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Abstract

Type 1 and 2 diabetes mellitus are major medical epidemics affecting millions of patients 

worldwide. Diabetes mellitus is the leading cause of a form of chronic kidney disease known as 

Diabetic Kidney Disease (DKD), which is the most common cause of end-stage renal disease 

(ESRD). DKD is associated with significant changes in renal hemodynamics and electrolyte 

transport. Alterations in renal ion transport, triggered by pathophysiological conditions in diabetes, 

can exacerbate hypertension, accelerate renal injury, and are integral to the development of DKD. 

Renal ion transporters and electrolyte homeostasis play a fundamental role in functional changes 

and injury to the kidney during DKD. With the large number of ion transporters involved in DKD, 

understanding the roles of individual transporters as well as the complex cascades through which 

they interact is essential in the development of effective treatments for patients suffering from this 

disease. This chapter aims to gather current knowledge of the major renal ion transporters with 

altered expression and activity under diabetic conditions, and provide a comprehensive overview 

of their interactions and collective function in DKD.

Keywords

diabetic nephropathy; diabetic kidney disease; SGLT2; ENaC; TRPC6; TRPM6; NHE; KATP 
channel

1. INTRODUCTION

Diabetic Kidney Disease (DKD) is the primary contributor to the development of end stage 

renal disease (ESRD) and is associated with the onset of cardiovascular disease and stroke 

(Hagg et al., 2013; Maqbool, Cooper, & Jandeleit-Dahm, 2018; Umanath & Lewis, 2018). 

DKD is a subtype of chronic kidney disease (CKD) in which hyperglycemia, in combination 

with other manifestations of diabetes mellitus, leads to the development of severe renal 

complications. DKD is a steadily growing epidemic, with approximately 660,000 Americans 

diagnosed annually and Medicare expenditures in excess of $31 billion. In 2014, it was 

estimated that nearly 29 million Americans suffered from diabetes and an additional 86 

million from prediabetes. In 2014, 44% of newly reported ESRD cases resulted from 
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diabetes. The Center for Disease Control and Prevention predicted that diabetes could affect 

nearly 1 in 3 U.S. adults by 2050 if current trends continue. Worldwide, the number of 

diabetic patients is expected to increase to approximately 350 million by the year 2035, with 

more than 40% of these patients developing CKD (Gheith, Farouk, Nampoory, Halim, & Al-

Otaibi, 2016; Pavkov, Collins, Coresh, & Nelson, 2018). With the increasing urgency of the 

health risk posed by diabetes-related renal complications, the development of effective 

therapies and strategies for prevention is paramount. However, the pathogenesis of DKD has 

not been fully elucidated. Renal ion transporters are central to the intricate 

pathophysiological mechanisms of DKD and its progression. This article will review 

research concerning the contribution of key renal transporters to the progression of DKD and 

assess their utility as candidate therapeutic targets.

2. DIABETIC KIDNEY DISEASE

In DKD, also known as diabetic nephropathy (DN), hyperglycemia overwhelms the kidney’s 

functionality, resulting in a breakdown of the glomerular filtration barrier (GFB) and overall 

dysfunction of the kidney. Hyperglycemia can lead to a variety of pathological cascades that 

affect ion transport in the kidney. The defining characteristics of DKD include a greater than 

50% decline in glomerular filtration rate (GFR) over the course of the disease, 

microalbuminuria resulting from progressive GFB deterioration, and histological evidence of 

renal injury (interstitial fibrosis and glomerulosclerosis) (F. C. Brosius, 3rd et al., 2009; 

Schena & Gesualdo, 2005; Vallon & Komers, 2011). The substantial reduction in GFR 

associated with DKD is not observed during the initial stages of the disease. Patients initially 

exhibit hyperfiltration,an elevation in GFR, which gradually declines as DKD progresses 

over the course of 5 to 10 years. The initial hyperfiltration stage is an attempt by the kidneys 

to compensate for the apparent decrease in sodium delivery resulting from hyperglycemia. 

Once the tubuloglomerular feedback (TGF) system’s ability to compensate for increased 

sodium and glucose reabsorption reaches saturation, kidney function and GFR decline (F. C. 

Brosius, 3rd et al., 2009; Schena & Gesualdo, 2005; Tuttle, 2017; Vallon & Komers, 2011). 

The second hallmark of DKD, microalbuminuria, is caused by the breakdown of the GFB 

during disease progression. The GFB is comprised of podocytes and their foot processes (the 

slit diaphragm), the glomerular basement membrane, and endothelial cells. These 

components normally function together with a network of proteins to filter the contents of 

the glomerular capillaries and prevent the passage of substances larger than approximately 

69 kDa (the approximate molecular weight of albumin). As renal function declines and 

glomerular hypertrophy ensues, the GFB deteriorates. As a result, albumin leaks from the 

capillaries and is excreted in the urine (Jefferson, Shankland, & Pichler, 2008). Renal 

histologic changes typical of DKD include cellular and tissue injury, mesangial matrix 

expansion, nodular glomerular lesions, arteriolar hyalinosis, thickening of glomerular 

basement membranes, and renal interstitial fibrosis.

Hypertension is a frequent comorbidity in diabetic patients and is implicated in the 

progression of DKD (Fig 1). Hypertension is typically twice as common in patients with 

diabetes compared to the general population. Diabetes mellitus interacts synergistically with 

hypertension to promote kidney injury (Staruschenko, 2017). Therefore, the effects of both 

hyperglycemia and hypertension are required for kidney injury to occur in DKD (Z. Wang et 
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al., 2017). For this reason, anti-hypertensive drugs remain the leading treatment for DKD. 

The development of hypertension in diabetes results from overactivation of the renin-

angiotensin-aldosterone system (RAAS), upregulation of endothelin 1 (ET-1; a 

vasoconstrictor secreted by endothelial cells), overproduction of reactive oxygen species 

(ROS), downregulation of nitric oxide (NO; a vasodilator), as well as other aberrant 

signaling (Arora & Singh, 2013; Kohan, Rossi, Inscho, & Pollock, 2011; Patney, Chaudhary, 

& Whaley-Connell, 2018; Patney, Whaley-Connell, & Bakris, 2015).

In DKD, hyperglycemia leads to the activation of numerous pathways including RAAS, 

inflammatory cytokines, and oxidative stress cascades (Fig. 2), which ultimately result in the 

renal impairment characteristic of this disease. The RAAS is particularly important in the 

progression of DKD, given that the primary treatment for DKD is anti-RAAS drugs, such as 

angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) 

(Anders, Huber, Isermann, & Schiffer, 2018; Umanath & Lewis, 2018). In response to 

hyperglycemic conditions, renal cells begin to secrete angiotensin II (Ang II), an integral 

member of RAAS. Intrarenal Ang II has been found to be substantially elevated when 

compared to circulating Ang II in DKD patients. This redistribution of Ang II, which likely 

has a considerable impact on renal ion transport, has been shown to have a causative 

influence on multiple distinctive features of DKD, including podocyte injury and apoptosis 

(Leehey, Singh, Alavi, & Singh, 2000; Vallon & Komers, 2011).

This introduction to DKD represents only a glimpse of the complexity involved in the 

development and progression of this disease. The variation in renal ion transporter 

expression and activity and their intersecting pathways, signaling cascades, and feedback 

loops both respond and contribute to pathophysiological states during the progression of 

diabetes to DKD. These pathological states, including hyperglycemia, hypertension, and 

dysfunctional insulin signaling substantially dysregulate renal ion transport and electrolyte 

homeostasis, accelerating renal injury characteristic of DKD. The intricacy of DKD makes it 

particularly difficult to fully understand all details involved in its progression.

3. GLUCOSE TRANSPORTERS

3.1. Sodium glucose cotransporters

The kidneys play a major role in glucose regulation in humans, and are responsible for 

reabsorbing 99% of plasma glucose. Glucose reabsorption in the kidney occurs via sodium-

glucose transporter 2 (SGLT2) in the early proximal tubule (PT) and to a lesser extent via 

sodium-glucose transporter 1 (SGLT1) in the late PT. Several SGLT1, SGLT2 or dual 

SGLT1/SGLT2 inhibitors have been shown to lower blood glucose by preventing glucose 

reabsorption at the PT, and act as effective antiglycemic drugs that may have utility in the 

treatment or prevention of DKD (Fig. 3) (Rieg & Vallon, 2018). These inhibitors are well 

described and have been marketed for treatment of type 2 diabetes mellitus (T2DM).

