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Abstract

Cellular behavior is continuously affected by microenvironmental forces through the process of 

mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical 

responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, 

reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus 

responds through a host of mechanisms, including partial unfolding, conformational changes, and 

phosphorylation of nuclear envelope proteins, modulation of nuclear import/export, and altered 

chromatin organization, resulting in transcriptional changes. It is unclear which of these events 

present direct mechanotransduction processes and which are downstream of other 

mechanotransduction pathways. We critically review and discuss the current evidence for nuclear 

mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and 

in disease, where an improved understanding of nuclear mechanotransduction is beginning to open 

new treatment avenues. Finally, we discuss innovative technological developments that will allow 

outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
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1. INTRODUCTION

Mechanotransduction refers to the process by which cells convert mechanical stimuli from 

their extracellular environment or cell-generated forces into biochemical signals to induce 

downstream cellular responses. Mechanical forces can propagate along the cytoskeleton and 

travel at speeds of up to 30 μm/s, an impressive rate that is 25 times faster than molecular 

motor transport and 12.5 times faster than passive diffusion of signaling molecules (1). This 

rapid conversion of physical to biochemical response enables the rapid adaptation of cells to 

their changing physical environment (2, 3). Mechanotransduction can play a critical role in 

cell and tissue differentiation, maintenance, and disease, for example, in the adaptation of 

bones and muscle to exercise or the alignment of endothelial cells to fluid shear (4).
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Since the term mechanotransduction is often used more broadly to refer to any cellular 

responses to mechanical stimuli, including events downstream of the original transduction 

event, in this review we use the following definitions: Mechanotransmission refers to the 

transmission of mechanical forces through cellular components, such as along actin stress 

fibers or microtubules, but does not include the actual mechanotransduction process. 

Mechanosensing refers to the actual transduction process, which is typically limited to some 

specialized proteins and locations within the cell; many of these proteins, including specific 

focal adhesion proteins and stretch-sensitive ion channels in the plasma membrane (5, 6), 

have been recognized in the last three decades, but others may remain to be identified. 

Mechanotransduction signaling describes the signaling pathways that are downstream of the 

initial mechanosensing event. Importantly, many of these pathways, such as mitogen-

activated protein kinase (MAPK) signaling or YAP/TAZ translocation, can be activated by a 

variety of upstream signals, not only mechanical stimuli but also biochemical signals, such 

as growth factor binding to cell surface receptors (7–9).

Recently, a growing number of studies, including some on isolated nuclei, have implicated 

the nucleus itself as a mechanosensing element (10–12). Several models have been proposed 

to explain how mechanical forces acting on the nucleus could induce changes in nuclear 

envelope composition, chromatin organization, and gene expression, which then drive 

downstream cellular responses (57, 58), including in stem cell differentiation. At the same 

time, many of the reported findings linking mechanical factors and nuclear changes have 

been rather correlative, and it often remains unclear whether the observed nuclear changes 

were upstream or downstream of other events, including established cytoplasmic 

mechanotransduction pathways.

In this review, we provide a summary of nuclear structure and describe how these nuclear 

components contribute to nuclear mechanics, mechanotransmission, and mechanosensing. 

As many current efforts seek to understand how stem cells respond to their mechanical 

microenvironment to control differentiation and cell fate commitment, we discuss how 

nuclear mechanotransduction may be involved. Since defects in nuclear mechanics and 

mechanotransmission are linked to impaired mechanotransduction signaling and several 

human diseases, particularly affecting skeletal and cardiac muscle (4), we discuss the current 

understanding of nuclear mechanotransduction in disease pathogenesis. Finally, we outline 

some of the recent technological advances in unraveling the mechanisms by which the 

nucleus acts in mechanotransduction and in deepening our understanding of the diseases 

caused by such mechanisms.

2. THE NUCLEUS AND NUCLEAR MECHANICS

2.1. Nuclear Structure and Organization

As the compartment containing the vast majority of the genome and the site of gene 

transcription, the nucleus arguably plays the most important role in guiding cellular fate, 

behavior, and adaptation. The nucleus contains DNA that is wrapped around histones, which 

are organized into higher-order structures, broadly categorized as either open, 

transcriptionally active euchromatin or condensed, inactive heterochromatin. The nuclear 

envelope consists of outer and inner nuclear membranes (ONM and INM, respectively) 
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separated by the 30–50-nm-wide perinuclear space (PNS) (Figure 1). This double membrane 

serves as a physical barrier to protect the nuclear contents and to control exchange of large 

(>30-kDa) molecules between the cytoplasm and the nuclear interior through nuclear pore 

complexes (NPCs). NPCs regulate exchange across the nuclear envelope, directly connect to 

both the nucleoskeleton and the cytoskeleton, and interact with chromatin (13).

Below the INM exists the 10–30-nm-thick, fibrous meshwork of the nuclear lamina (14). 

