratios.

Conclusion: WL achieved via a hypocaloric, nutritionally complete, higher protein meal plan is 

effective in reducing body fat in the android, gynoid, and visceral depots, which relate to 

cardiometabolic improvements.
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Aging is associated with weight gain and a shift of fat storage from gluteal/femoral (gynoid) 

to central abdominal (android) body regions, particularly in the visceral (intra-abdominal) 

depot [1], which in turn increases the risk for cardiometabolic diseases [2]. Among older 

adults with obesity, intentional, moderate weight loss (WL; 5–10% of baseline body weight), 

results in clinically significant improvement in cardiometabolic risk factors, including 

glucose and lipid profiles [3, 4]. However, the change in the distribution of fat from android 

to gynoid regions with moderate WL is not well characterized, with previous evidence 

supporting both a decrease [5] and no change [2] in the ratio. Further, though studies 

consistently suggest that declines in visceral and subcutaneous abdominal fat masses are 

related to improvements in glucose metabolism in older adults [6, 7], others suggest that it is 

the overall decline in fat mass that is important, regardless of the specific depot of fat loss 

[2]. These data highlight the need to better understand the role of WL-associated changes in 

body fat distribution and their influence on cardiometabolic health as these outcomes may 

have important clinical implications for WL recommendations in older adults.

Protein composition of the prescribed WL diet may be a key determinant of changes in body 

fat distribution; yet, the macronutrient profile of WL diets are often not well described or 

controlled. Therefore, the purpose of this study is to determine whether random assignment 

to a hypocaloric, nutritionally complete, higher protein (targeting ≥1.0 g/kg/day) meal plan 

results in improved regional body fat distribution and cardiometabolic health compared to a 

moderate protein, weight stability program in older adults with obesity. We hypothesize that 

participants randomized to the WL group will experience greater reductions in android to 

gynoid and visceral to subcutaneous abdominal fat mass ratios and improvements in glucose 

and lipid profiles compared to those randomized to the weight stable (WS) group. Further, 

we hypothesize that greater reductions in the distribution of android to gynoid and visceral 

to subcutaneous abdominal fat mass ratios are associated with greater cardiomet-abolic 

improvements.

Methods

Study Participants

Older (65–79 years) men and women with obesity (body mass index [BMI] 30–40 kg/m2) 

and self-reported mobility disability (i.e., difficult walking ¼ mile or climbing stairs/

performing house/yard work) were recruited to participate in the Medifast® for Seniors 

Study (NCT02730988). Detailed inclusion/exclusion criteria, along with intervention effects 

on change in total body composition and mobility are previously published [8]; intervention 
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effects on regional body fat mass, and associations with bio-markers of cardiometabolic 

health are unique to this secondary analysis.

Interventions

Participants were randomized to a 6-month WL or a WS control program. Randomization 

occurred in a 1:1 allocation in 5 waves (n = 12–22 participants/wave), with blocking 

stratified by gender. Detailed intervention descriptions can be found in the primary outcome 

paper [8]. Caloric deficit in the WL group was achieved through the Medifast® 4&2&1 

Plan®, which included a total of 4 meal replacement products, 2 lean and green meals (i.e., 

lean protein, non-starchy vegetables, and healthy fats), and 1 healthy snack (i.e., fruit, dairy, 

or grain). The diet was estimated to provide 1,100–1,300 kcal/day, 120–150 g protein (1.2–

1.5 g/kg/day protein), 85–100 g carbohydrate, 30–45 g fat and targeted ~10% WL. In 

addition, WL participants also attended 12 bi-weekly behavioral counseling groups, to 

provide support and discuss topics pertinent to weight control led by a Registered Dietitian. 

Participants randomized to the WS were instructed to maintain their baseline diet throughout 

the study. The WS group attended 12 bi-weekly behavioral educational sessions in which 

they received information pertinent to healthy aging (i.e., managing medications and talking 

effectively to a healthcare provider) and were monitored to ensure weight stability (within 

±5% of baseline). Bi-weekly weights were collected to track compliance to both protocols; 

additionally, the WL group recorded daily meal replacement product consumption.

Procedures

Body Composition—Height and weight were measured to calculate BMI. Total body fat 

mass, as well as regional fat mass in the android, gynoid, and visceral regions dual energy 

X-ray absorptiometry (iDXA, GE Medical Systems, Madison, WI, USA) were determined 

by DXA scans before and after the interventions. All scans were performed in accordance 

with manufacturer recommended positioning and analyzed by an International Society of 

Clinical Densitometry certified DXA technologist blinded to intervention assignment. The 

android area was described as the area around the waist between the mid-point of the lumbar 

spine and the top of the pelvis, while the gynoid area was between the head of the femur to 

the mid-thigh [9]. Visceral fat mass was assessed using the CoreScan algorithm (GE Medical 

Systems, Madison, WI, USA) [10]. Following manufacturer recommendations, 

subcutaneous abdominal fat mass was defined as the difference between android fat mass 

and visceral fat mass.