Members of the SGLT family of glucose transporters are involved in the re-uptake of 

glucose across the apical cell membrane. Their structure is composed of 14 transmembrane 

helices (Deng & Yan, 2016). There are 6 members of the SGLT family (SGLT1–6), but only 

SGLT1 and SGLT2 are well-characterized and have been shown to be highly expressed in 
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the kidney (Harada & Inagaki, 2012; Poulsen, Fenton, & Rieg, 2015). Although SGLT1 

primarily functions within the small intestine, it does contribute to the maintenance of 

normal glucose balance in the kidney (Tahrani, Barnett, & Bailey, 2013); whereas SGLT2 is 

predominantly responsible for glucose uptake within the kidney. SGLT2 is located in the 

brush border of segments 1 and 2 of the PT and is responsible for approximately 90% of the 

glucose reabsorption in this part of the nephron. The remaining 10% is reabsorbed via 

SGLT1 in late segments of the PT (Hediger & Rhoads, 1994; Poulsen et al., 2015). The 

driving force for these cotransporters is the active movement of sodium via the sodium 

potassium ATPase (Na+/K+ ATPase) causing reuptake of glucose by the cell. In a study of 

these two cotransporters, it was found that only 1 sodium ion is required by SGLT2 for the 

reabsorption of 1 glucose molecule through the transporter. In contrast, SGLT1 requires 2 

Na+ ions to be moved for each glucose molecule absorbed, Km ~0.4 mM. Normally, SGLT2 

(Km ≤ 6 mM) works at 50% capacity, only becoming fully saturated at a glucose level 

greater than and/or equal to 35 mM (E. Ferrannini & Solini, 2012; Ghezzi, Loo, & Wright, 

2018; Harada & Inagaki, 2012; Hummel et al., 2011; Szablewski, 2017). Together with Na
+/K+ ATPase, SGLT1 and SGLT2 make up the first stage of glucose transport and prevent 

excessive loss of glucose in the urine. Powell and colleagues confirmed the important role of 

the SGLTs in glucose transport showing that in a double knockout mouse model, the absence 

of both SGLT1 and SGLT2 resulted in the excretion of the entire filtered load of glucose 

(Ghezzi et al., 2018; Powell, DaCosta, et al., 2013). Given these transporters’ substantial 

impact on overall glucose homeostasis, their implication in the development diabetes 

mellitus and its progression to DKD is unsurprising.

3.2. SGLT1 and SGLT2 in DKD

In treating diabetes mellitus, controlling blood glucose levels is imperative to prevent disease 

progression. The tubules reabsorb glucose at a maximal rate of approximately 375 mg/min 

after which their capacity for transport is saturated. In diabetes, plasma glucose increases to 

levels of hyperglycemia, bombarding the TGF system and the macula densa with 

overwhelming quantities of glucose. The overloading of this system causes hyperfiltration, 

which as previously mentioned, ultimately leads to glucose excretion in the urine and DKD 

(Abdul-Ghani, Norton, & DeFronzo, 2015; Brenner, 1983; Farber, Berger, & Earle, 1951; 

Ruggenenti et al., 2012; Vallon et al., 2011). SGLT transporters, especially SGLT2, have 

been targeted by multiple therapeutics in attempt to regulate hyperglycemia in diabetes. The 

goal of SGLT inhibitors is to increase the urinary output of glucose, thereby decreasing 

circulating glucose content and minimizing damage (Spatola, Finazzi, Angelini, Dauriz, & 

Badalamenti, 2018). Vallon et al. found that administering an SGLT2 inhibitor 

(empagliflozin) to the Akita mouse, a model of type 1 diabetes mellitus (T1DM), prevented 

hyperfiltration and reduced kidney hypertrophy and albumin excretion in the early stages of 

DKD. In the T2DN rat, a model of type 2 diabetic nephropathy (DN), the progression of 

DKD was slowed using a SGLT2 inhibitor which led to an appreciable reduction in GFR, 

glomerulosclerosis, tubulointerstitial fibrosis, and proteinuria. Similar results were seen in a 

mouse model of type 2 DKD with SGLT2 inhibition causing a reduction in mesangial 

expansion and expression of inflammatory markers (Gembardt et al., 2014; Koepsell, 2017; 

Kojima, Williams, Takahashi, Miyata, & Roman, 2013). Interestingly, insulin receptor 
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deletion significantly reduced SGLT2 expression and increased urinary glucose excretion 

and urine flow (Nizar, Shepard, Vo, & Bhalla, 2018).

Unlike T1DM where insulin treatments are greatly beneficial and contribute to an improved 

quality of life, insulin treatment in T2DM is not as effective. These patients are, to some 

extent, insulin resistant. For T2DM patients, research has been focused on therapies 

targeting glucose transporters, specifically SGLT2 because the bulk of glucose re-uptake 

occurs through this transporter (Defronzo, 2009; Tahrani et al., 2013). Additionally, this 

cotransporter is primarily located in the kidney which minimizes off target effects of 

globally inhibiting SGLT2 (Koepsell, 2017). Patients with T2DM have similar renal protein 

expression of SGLT1 and SGLT2 compared to normoglycemic patients, although Norton 

and colleagues found that SGLT1 and SGLT2 mRNA expression levels in T2DM are higher 

than in normoglycemic patients. SGLT2 inhibitors reduce glucose reabsorption in the PT, 

ultimately resulting in improved kidney function (Sano, Takei, Shiraishi, & Suzuki, 2016; 

Zou, Zhou, & Xu, 2017). SGLT2 inhibitors also result in increased sodium delivery to the 

macula densa, which activates the TGF system to constrict the afferent arteriole and decrease 

GFR (Cherney et al., 2014; Vallon, Blantz, & Thomson, 2003; Zou et al., 2017). In the late 

stages of T2DM and DKD, the SGLT2 inhibitor canagliflozin was found to improve 

glycemic control and reduce albuminuria. Kohan et al. found that dapagliflozin, another 

SGLT2 inhibitor, reduced the body weight and blood pressure of T2DM patients without the 

change in glycemic control that Yale et al. observed (Kohan, Fioretto, Tang, & List, 2014; 

Yale et al., 2013; Zou et al., 2017). Similar results were found by other groups showing 

multiple benefits of SGLT2 inhibitors in diabetes and DKD, including improvements to 

renal oxygenation, natriuresis, and oxidative stress (Dekkers, Gansevoort, & Heerspink, 

2018; Tanaka et al., 2018; X. X. Wang et al., 2017). SGLT2 expression and/or activity has 

been found to be upregulated in both type 1 and 2 diabetes, with an increase in the 

maximum glucose transport of approximately 20%. Administration of these inhibitors 

decreases this maximum capacity by roughly 30 to 50% (DeFronzo et al., 2013; Gallo, 

Wright, & Vallon, 2015). In addition, a study by Ferrannini et al found that empagliflozin 

improved pancreatic beta cell function and insulin sensitivity in T2DM patients (E. 

Ferrannini et al., 2014). Inhibitors of SGLT2 also reduced urate concentrations in the blood, 

which may contribute to the protective effects of these inhibitors in the progression of DKD 

(Ficociello et al., 2010; Haring et al., 2014; Jabbour, Hardy, Sugg, & Parikh, 2014; Koepsell, 

2017; Kovacs et al., 2014; Rosenstock et al., 2014; Wilding et al., 2012). Figure 3 

summarizes the effects of hyperglycemia on these transporters and the effects of their 

various inhibitors in DKD.

Although SGLT2 is the primary target for treatment of T2DM, it has been proposed that 

SGLT1 expression increases as a result of SGLT2 inhibition. As SGLT2 becomes overloaded 

and is inhibited, saturating glucose transport in the early PT, there is an increased need for 

SGLT1 contribution to handle the increase in glucose delivery to the later segment of the PT. 