Cardiometabolic Assessments—Blood samples were collected from participants in the 

early morning (between 7 and 9 a.m.) following a 12-h fast at baseline and at 6 months using 

standard procedures [11]. Samples were sent to a clinical laboratory (LabCorp., USA) for 

analysis of glucose, insulin, and lipid profiles. Insulin resistance was estimated via the 

homeostatic model assessment (HOMA-IR), which was calculated as (fasting insulin * 

fasting glucose/22.5) [12].

Statistical Analyses

Baseline descriptive statistics was calculated by group and also overall; it was presented as 

mean ± SD. Data were assessed for normality and transformed as appropriate (i.e., log 
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transformation of triglycerides and visceral to subcutaneous abdominal fat mass ratio). Post 

intervention group-specific body composition means and 95% CIs were produced using 

mixed models with treatment, time, treatment by time interaction, gender, and baseline value 

of the outcome as covariates; estimates were produced using contrast statements at the 24-

week visit. Similarly, group-specific glucose and lipid variables were produced from a 

general linear model, adjusted for gender and baseline value of the outcome and presented as 

means (95% CI). Partial correlations were used to assess relationships between body 

composition and cardiometabolic outcome, with baseline analyses adjusted for gender, and 

change analyses adjusted for gender and baseline regional body fat. All tests were performed 

using 2-tailed tests at a 0.05 level of significance, and data were analyzed using SAS version 

9.4 (SAS Institute, Cary, NC, USA).

Results

Participant Characteristics and Intervention Compliance Measures

Data related to participant recruitment and retention are published previously [8]. Overall, of 

the 96 enrolled participants, 74% were female and 72% were Caucasian. On average, 

participants were 70.3 ± 3.7 years old and had obesity (body weight: 97.1 ± 14.9 kg; BMI 

35.4 ± 3.3 kg/m2; total body fat: 46.6 ± 4.9%). Among those who completed the intervention 

(WL: n = 43 of 47; WS: n = 39 of 49), attendance to the bi-weekly educational sessions was 

88 and 84%, respectively, for the WL and WS groups. Within the WL group, self-reported 

compliance to the meal replacement product protocol was 93%. As designed, the WL group 

lost significantly more body weight (−8.6 vs. −1.7%; p < 0.01), BMI (−9.2 vs. −1.5%; p < 

0.01) and total body fat mass (−15.9 vs. 2.1%; p < 0.01) than the WS group.

Treatment effects on Regional Body Composition and Glucose and Lipid Profiles

Table 1 presents overall baseline body composition and cardiometabolic estimates, model 

adjusted group specific post-intervention body composition estimates and 95% CIs, and 

corresponding within group percentage change from baseline. The WL group lost a slightly 

greater percentage of android (−20.7%) than gynoid (−17.6%) fat mass, which resulted in a 

reduction in the android to gynoid fat mass ratio (−3.5%; p < 0.05). Android and gynoid fat 

masses and their ratio did not change with WS. The changes in android, gynoid, and the 

ratio of android to gynoid fat mass were greater following WL compared to WS (all p < 

0.01). Only the WL group reduced visceral (−20.1%) and subcutaneous abdominal (−21.2%) 

fat masses (allp < 0.05), which resulted in greater intervention effects than the WS group (all 

p < 0.01), but neither group reduced the ratio of visceral to abdominal fat mass.

Fasting glucose, insulin, HOMA-IR, and triglycerides were reduced 3.5, 33.2, 35.6, and 

22.1%, respectively, with WL (all p < 0.05). No changes in glucose or lipid profiles were 

observed with WS, except a reduction in HDL cholesterol (−7.0%,p < 0.05). The changes in 

glucose, insulin, HOMA-IR, HDL cholesterol, and triglycerides were greater with WL than 

WS (all p < 0.05).
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Associations between Regional Body Fat and Cardiometabolic Biomarkers

Table 2 presents baseline (adjusted for gender) and change (adjusted for gender and baseline 

regional body fat) in Pearson correlation coefficients in the combined groups between total 

and regional body fat and cardio-metabolic biomarkers. Greater baseline android fat mass 

and the ratio of android to gynoid fat mass were generally associated with worse glucose and 

lipid profiles; however, gynoid fat mass was not. Within the abdominal region, it was found 

that greater visceral fat mass was associated with poorer glucose profiles and triglycerides, 

but subcutaneous fat mass alone and the ratio of visceral to subcutaneous fat mass did not.

The decrease in total, android, and gynoid fat masses each similarly predicted declines in 

glucose, insulin, HOMA-IR, triglycerides and increases in HDL cholesterol following the 

interventions (Table 2). The change in the ratio of android to gynoid fat mass did not predict 

the change in glucose or lipid profiles, except LDL cholesterol, which was stronger than the 

change in android or gynoid fat mass alone. Within the abdominal region, the change in 

visceral fat mass was associated with the change in insulin, HOMA-IR, LDL cholesterol, 

and triglycerides, while the change in subcutaneous abdominal fat mass was associated with 

HOMA-IR and HDL cholesterol (Table 2). The change in visceral to subcutaneous 

abdominal fat mass was only significantly associated with the change in LDL cholesterol.