Also, it has been hypothesized that SGLT2 inhibitors are less effective in T2DM patients 

with renal impairments, and SGLT1 inhibitors have been found to improve glycemic control 

in these cases (Gorboulev et al., 2012; J. J. Liu, Lee, & DeFronzo, 2012; Spatola et al., 2018; 

Yale et al., 2013). SGLT1 inhibitors also improve glucose homeostasis by exerting 

substantial effects on the gastrointestinal system, increasing the release of glucagon-like 
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peptide-1 (GLP-1) and reducing the absorption of glucose in the gut (P. Song, Onishi, 

Koepsell, & Vallon, 2016).

Although broadly beneficial for the treatment of diabetes, there are also complications 

associated with SGLT inhibitors. (G. Ferrannini & Ryden, 2018; Lupsa & Inzucchi, 2018). 

Adverse effects of SGLT2 blockers include genital mycotic and urinary tract infections. 

Euglycemic diabetic ketoacidosis has been found in some cases, likely due to increases in 

glucagon secretion and stimulation of lipolysis and ketogenesis. Furthermore, SGLT2 

inhibitor monotherapy seems to be ineffective at maintaining long-term control of 

hyperglycemia in some cases of DKD (Hershon, 2016; Zou et al., 2017). Combined 

inhibitors of SGLT1 and SGLT2, such as sotagliflozin, have been shown to effectively 

reduce glucose and insulin levels in the plasma of T2DM patients (Powell, Smith, et al., 

2013; Zambrowicz et al., 2012). Recent studies also revealed beneficial effects of 

sotagliflozin in combination with insulin treatment in patients with T1DM (Garg et al., 

2017). SGLT2 inhibitors have also shown to be effective in combination with RAAS 

blockers by reducing cardiovascular events, albuminuria, hyperfiltration, and blood pressure 

in DKD (Bautista et al., 2004; Kojima et al., 2015; Kojima et al., 2013; Zou et al., 2017). 

Combining SGLT2 inhibitors with other targets of the glycemic control pathway, specifically 

dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 (GLP-1) receptor 

agonists, has also shown to be beneficial in treating DKD. GLP-1 receptor agonists can 

potentially counteract increases in glucagon secretion caused by SGLT2 inhibitors; whereas 

DPP-4 inhibitors combined with SGLT2 inhibitors showed reduced hypoglycemia, 

albuminuria, hyperglycemia, and blood pressure in DKD (DeFronzo et al., 2015; Scheen & 

Delanaye, 2018; Secrest, Udell, & Filion, 2017).

3.3. GLUT glucose transporters

In addition to the sodium glucose cotransporters, glucose transporters (GLUTs) are also vital 

for proper glucose homeostasis, and therefore have implications in the development of DM 

and DKD. GLUTs along with SGLTs are members of the major facilitator superfamily (S. S. 

Pao, Paulsen, & Saier, 1998; Thorens & Mueckler, 2010). GLUTs facilitate the energy 

independent movement of glucose down its electrochemical gradient. They are expressed in 

every cell in the body and are essential for energy metabolism. There are 17 GLUT proteins 

in the SLC2 family, which are further divided into three classes based on structure. Class I 

contains GLUT1–4, Class II contains GLUT5, 7, 9 and 11, and Class III contains GLUT6, 8, 

10, 12 as well as the H+/myo-inositol transporter (HMIT). Expression patterns, regulation, 

and properties of GLUTs are tissue specific. During different disease stages, GLUT 

expression levels tend to vary as well (Szablewski, 2017). This review will focus on specific 

GLUTs with prominent effects in the kidney.

3.4. GLUTs in DKD

GLUTs 1, 2, 4, 5, 8–10, and 12 all function in different segments of the kidney to facilitate 

glucose transport (Chin et al., 1997; C. Heilig et al., 1995; C. W. Heilig, Brosius, & 

Cunningham, 2006; Mather & Pollock, 2011). GLUT1 has been found to be upregulated in 

the renal cortex in diabetes as well as in glomerular hypertension. Similar to SGLT1 in the 

PT, GLUT1 is a low capacity glucose transporter in the glomerulus with a high affinity for 
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glucose (C. W. Heilig, Brosius, & Henry, 1997). Wang et al. showed that when GLUT1 is 

overexpressed in glomerular mesangial cells of the C57BL6 mouse (a relatively DKD 

resistant strain), the glomerulus develops damage like that of the glomerulosclerosis 

typically seen in DKD. More interestingly, these mice were not hyperglycemic or 

hypertensive during overexpression, insinuating that GLUT1 plays a potential role in the 

development of glomerulosclerosis in DKD (Y. Wang et al., 2010). GLUT1 is also expressed 

in the podocytes of the glomerulus, where it is widely localized to both the apical and 

basolateral membrane, within vesicles in the cytoplasm and plasma membrane of the foot 

processes. GLUT1 plays an important role in the proper function of podocytes in the GFB, 

which impacts overall kidney function (F. C. Brosius, 3rd, Briggs, Marcus, Barac-Nieto, & 

Charron, 1992; F. C. Brosius & Heilig, 2005; Coward et al., 2005; Jefferson et al., 2008; 

Wasik & Lehtonen, 2018). GLUT1 is activated in models of streptozotocin (STZ) induced 

T1DM as well as in mouse models of T2DM (Chen, Heilig, Brosius, & Heilig, 2003; 

D’Agord Schaan et al., 2001). Although GLUT1 overexpression in mesangial cells leads to 

the further development of DKD, its overexpression in podocytes appears to be protective in 

the progression of DKD (Y. Wang et al., 2010; Wasik & Lehtonen, 2018; Zhang et al., 

2010). Several studies also implied that genetic variations in GLUT1 results in a genetic 

predisposition for DKD (F. C. Brosius & Heilig, 2005; Grzeszczak et al., 2001; Hodgkinson, 

Millward, & Demaine, 2001; Hsu et al., 2011; Z. H. Liu, Guan, Chen, & Li, 1999; Ng et al., 

2002; Tarnow, Grarup, Hansen, Parving, & Pedersen, 2001; Vaulont & Kahn, 1994).

In the later stages of glucose reuptake by the kidney, GLUT2 is the primary transporter 

responsible for the basolateral movement of glucose on the brush border of the PT (Ghezzi 

et al., 2018; Mather & Pollock, 2011). In the diabetic kidney, it has been found that there is 

an increase in GLUT2 expression in the PT. For example, Chin et al. found that GLUT2 

mRNA expression in the PT was increased in a T1DM animal model (Chin et al., 1997). 

Kamran et al. found that GLUT2 is overexpressed in both STZ-treated Sprague Dawley rats 

and diabetic Zucker rats (Kamran, Peterson, & Dominguez, 1997). Marks et al. found 

similar results in the PT of STZ-treated rats (Marks, Carvou, Debnam, Srai, & Unwin, 

2003). GLUT1 and 2 work within the PT together with SGLT1 and 2 (Fig. 3). However, 

SGLT1 and 2 work more closely through GLUT2, high capacity and low glucose affinity, to 

handle the bulk of glucose transport in the PT (Ghezzi et al., 2018; Mather & Pollock, 2011). 

In contrast to SGLTs, finding specific inhibitors of GLUT2 has proven challenging 

considering the close homology between members of the GLUT family (Ghezzi et al., 2018; 

Yan, 2015).

In addition to GLUT1 and 2, GLUTs 4, 5, 8, 9, and 10 have also been detected in the kidney. 

In podocytes, GLUT4 is located on both the apical and basolateral membranes and within 

intracellular vesicles in the podocyte foot processes. GLUT4 is also expressed in mesangial 

cells, whereas GLUT8 is only expressed in podocytes (F. C. Brosius, 3rd et al., 1992; F. C. 

Brosius & Heilig, 2005; C. W. Heilig et al., 2006; Mather & Pollock, 2011). GLUT4 and 8 

are considered to be insulin responsive transporters, another key function linking them to 

DKD. It was found that GLUT8 mRNA and protein levels are regulated by plasma glucose 

levels in both normal conditions and in cases of diabetes, including insulin resistant forms of 

diabetes. GLUT4 relocation to the plasma membrane has been found to be induced by the 

insulin-stimulated increase in phosphoinositide 3-kinase (PI3K)/AKT pathway (F. C. 
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Brosius & Heilig, 2005; Marcus et al., 1994; Schiffer et al., 2005; Wasik & Lehtonen, 2018). 

In a model of STZ-induced T1DM, GLUT4 expression in glomeruli was reduced (Marcus et 

al., 1994). Additionally, Coward et al. found that GLUT4 redistributes to the basal 

membrane in podocytes in a T2DM model. This suggests that despite a marked reduction in 

GLUT4 expression, functionality may not be affected during DKD progression (Coward et 

al., 2005). Additional studies have found that GLUT1 and 4 are responsive to insulin in the 

podocyte specifically, being stimulated in some fashion by insulin in these cells. Insulin 

causes activation of GLUT4 and its translocation from the perinuclear and cytosolic 

vesicular structures to the plasma membrane of the podocyte. Additional studies of GLUT4 

deficient mice with DKD demonstrate that reduced GLUT4 activity protects podocytes from 

DKD by reducing mechanistic target of rapamycin (mTOR) activity (Coward et al., 2005; 

Guzman et al., 2014; Wasik & Lehtonen, 2018).

In addition to GLUT expression in glomeruli and the PT, Linden et al. found that GLUT12 is 

located within the distal tubule and collecting duct (CD) of the nephron. GLUT12 protein 

was found to be predominantly located in the cytoplasm and apical membranes of these 

segments. Using STZ-treated Ren-2 transgenic rats as a model of DKD, they saw an increase 

in both GLUT12 and GLUT1, indicating that both GLUT transporters have some 

involvement in the progression of this disease (Linden et al., 2006; Mather & Pollock, 2011). 

Expression levels for GLUT3 were also reported, but protein localization has not been 

determined (C. Heilig et al., 1995). GLUT5, which has been proposed to be fructose 

specific, has shown increased mRNA expression in the PT during chronic T1DM induced by 

STZ. Thus, GLUTs, together with SGLTs, play critical roles in glucose transport and 

contribute towards DKD progression.

4. SODIUM TRANSPORTERS

Sodium absorption in the kidney is precisely regulated and controlled by numerous 

physiological mechanisms. Under pathological conditions such as diabetes mellitus, Na+ 

transport is significantly altered. Eriguchi et al. recently performed a sodium transporter 

profile immunoblot analysis in wild type mice where T1DM was induced by injection of 

STZ. After 6 months of STZ injections, the authors found no significant changes in total Na
+/H+ exchanger (NHE) and Na+-K+−2Cl− cotransporter (NKCC) expression. However, 

NKCC2 phosphorylation was significantly increased in diabetic mice compared with 

nondiabetic controls. Similarly, analysis of distal tubule transporters revealed increased 

expression in both total and phosphorylated sodium-chloride cotransporter (NCC), and in 

subunits of the epithelial Na+ channel (ENaC). Diabetic animals exhibited elevations in total 

α- and β-ENaC as well as cleaved forms of α- and γ-ENaC (Eriguchi et al., 2018). These 

data demonstrate that STZ-mediated hypoinsulinemia and hyperglycemia cause upregulation 

of most major sodium transporters. This section will delineate additional details about 

specific sodium transporters, and their potential contributions to DKD.

4.1. ENaC

Expressed primarily in principal cells of the distal nephron, ENaC plays a central role in 

maintaining salt and water homeostasis, regulating extracellular fluid volume, controlling 
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blood pressure, and overall renal function (Hanukoglu & Hanukoglu, 2016; Kleyman, 

Kashlan, & Hughey, 2018; Pavlov & Staruschenko, 2017; Staruschenko, 2012). Diabetes 

and DKD have been associated with increased ENaC activity and expression, which may 

reflect or contribute to the pathophysiology of DKD. Studies in humans and animals present 

multiple mechanisms by which the diabetic state can elicit changes in ENaC, which interfere 

with renal blood pressure control, exacerbate hypertension, and thereby contribute to the 

progression of DKD.

ENaC subunits are located on the apical membrane of principal cells in the aldosterone-

sensitive distal nephron where they are tightly controlled by various hormones and mediate 

fine-tuning of sodium absorption in the kidney (Staruschenko, 2012). We and others have 

shown that insulin augments ENaC expression and activity (Gonzalez-Rodriguez, Gaeggeler, 

& Rossier, 2007; Ilatovskaya, Levchenko, Brands, Pavlov, & Staruschenko, 2015; Mansley 

et al., 2016; A. C. Pao, 2016; Pavlov et al., 2013; Tiwari, Nordquist, Halagappa, & 

Ecelbarger, 2007). As an example, single-channel analysis in freshly isolated, split-open 

tubules demonstrated that ENaC activity was acutely activated by insulin. Moreover, insulin 

receptor knockout mice have significantly lower activity compared to their wild-type 

littermates (Pavlov et al., 2013). Interestingly, high fat-fed mice had no increase in ENaC 

activity (Nizar et al., 2016). Recent studies by Irsik et al. (Irsik, Blazer-Yost, Staruschenko, 

& Brands, 2017; Irsik & Brands, 2018) have utilized a sophisticated insulin-clamping 

technique in rats, which allowed them to test the role of daily variations in insulin on sodium 

excretion. They found that rats whose insulin was clamped to prevent increases in response 

to carbohydrate showed elevated sodium excretion over the first 4 hours post carbohydrate 

administration (Irsik & Brands, 2018).

One proposed mechanism suggests that ENaC involvement with DKD is inexorably linked 

to the serum and glucocorticoid-regulated kinase (SGK1) protein. SGK1 is stimulated by 

insulin, which causes more ENaC to be translocated to the membrane (through the Nedd4–2 

signaling pathway) increasing sodium reabsorption from the tubule. This may lead to excess 

renal sodium retention, hypertension, and ultimately renal damage associated with DKD 

(McCormick, Bhalla, Pao, & Pearce, 2005; Pearce et al., 2015). In vitro studies found that 

both ENaC and SGK1 are up-regulated by high levels of extracellular glucose (Hills, Bland, 

Bennett, Ronco, & Squires, 2006). It has been well established that the over-activity of 

ENaC can result in hypertension, and increased ENaC expression has been identified in 

animal models of both type 1 and type 2 diabetes (C. T. Chang et al., 2007). In a rat model 

of STZ-induced T1DM, increased glucose was correlated with upregulation of all three 

ENaC subunits, attributed to elevations in aldosterone and vasopressin (J. Song, Knepper, 

Verbalis, & Ecelbarger, 2003). Another proposed mechanism of ENaC increases in DKD 

involves the serine protease, plasmin (Kleyman et al., 2018; Ray et al., 2018). Urinary 

plasmin has been found to be elevated in human subjects with DKD as well as in the 

puromycin aminonucleoside rat model of nephrotic syndrome. Dysfunction of the GFB in 

DKD causes plasmin to be filtered to the tubules where it activates ENaC and increases 

sodium reabsorption (Svenningsen, Skott, & Jensen, 2012). In a study of patients with 

T2DM, microalbuminuria, a hallmark of GFB breakdown, is associated with increased 

aberrant filtration of plasmin. This surge of filtered plasmin was shown to be sufficient to 

increase the open probability for ENaC, and was proposed as a possible mechanism 
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contributing to hypertension in diabetes (Buhl et al., 2014). Clinical studies have also found 

that amiloride, an ENaC blocker, may be protective in DKD as it significantly increased 

sodium excretion, and reduced blood pressure, albuminuria, and plasmin in urine of diabetic 

patients (Andersen et al., 2015). Recently a pilot randomized cross-over study comparing the 

effects of daily administration of either oral amiloride or the NCC inhibitor, 

hydrochlorothiazide (HCTZ), to patients with type 2 diabetes and proteinuria revealed 

similar effects with both drugs resulting in reduced systolic blood pressure (Unruh et al., 

2017).

It is widely accepted that oxidative stress plays a central role in diabetes-induced renal 

injury. Prolonged hyperglycemia causes excess glucose to contact and react with proteins 

and lipids resulting in advanced glycation end-products (AGEs), which are known to cause 

multiple complications in diabetic patients and are implicated in DKD. The role of AGEs in 

DKD may be especially important to understand as they are capable of having substantial 

effects, including oxidative stress, that persists long term even after blood glucose control is 

regained in the patient (Singh, Bali, Singh, & Jaggi, 2014). AGEs have been shown to be 

upregulated in diabetic subjects with hypertension, with an especially pronounced elevation 

in the distal nephron where ENaC is highly expressed (Schleicher, Wagner, & Nerlich, 

1997). When applied to cultured tubular epithelial cells in concentrations comparable to 

what occurs in diabetes, AGEs increased ENaC mRNA and protein and stimulated ENaC 

activity by inhibiting catalase and increasing intracellular ROS production (Q. Wang et al., 

2015). The effect on ENaC activity persisted for more than 72 hours after removal of AGEs. 