Discussion

Cross-sectional associations between greater android to gynoid fat mass and cardiometabolic 

dysregulation in older adults, as observed in this study, are well established [13]. However, 

this study adds to a growing body of work investigating whether intentional, moderate WL 

has the ability to counter age-associated shifts in body fat deposition toward central obesity 

by reducing abdominal (particularly visceral) to gluteal fat mass and decreasing 

cardiometabolic risk factors in older adults with obesity. We report that adherence to a 

hypocaloric, nutritionally complete, meal plan targeting ≥1.0 g/kg/day of protein was 

effective in reducing greater android to gynoid fat mass, but not visceral to subcutaneous 

abdominal fat mass, and improving biomarkers of cardiometabolic health, as compared to 

weight stability. However, in agreement with other findings [2], we also report that greater 

loss of overall fat mass, independent of the specific fat depot, is associated with the greatest 

reductions in cardiometabolic risk. Though these data highlight the significance of overall 

fat loss on cardiometabolic health, they should not detract from the need to decrease central 

adiposity. In accordance with our findings, previous evidence suggested that android fat 

reductions, from both the visceral and subcutaneous abdominal fat areas, are associated with 

improvements in cardiometabolic risk factors following WL in middle-aged and older adults 

[2, 14, 15]. Thus, identifying ways of achieving overall fat mass loss, while targeting the 

android region, may have clinical implications for improving WL-associated 

cardiometabolic health in older adults.

Little is known regarding the mechanisms of action that underlie the deposition and 

mobilization of regional body fat mass. Previous studies suggest a link between larger 

subcutaneous abdominal adipocytes and greater insulin resistance [2, 16, 17] and WL 

appears to reduce the size (but not number) of adipocytes [18, 19], indicating a potential role 

of regional storage and mobilization of acylglycerides in adipocytes following WL. 

Serra et al. Page 5

Ann Nutr Metab. Author manuscript; available in PMC 2019 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, results from these studies appear equivocal. In middle-aged women, 1 study 

suggested that WL results in a decline in gluteal adipocyte size, but not abdominal, so that 

there is an increase in the ratio of abdominal to gluteal cell size following WL [20], though 

another suggested a decline in the ratio due to greater reductions in abdominal than gluteal 

adipocyte sizes [21]. Previous studies in post-menopausal women have not found a change 

in the ratio with WL, despite reductions in adipocyte size at both the abdominal and gluteal 

regions [2, 22, 23]. Changes in both abdominal and gluteal adipocyte size, but not the ratio, 

have previously been linked to improvements in glucose tolerance following WL [2]. These 

data support the regulation of adipocytes biology (i.e., triglyceride accumulation and 

lipolysis) as potential therapeutic WL targets. Recent evidence suggests that certain 

pharmacological agents, such as thiazolidinediones, which are used in the treatment of type 

2 diabetes mellitus, are linked to modifications in adipocyte differentiation [24] and visceral 

and intrahepatic fat accumulation [25], reinforcing this notion.

This study supports previous research that moderate WL results in a reduction in the ratio of 

android to gynoid fat mass [5]. The inclusion of men in these studies may partially explain 

variations from previous studies in older women where no change was observed [2], as sex 

differences in the fat distribution response to WL have been previously observed. Men show 

greater reductions in trunk fat mass following WL than women [5] and women have greater 

gluteofemoral subcutaneous adipocyte size declines than men [18]. Further, although total 

body fat of the individuals in the current analysis is comparable to previous studies [2, 22], 

the baseline distribution of fat in participants in the current analysis differs from previous 

studies. Prior studies suggest that gynoid fat mass is 2 times greater than android [2], but in 

the current study, it was only 1.4 times greater. This may be due to racial differences 

between studies as our population was majority Caucasian, while others had a higher 

population of African Americans. Further, considering that the transition to menopause is 

associated with a shift of fat from the gynoid to the android regions [26], menopausal status 

of study participants may influence baseline body fat distribution, as well as the regional 

response of body fat to WL. As this is a secondary analysis, the original study was not 

powered to test the potential race and sex differences.

Novel strengths of the Medifast® for Seniors Study include utilization of a WS control 

group and use of DXA to acquire regional fat measures. Although protocol adherence was 

excellent, the design of the study does not allow us to fully disentangle the effect of the 

hypocaloric diet from the effect of protein. Protein composition of the WL diet may be a key 

determinant of changes in body fat distribution [27]. Thus, future studies are needed to 

decipher the relevant effects of each component on regional body fat. Additionally, we did 

not analyze dietary intake, which is a limitation. Therefore, detailed analyses of diet intake 

quantity and quality are needed in future studies to identify whether other macro-and micro-

nutrients may work synergistically with protein to optimize the effectiveness of WL 

interventions targeting regional body fat distribution.

In summary, results from this study support a growing body of literature that reductions in 

body fat with a hypo-caloric, nutritionally complete, higher protein meal plan, such as that 

of the Medifast® 4&2&1 Plan®, lead to cardiometabolic health improvements in older adults 

with obesity, independent of the fat mass location in the android or gynoid region. More 
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research is needed to determine the mechanism by which WL affects body fat distribution 

and cardiometabolic health, with the goal of identifying potential therapeutic targets and 

optimizing individual WL plans.
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