This sustained ENaC elevation may be key to understanding why DKD often continues to 

progress despite adequate glucose control and provide key insights necessary for the 

development of more effective treatments. From these studies, it is evident that diabetes 

creates pathophysiological conditions that affect ENaC via multiple pathways, causing a 

sustained increase in activity or expression, ultimately resulting in blood pressure elevation 

(Fig. 4). As hypertension is one of the most important risk factors in the progression from 

diabetes to DKD, ENaC is a critical mechanistic and potential therapeutic target in DKD 

research.

4.2. Sodium hydrogen exchanger (NHE)

Sodium-hydrogen exchangers (NHE) directly and indirectly contribute to the maintenance of 

blood volume and whole body acid-base homeostasis. The inward movement of Na+ down 

its electrochemical gradient supplies the energy for the active transport of H+ against its 

gradient. In the human genome there are 9 isoforms of NHE belonging to one of 3 

subfamilies: cation-proton antiporters (CPA1 and CPA2) and Na-transporting carboxylic 

acid decarboxylase (NaT-DC). NHE1–4 and 6–9 are members of the CPA1 family and are 

found in various parts of the kidney (Bobulescu, Di Sole, & Moe, 2005; Bobulescu & Moe, 

2009; Brett, Donowitz, & Rao, 2005; A. B. Chang, Lin, Keith Studley, Tran, & Saier, 2004; 

Orlowski & Grinstein, 2004). NHE isoforms 1–4 and 8 are located on either the apical or 

basolateral membranes of renal epithelial cells, whereas NHE6, 7, and 9 are found only on 

membranes of organelles. NHE3 and NHE8 are located on the apical membrane of the PT; 

NHE2 and NHE3 are on the apical membrane of the thick ascending limb (TAL) of the loop 

of Henle; NHE 2 is on the apical membrane of the distal convoluted tubule (DCT) and 
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connecting tubule; NHE4 is on the basolateral membrane of the entire nephron; and NHE1 is 

located on the basolateral membrane everywhere except the macula densa and intercalated 

cells (Chambrey et al., 2001; Chambrey et al., 1998; Goyal, Mentone, & Aronson, 2005; 

Nakamura, Tanaka, Teko, Mitsui, & Kanazawa, 2005; Orlowski & Grinstein, 2004; Xu, 

Chen, & Ghishan, 2005).

Given the location and the general function of NHE exchangers, it is expected that certain 

NHE isoforms are involved in the progression of DKD. STZ-induced T1DM in a mouse 

model with a loss of function mutation in NHE1 (swe/swe mouse created on the C57BL/6 

mouse background) resulted in the development of DKD characteristics. Swe/swe mice 

without STZ-induced T1DM exhibited renal tubular epithelial cell atrophy, and STZ 

treatment resulted in the additional development of albuminuria and increased 

tubulointerstital pathology (Khan, Wu, Sedor, Abu Jawdeh, & Schelling, 2006; Wu et al., 

2003). Numerous studies have found that NHE3 in particular is implicated in DKD 

development. A link between SGLT2 and NHE3 has been proposed to contribute to the 

renoprotective effects of SGLT2 inhibitors and to potentially contribute to the reduction in 

sodium reabsorption during treatment with SGLT2 inhibitors. However, contradictory 

explanations have been reported, suggesting that SGLT2 inhibitors increase rather than 

reduce sodium absorption and that the nephro-protective effects of these inhibitors is not 

dependent on the TGF system (Wakisaka, 2016; Wakisaka, Nagao, & Yoshinari, 2016; 

Wright, Loo, & Hirayama, 2011; Zeni, Norden, Cancarini, & Unwin, 2017). The connection 

between NHE3 and SGLT2 has even been hypothesized to have benefits in treating some of 

the characteristics of DKD, including the alteration of renal hemodynamics (Pessoa, 

Campos, Carraro-Lacroix, Girardi, & Malnic, 2014; Tonneijck et al., 2017). The “tubular 

theory” for hyperfiltration (a hallmark of DKD) suggests that the relationship between the 

glomerulus and the tubule is the key to explaining diabetes-induced renal dysfunction and 

abnormalities, and proposes that hyperfiltration is caused by increased sodium reabsorption 

combined with tubular hypertrophy and up-regulation of SGLTs and NHE3. The theory 

suggests that the combination of these factors inhibit TGF (Tonneijck et al., 2017; Tuttle, 

2017; Zeni et al., 2017). It has also been discovered that the GLP-1 receptor agonist, 

liraglutide, reduces GFR and albumin excretion in patients with T2DM by GLP-1 mediated 

inhibition of NHE3 and DPP-4 assembly in the PT brush border. Inhibiting this relationship 

causes a reduction in sodium reabsorption and GFR by activating the TGF system (Muskiet, 

Smits, Morsink, & Diamant, 2014; Tonneijck et al., 2017).

4.3. NKCC2 and NCC

The furosemide-sensitive cotransporter NKCC2 and the thiazide-sensitive cotransporter 

NCC play important roles in renal salt handling and extracellular volume regulation in the 

TAL and DCT, respectively. Similar to other sodium transporters, expression of both total 

and active forms of NKCC2 and NCC is increased under diabetic conditions, which has 

been reported in several rodent models (Cipriani et al., 2012; Eriguchi et al., 2018; Riazi, 

Khan, Tiwari, Hu, & Ecelbarger, 2006; Riazi, Maric, & Ecelbarger, 2006). Metformin, an 

antidiabetic drug that is widely used to treat patients with diabetes mellitus, was shown to 

increase urinary sodium excretion by reducing phosphorylation of NCC. Interestingly, the 

activity of other renal sodium transporters, such as NKCC2, ENaC, and NHE3 did not show 
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significant changes during metformin treatment (Hashimoto et al., 2018). Similar to this 

finding, our data also revealed that metformin-treated Dahl SS rats fed a high salt diet had no 

difference in the activity of ENaC (Pavlov et al., 2017).

Hyperinsulinism is associated with increased expression of NCC along with Na+/K+ ATPase 

and ENaC (Bickel, Verbalis, Knepper, & Ecelbarger, 2001). In vitro studies of insulin effects 

revealed that insulin induces activation and phosphorylation of NCC, which could contribute 

to sodium balance and the progression of DKD in hyperinsulinemic states (Chavez-Canales 

et al., 2013). Therefore, there is some evidence demonstrating the potential contribution of 

sodium cotransporters in the TAL and DCT (especially for thiazide-sensitive transporter 

NCC). However, additional studies are warranted.

5. POTASSIUM CHANNELS

Although renal potassium channels have not been definitively identified as causal in the 

development of DKD, it is likely that some of these channels are involved in the disease 

progression. The kidney is responsible for maintaining whole-body potassium homeostasis, 

which is essential for the proper control of blood glucose, as insulin is secreted from 

pancreatic beta cells in response to a potassium induced depolarization (Ekmekcioglu, 

Elmadfa, Meyer, & Moeslinger, 2016). Various clinical studies indicate that insufficient 

serum potassium or dietary potassium intake is associated with the onset of T2DM. Low 

potassium diets and hypokalemia contribute to impaired insulin secretion and glucose 

intolerance (Rowe, Tobin, Rosa, & Andres, 1980; Sagild, Andersen, & Andreasen, 1961). It 

has also been shown that the treatment of hypertension with thiazide diuretics, which 

commonly cause potassium depletion as a side-effect, has been associated with increased 

risk of new-onset diabetes (Zillich, Garg, Basu, Bakris, & Carter, 2006). In addition to 

diabetes onset, potassium may also play a role in the progression of diabetes to more severe 

cardiovascular and renal impairment. High potassium diets have been established to reduce 

the risk of development of cardiovascular disease in healthy patients. However, it has been 

less clear whether increasing dietary potassium intake in patients with diabetes would have 

similar protective results. A study by Smyth et al. examined how potassium intake may 

correlate with renal outcomes in nearly 30,000 patients with established diabetes or other 

vascular disease. This study found that higher potassium was associated with decreased risk 

for all renal outcomes in these patients. Interestingly, they found that only potassium, not 

sodium, was predictive for renal outcome (Smyth et al., 2014). A similar study involving 

over 600 Japanese patients with T2DM also showed that high urinary excretion of K+ 

(indicative of higher potassium intake), but not sodium, was associated with better 

cardiorenal outcomes (Araki et al., 2015). These studies together indicate that the improper 

maintenance of potassium homeostasis, and possible dysfunction of renal K+ channels, may 

be involved in the development of renal impairments in diabetes. For example, the voltage-

gated potassium channel gene subfamily, KCNQ1, which localizes to the brush border of the 

PT, has been proposed as a marker for DKD. Genetic variants in this gene have significant 

association with susceptibility for DKD and microalbuminuria in multiple studies involving 

East Asian and European populations (Lim et al., 2012; Ohshige et al., 2010; Unoki et al., 

2008).
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The Ca2+ - activated K+ channel 3.1 (KCa3.1) has been identified as a potential target in 

DKD. This voltage-independent potassium channel is expressed in multiple cell types 

implicated in tubulointerstitial fibrosis including renal PT cells, fibroblasts, inflammatory 

cells, and endothelial cells (Huang, Pollock, & Chen, 2014b). In vitro, as well as in vivo 
studies in diabetic mouse models have shown that KCa3.1 is activated by high glucose and 

produces a proinflammatory response that contributes to renal damage in DKD. Moreover, 

blocking KCa3.1 suppresses the proinflammatory cytokine chemokine ligand 20 (CCL20), 

which prevents macrophage accumulation and improves renal fibrosis in diabetic mice, 

making it a potential therapeutic target for the treatment of DKD (Huang, Pollock, & Chen, 

2014a; Huang et al., 2013). One study found that renal injury in DKD may be exacerbated 

by insufficient autophagy in proximal tubular cells, and that blocking KCa3.1 restores 

normal autophagy, which may prevent some degree of renal injury in diabetic kidney disease 

(Huang et al., 2016). KCa3.1 blockers have been studied in clinical trials to treat sickle cell 

disease and although results showed it may be ineffective for this purpose, these drugs were 

safe and well-tolerated by patients in the trial (Wulff & Castle, 2010). This supports the 

claim that KCa3.1 blockers may be beneficial in the treatment of DKD.

As previously discussed, the malfunction of podocytes and loss of nephrin in the GFB is a 

hallmark of DKD. Studies show that both insulin and exposure to high glucose affect the 

activity and expression of the large-conductance Ca2+-activated K+ (BK) channel present in 

podocytes. Treatment of mouse podocytes with high glucose caused a marked reduction of 

BK channel current and a decrease in surface expression of BK channels, as well as nephrin, 

which likely interacts with the channel. However, insulin acts to stimulate BK channel 

activity and expression, which is blocked by the presence of high glucose. BK channels have 

been shown to interact with transient receptor potential canonical (TRPC) channels and their 

large conductance may provide the driving force facilitating movement of Ca2+ into the 

podocyte through TRPC channels. BK channels in the podocytes are responsive to insulin 

and glucose and interact with TRPC channels and nephrin, both of which are implicated in 

DKD. Thus it is feasible that the malfunction of these channels is involved in the progression 

of DKD (Kim & Dryer, 2011).

In addition to tubular potassium channels, there are renal vascular K+ channels which also 

contribute to DKD (Salomonsson, Brasen, & Sorensen, 2017). As an example, the 

involvement of ATP-sensitive K+ channels (KATP channels) in renal afferent arteriolar 

dilation was reported during STZ-induced T1DM (Ikenaga, Bast, Fallet, & Carmines, 2000). 

Similarly, we have shown recently that Dahl salt-sensitive rats with STZ-induced diabetes 

had an increased vasodilator response to the KATP channel activator, pinacidil (Miller et al., 

2018). In addition to increased KATP channel activity in diabetes, it was also shown that 

other renal vascular K+ channels, including BK channels and members of the inward 

rectifier (Kir) family, contribute to afferent arteriolar dilation in diabetic animal models 

(Brindeiro, Fallet, Lane, & Carmines, 2008; Carmines & Fujiwara, 2002).
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6. CALCIUM AND MAGNESIUM CHANNELS

6.1. Transient receptor potential (TRP) channels

The TRP superfamily of cation channels vary in permeability, selectivity, and mode of 

activation. TRP channels play a pivotal role in the influx of calcium, magnesium, and other 

ions across the plasma membrane and contribute to a diversity of functions, including their 

physiological and pathophysiological roles in the kidney (Abramowitz & Birnbaumer, 2009; 

Marko, Mannaa, Haschler, Kramer, & Gollasch, 2017; Tomilin, Mamenko, Zaika, & 

Pochynyuk, 2016). The TRP family is sub-divided into the following groups based on 

function and sequence: melastatin-related TRP (TRPM), ankryin transmembrane TRP 

(TRPA), vanilloid-receptor-related TRP (TRPV), mucolipin TRP (TRPML), polycystin TRP 

(TRPP), and canonical TRP (TRPC). Each group has a varied number of members and are 

expressed in all cell membranes, excluding mitochondrial membranes, throughout tissue 

types including the brain, lungs, smooth muscle, and kidneys. Abnormal activity and 

mutations in these channels have been linked to an assortment of kidney disorders such as 

nephrotic syndromes, glomerular diseases, polycystic kidney disease (PKD), and DKD 

(Abramowitz & Birnbaumer, 2009; Harris & Torres, 2009; Nilius & Owsianik, 2011; 

Tomilin et al., 2016; Woudenberg-Vrenken, Bindels, & Hoenderop, 2009). More recently the 

TRPC subfamily has become a target for research into possible therapeutic treatments for 

DKD.

The TRPC subfamily is composed of seven channels that are non-selectively permeable to 

calcium and sodium (Abramowitz & Birnbaumer, 2009; Vazquez, Wedel, Aziz, Trebak, & 

Putney, 2004; Woudenberg-Vrenken et al., 2009). TRPC 1–7 are all activated through 

phospholipase C (PLC) coupled receptors; however, they differ in mode of operation. Some 

are store-operated, whereas others operate via receptors (Dietrich, Mederos y Schnitzler, 

Kalwa, Storch, & Gudermann, 2005). Store-operated calcium entry (SOC) occurs when 

inositol 1,4,5-trisphosphate (IP3) or another signal causes the release of intracellular calcium 

stores from the endoplasmic reticulum (ER), reducing the calcium concentration in the ER. 

This Ca2+ decrease leads to the activation of SOC channels (Dietrich et al., 2005). Receptor-

operated calcium entry (ROC) occurs when an agonist binds to and activates the PLC 

coupled receptor, which is located on the cell membrane separate from the actual channel 

(Dietrich et al., 2005). Activation of both SOC and ROC TRPC channels lead to increased 

intracellular calcium levels (Abramowitz & Birnbaumer, 2009). In the kidney, TRPC 

channels are present in renal tubules and the glomerulus where their malfunction, 

overexpression, or mutation is linked to certain renal diseases. Of these channels, only 

TRPC6 has been genetically linked to a renal disease (Reiser et al., 2005; Winn et al., 2005).

6.2. TRPC6 and DKD

Numerous gain-of-function mutations in Trpc6 gene have been identified to ultimately lead 

to the development of Focal Segmental Glomerulosclerosis (FSGS) (Heeringa et al., 2009; 

Reiser et al., 2005; Winn et al., 2005). A recent analysis of human disease-causing Trpc6 
mutations also revealed a loss-of-function mutation in TRPC6 as an additional cause of 

hereditary FSGS (Riehle et al., 2016), which demonstrates that not only activation, but also 

inhibition of TRPC6 activity might lead to FSGS. With its location on the membrane of the 
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podocyte, TRPC6 participates in unison with other integral players of the slit diaphragm 

such as podocin and nephrin (Dryer & Reiser, 2010; Ilatovskaya & Staruschenko, 2015; 

Reiser et al., 2005). TRPC6 normally remains dormant in the cell membrane until activated 

by a stimulus (Fig. 5) (Ilatovskaya & Staruschenko, 2015). Ang II is increased during the 

progression of DKD and has been found to activate TRPC6 channels (Anderson, 

Roshanravan, Khine, & Dryer, 2014; Ilatovskaya et al., 2018; Ilatovskaya, Levchenko, 

Lowing, et al., 2015; Ilatovskaya et al., 2014; Ilatovskaya, Palygin, Levchenko, Endres, & 

Staruschenko, 2017; Nijenhuis et al., 2011; Sonneveld et al., 2014). In addition, 

hyperglycemia together with Ang II leads to overexpression of the TRPC6 channel in the 

podocyte and the subsequent drastic increase in intracellular calcium flowing through 

TRPC6. Hyperglycemia alone is insufficient to cause this same response (Sonneveld et al., 

2014). Ang II influences TRPC6 mRNA and protein levels by increasing the expression of 

the channel in the podocyte. The Ang II-mediated activation of the TRPC6 channel leads to 

engorgement of the podocyte with calcium, which causes podocyte cell death and 

breakdown of the GFB. This inevitably leads to albuminuria which is a hallmark of DKD 

(Fig 5) (Adebiyi, Soni, John, & Yang, 2014; Eckel et al., 2011; Evans, Lee, & Ragolia, 

2009; Ilatovskaya, Levchenko, Lowing, et al., 2015; Ilatovskaya et al., 2014; Ilatovskaya et 

al., 2017; Nijenhuis et al., 2011; Qin Zou, 2015; Reiser et al., 2005; Sonneveld et al., 2014; 

Zhang, Ding, Fan, & Liu, 2009). Our recent studies using a TRPC6 knockout on the Dahl SS 

rat background (SSTrpc6−/−) indicate that TRPC6 channel inhibition may have at least partial 

renoprotective effects in the context of type 1 DN (Spires et al., 2018). Further studies 

revealed the contribution of Nox4-mediated oxidative stress in the regulation of TRPC6 in 

DKD (Ilatovskaya et al., 2018). In agreement with our studies, Kim et al. reported that the 

genetic inactivation of TRPC6 in Sprague-Dawley rats confers this protection in a model of 

severe nephrosis (Kim, Yazdizadeh Shotorbani, & Dryer, 2018). Interestingly, Wang et al. 
reported that TRPC6 KO Akita mice exhibit prominent mesangial expansion in the diabetic 

group, which suggests enhanced susceptibility of glomerular cell types to the adverse effects 

of the TRPC6 KO with regards to hyperglycemia (Staruschenko, 2019; L. Wang, Chang, 

Buckley, & Spurney, 2019).

6.4. Voltage-gated calcium channels

Although less thoroughly studied than TRPC channels, voltage-gated calcium channels have 

also been shown to play a role in DKD. In the clinic, calcium channel blockers are 

commonly prescribed in conjunction with RAAS inhibitors to achieve better control over 

blood pressure, which is required for hypertensive patients with renal complications. These 

drugs are promising candidates in the treatment of DKD as they have been shown to be 

effective antihypertensive medications that are safe and well-tolerated with few reported side 

effects. The antihypertensive effect of calcium channel blockers is mainly attributed to the 

blockade of L-type Ca2+ channels, but N- and T-type channels may play a role in renal 

protective action due to their effects on glomerular capillary pressure, renal fibrotic process, 

sympathetic nerve activity and aldosterone synthesis (Sugano, Hayashi, Hosoya, & Yokoo, 

2013). Blockers of both the N- and L-type calcium channels have been tested in patients 

with diabetes to determine whether they impacted renal function. Multiple clinical studies 

have found that N- and L- type calcium channel blockers are renoprotective and improve 

proteinuria/microalbuminuria in diabetic patients. However, there is debate as to whether a 
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specific L-type blocker, amlodipine, or a general N-/L-type blocker, cilnidipine, is more 

protective in the progression of DKD. Ando et al. compared the results of administering the 

antagonist of both the N- and L-type channels, cilnidipine, and the specific L-type calcium 

channel blocker, amlodipine, to patients with hypertension and T2DM with 

microalbuminuria over a 12-month duration and did not find a substantial difference in renal 

outcomes (Ando et al., 2013). In contrast, a different study in hypertensive diabetic patients 

found significant differences in patient outcomes between the two drugs. Masuda et al. 
found that cilnidipine treatment resulted in significantly lower insulin resistance, higher 

estimated GFR, lower urinary albumin, and lower urinary creatinine. These parameters 

indicate better renal function and less renal damage, suggesting that cilnidipine rather than 

amlodipine, better preserves kidney function and is a more appropriate candidate for slowing 

the progression of DKD (Masuda et al., 2011). Both calcium channel blockers are already 

safely being prescribed to diabetic patients with hypertension who are at the highest risk for 

developing DKD; however, more clinical research is needed to determine which drug is most 

renoprotective. Basic science research on these channels indicates that inhibiting the N-type 

channel is especially important for the protection against kidney injury and the preservation 

of function. Thus, it has been predicted that antagonizing the N-type channel would produce 

a more balanced dilation of the afferent and efferent arterioles, more effectively reducing 

glomerular pressure. The N-type voltage-gated calcium channel, Cav2.2, is expressed in 

podocytes in the glomerulus as well as in the DCT. A global deletion of this channel in the 

db/db diabetic mouse ameliorates many of the renal manifestations of diabetes that are 

known to contribute to DKD. This knockout mouse had a significant reduction in 

hyperfiltration, renal injury, blood pressure, and proteinuria. Similarly, applying 

pharmaceutical antagonists to Cav2.2 resulted in renoprotection. Blocking this channel in 

cultured podocytes caused a reduction in transforming growth factor beta (TGF-β) mediated 

nephrin loss. These studies suggest that treatment with specific Cav2.2 channel blockers may 

slow the progression of DKD by protecting podocytes and reducing glomerular injury (Ohno 

et al., 2016).

6.5. Magnesium homeostasis and TRPM6 and TRPM7 channels

Renal magnesium handling is not classically associated with DKD, as magnesium has long 

been considered to be independent of endocrine control, often termed an “orphan ion” (Yee, 

2018). However, recent studies suggest that magnesium should not be overlooked in the 

context of DKD. Next to potassium, magnesium is the second most abundant intracellular 

cation and the kidney is responsible for maintaining its homeostasis. Like potassium, 

magnesium is associated with increased longevity and cardiovascular health, and is also an 

important anti-inflammatory molecule. Several studies have found an association between 

serum magnesium and diabetes. Earlier studies have suggested a link between 

hypomagnesemia and hyperglycemia, as well as an association between hypomagnesemia 

and the complications of diabetes (White & Campbell, 1993). A meta-analysis including 

over 500,000 patients found an inverse correlation between serum magnesium levels and risk 

for cardiovascular disease (Qu et al., 2013). Furthermore, this protection has been shown to 

extend to patients with CKD, who are at heightened risk for cardiovascular events (Kanbay, 

Goldsmith, Uyar, Turgut, & Covic, 2010), and hypertension where magnesium 

supplementation has been shown to be effective in reducing blood pressure. Additionally, 
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patients with diabetes have lower serum magnesium, on average, than healthy controls. 

Diabetic patients with microalbuminuria, indicative of progression towards DKD, have 

significantly lower magnesium than those without (Corsonello et al., 2000). Poor glycemic 

control in these patients likely causes enhanced urinary magnesium loss, which is associated 

with a more rapid progression from diabetes to DKD.

There is considerable evidence suggesting that Mg2+ deficiency is a significant risk factor 

for the development of insulin resistance and T2DM (Barbagallo & Dominguez, 2007). A 

recent population-based cohort study by Kieboom et al. revealed that low serum Mg2+ levels 

are associated with an increased risk of prediabetes. Furthermore, common variants in 

magnesium-regulating genes, including the magnesium transporters, SLC41A2 (Solute 

Carrier Family 41 Member 2) and TRPM6, modify diabetes risk through altering serum 

Mg2+ levels (Kieboom et al., 2017). Transient receptor potential melastatin 6 and 7 (TRPM6 

and TRPM7) channels play a central role in magnesium homeostasis, which is critical for 

maintaining glucose and insulin metabolism. Several loss-of-function mutations in Trpm6 
have been identified among patients with an autosomal-recessive form of hypomagnesemia 

with secondary hypocalcemia (Lainez et al., 2014; Schlingmann et al., 2002; Walder et al., 

2002). Various factors and hormones, including epidermal growth factor, pH, and insulin, 

contribute to the expression and function of this important channel (de Baaij, Hoenderop, & 

Bindels, 2015). There is also genetic evidence establishing the potential contribution of 

TRPM6 channels to the development of diabetes. For instance, Song et al., reported that two 

common non-synonymous SNPs in Trpm6 might confer susceptibility to T2DM in women 

with low magnesium intake (Y. Song et al., 2009). Another study revealed that SNPs in 

Trpm6 have been associated with gestational diabetes. Loss of insulin-induced activation of 

TRPM6 channels results in impaired glucose tolerance during pregnancy (Nair et al., 2012). 

Insulin binding causes the activation of two cascades resulting in more TRPM6 channels as 

well as NCC transporters to be inserted in the apical membrane. Hyperinsulinemia and 

insulin resistance may cause an uncoupling of these cascades, in which NCC increases 

concomitantly with insulin activity while TRPM6 becomes unresponsive to insulin activity, 

both effectively contributing to hypertension. A recent genome-wide meta-analysis of Mg2+ 

homeostasis and metabolic phenotypes identified two loci associated with urinary 

magnesium near Trpm6 (Corre et al., 2018). TRPM6 activity may also be inhibited by 

oxidative stress, further reducing Mg2+ uptake in diabetic patients. Diabetic rat models have 

also shown altered expression levels of TRPM6. Hyperfiltration and increased urinary flow 

rates in DKD patients are inversely correlated with Mg2+ reabsorption in the TAL and DCT 

and may also affect osmotic diuresis and passive reabsorption in the PT (Gommers, 

Hoenderop, Bindels, & de Baaij, 2016). In addition to TRPM6 and TRPM7 channels, there 

are other magnesium carriers in the kidney which might contribute to Mg2+ handling under 

normal conditions as well as during DKD. Therefore, current studies provide evidence 

supporting the critical contribution of magnesium channels in diabetes and the potential 

beneficial role of Mg2+ supplementation in diabetic patients. However, additional clinical 

and fundamental research is needed to identify specific mechanisms contributing to 

magnesium deficiency in diabetes. Despite gaps in research on the complicated role of renal 

magnesium handling in DKD, it is certain that magnesium imbalance contributes to or is 
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affected by multiple pathways integral to the progression of DKD including blood pressure 

control, oxidative stress, inflammation and hyperfiltration.

7. CONCLUSIONS AND FUTURE PERSPECTIVES

DKD as a result of diabetes mellitus is a medical pandemic affecting many patients today. 

Due to the critical role of renal ion transport in kidney damage caused by DKD, these 

transporters and their pathways represent promising targets for therapeutics. Understanding 

the roles of the numerous transporters in the disease progression of DKD requires 

knowledge of both their individual functions as well as their collective interactions, 

cascades, and mechanisms of regulation. This review provides only a brief description of the 

involvement of some of the most influential transporters in DKD. More studies are certainly 

necessary to further validate and evaluate the roles of these and other ion transporters in the 

pathogenesis of DKD.
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ABBREVIATIONS

AGEs Advanced glycation end-products

BK Large-conductance Ca2+-activated K+ channel

CD collecting duct

CKD Chronic kidney disease

DCT Distal convoluted tubule

DKD Diabetic kidney disease

DN Diabetic nephropathy

DPP-4 Dipeptidyl peptidase-4

ENaC Epithelial Na+ channel

ESRD End stage renal disease

ET-1 Endothelin 1

FSGS Focal Segmental Glomerulosclerosis

GFB Glomerular filtration barrier

GFR Glomerular filtration rate

GLP-1 Glucagon-like peptide-1
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GLUT Glucose transporter

KATP ATP-sensitive K+ channels

mTOR Mechanistic target of rapamycin

Na+/K+ ATPase Sodium potassium ATPase

NCC Na+−2Cl− cotransporter

NHE Na+/H+ exchanger

NKCC Na+-K+−2Cl− cotransporter

NO nitric oxide

PT Proximal tubule

RAAS Renin-angiotensin-aldosterone system

ROS Reactive oxygen species

SGK1 Serum and glucocorticoid-regulated kinase

SGLT1 Sodium-glucose transporter 1

SGLT2 Sodium-glucose transporter 2

SLC41A2 Solute carrier family 41 member 2

STZ streptozotocin

T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus

TAL Thick ascending limb

TGF Tubuloglomerular feedback

TGF-β Transforming growth factor beta

TRP Transient receptor potential channel

TRPC Transient receptor potential canonical channel

TRPM Transient receptor potential melastatin channel
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Figure 1. 
The positive feedback relationship between diabetes, hypertension, altered ion transport, and 

renal injury. This represents a simplified explanation for a very complex relationship that 

defines diabetic kidney disease (DKD).
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Figure 2. 
Schematic for pathogenesis of diabetic kidney disease (DKD). Hyperglycemia and 

hyperinsulinemia induced by diabetes leads to the activation and expression of the different 

channels and transporters located along the various nephron segments. These changes are 

exercised either directly or indirectly upon the channel. The multitude of these channel 

alterations result in interstitial fibrosis, glomerulosclerosis, hypertrophy, breakdown of the 

glomerular filtration barrier (GFB) and albuminuria. The culmination of the damage to 

various portions of the nephron is the development of DKD. Abbreviations: calcium 

activated potassium channel 3.1 (KCa3.1); glucose transporters (GLUT1 and 2); sodium 

glucose cotransporter (SGLT1 and 2); large conductance Ca2+-activated K+ channel (BKCa); 

epithelial Na+ channel (ENaC); transient receptor potential canonical (TRPC) channel.
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Figure 3. 
Tubular view of glucose transport within the proximal tubule of the kidneys. A. Healthy 

proximal tubule segments and normal function of sodium glucose cotransporters (SGLT1 

and SGLT2) and their glucose transporter (GLUT1 and GLUT2) counterparts. B. The altered 

function of SGLT and GLUT transporters under DKD conditions. C. Examples of the 

inhibitors specific for SGLT2, SGLT1, and dual inhibitors for both transporters and their 

general effects under DKD conditions.
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Figure 4. 
Schematic for epithelial Na+ channel (ENaC) induced tubular renal injury in DKD. 

Hyperglycemia and hyperinsulinemia induced via diabetes cause over-activation of the 

renin-angiotensin-aldosterone system (RAAS), long-term oxidative stress, and serum and 

glucocorticoid-regulated kinase (SGK) 1 activation that all directly cause the increase in the 

ENaC activation and/or expression. This increase in ENaC leads to various factors shown in 

the above pathway, such as hypertension. The culmination of these factors result in the 

development of the major characteristics of DKD.
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Figure 5. 
Schematic for TRPC6-induced glomerular renal injury in the progression of DKD. 

Activation of the renin-angiotensin-aldosterone system (RAAS) cause an increase in 

angiotensin II (ANG II) that acts through the angiotensin II receptor type 1 (AT1R). This 

receptor activates phospholipase C (PLC) on the podocyte cell membrane. PLC activates 3 

additional targets/pathways in the podocyte: diacylglycerol (DAG) that cause calcium influx 

through the transient receptor potential canonical 6 (TRPC6) channel which in turn increases 

intracellular calcium [Ca2+]i; inositol triphosphate (IP3) activates calcium release from the 

intracellular stores; the membrane attack complex of complement C (C5b-9), a 

transmembrane channel involved in some immune responses, induces podocyte apoptosis. 

Increases in RAAS also leads to an increase in reactive oxygen species (ROS) that begets 

oxidative stress activating the calcineurin/NFAT pathway that increases the transcription of 

Trpc6. The culmination of the increase in [Ca2+]I from over-activation of TRPC6 leads to 

podocyte hypertrophy/apoptosis and foot process effacement ending in breakdown of the 

glomerular filtration barrier (GFB). The ultimate result of this pathway is the development 

of the DKD characteristic albuminuria.
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