The nuclear lamina is composed mostly of lamins, which are type V nuclear intermediate 

filament proteins nearly ubiquitously expressed in differentiated cell types. Mammalian cells 

express two types of lamins—A-type and B-type—as products of three genes. In somatic 

cells, the LMNA gene gives rise to two major A-type lamin isoforms, Lamin A and Lamin 

C, plus some less common isoforms, as the result of alternative splicing; the LMNB1 and 

LMNB2 genes encode Lamins B1 and B2, respectively. Lamins A and C are 

developmentally regulated and appear during cellular differentiation. In contrast, all cells 

express at least one B-type lamin, even though recent studies show that cells lacking both 

Lamin B1 and B2 are viable (15, 16). The various lamin isoforms form independent yet 

interacting meshworks with a highly branched architecture at the nuclear periphery (17, 18). 

Surprisingly, recent cryo–electron tomography (cryo-ET) studies indicated that A- and B-

type lamins form 3.5-nm-diameter tetrameric filaments, which are substantially thinner than 

the 10-nm-diameter cytoplasmic intermediate filaments (14). Notably, a fraction of lamins, 

particularly A-type, also exist in the nucleoplasm. Lamins have many binding partners, 

including chromatin, transcription factors, and LEM (LAP2, Emerin, and MAN1) family 

proteins, that play critical roles in gene regulation (19).

Since their discovery four decades ago (20), interest in nuclear lamins has been rapidly 

increasing as more evidence of their vital roles in cellular functions and disease has 

emerged. Within the nucleus, lamins regulate transcription, DNA replication and repair, and 

chromatin organization (21, 22). Heterochromatin exists at the nuclear periphery and 

interacts with the nuclear lamina in Lamin-associated domains (LADs) (23, 24) and via 

Lamin-associated protein 2 (LAP2) and its binding partner barrier to autointegration factor 

(BAF) (25, 26). These interactions may directly affect chromatin organization, nuclear 

mechanotransduction, and gene expression and may contribute to stem cell differentiation 

(see Sections 3 and 4). Furthermore, Lamin A is required to retain Emerin at the INM (27, 

28), which in turn modulates expression of mechanosensitive genes (29) and is required for 

the Nesprin-1-mediated nuclear envelope remodeling in response to mechanical force (10). 

Depletion of Lamin B1 results in an enlarged or loose Lamin A/C meshwork with blebs of 

the nuclear envelope that contain Lamin A/C and euchromatin (17, 27, 30). Similarly, 

depletion of Lamin A/C causes loosening of the Lamin B1 meshwork and mislocalization of 

Emerin and other nuclear envelope proteins away from the nuclear envelope, highlighting 

the interconnections between various nuclear envelope components (17, 30).

At the nuclear envelope, lamins are responsible for positioning and distribution of NPCs, 

with both A- and B-type lamins binding nucleoporin (Nup153). Lamins also modulate 

nuclear assembly and disassembly during cellular replication (22), as well as nuclear shape, 

stiffness, and structure by regulating cytoskeletal organization (30–32). Loss of Lamin A/C 

results in disturbed perinuclear actin, microtubule, and intermediate filament organization 
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and changes in focal adhesions (33–37). On a larger scale, lamins play a critical role in 

migration through three-dimensional (3D) environments by governing the deformability of 

the large nucleus, which constitutes a rate-limiting factor in confined migration (reviewed in 

Reference 38).

2.2. Nucleo-Cytoskeletal Connections

The LINC (linker of the nucleoskeleton and cytoskeleton) complex connects the nuclear 

lamina to the cytoskeleton (39) and is critical in force transmission from the cytoskeleton to 

the nuclear interior, termed nucleo-cytoskeletal coupling (33). The LINC complex consists 

of SUN (Sad1p and UNC-84 homology)- and KASH (Klarsicht, ANC-1, and Syne 

homology)-domain proteins, named after their conserved C-terminal domains that interact 

across the luminal space. LINC complex proteins span the nuclear envelope (Figure 1), and 

are anchored at the nuclear envelope via lamins, NPCs, and interaction with chromatin (39). 

In mammalian somatic cells, Sun1 and Sun2 constitute the SUN-domain proteins; 

Nesprin-1, -2, -3, and -4, each with multiple isoforms, the KASH-domain proteins. Germ 

cells express additional LINC complex proteins. SUN-domain protein trimers in the INM 

interact with the lamina at the INM and KASH-domain proteins in the PNS (40). KASH-

domain proteins in the ONM protrude into both the PNS and cytoplasm, where they bind the 

cytoskeleton. Nesprin family proteins include isoforms that can directly bind F-actin, 

interact with the microtubule motors kinesin and dynein and with each other, and bind the 

adaptor protein plectin to interact with intermediate filaments (41). The LINC complex plays 

crucial roles in mechanical processes such as nuclear movement, positioning, and shape, as 

well as chromatin positioning and gene expression (42, 43). Disruption of the interaction 

between nuclear lamins and LINC complex proteins, for example, through mutations in the 

LMNA gene responsible for various diseases (see Section 5), results in loss of nucleo-

cytoskeletal coupling, perturbed cytoskeletal organization, loss of nuclear stiffness, and 

inability of the nucleus to properly respond to force (44).

In cells adhering on rigid two-dimensional (2D) surfaces, a perinuclear organization of 

dynamic apical actomyosin filaments (referred to as a perinuclear actin cap by some authors) 

spans the top of the nucleus and connects to the nuclear interior via the LINC complex (34). 

Anchored at focal adhesions at the cellular basal surface, these perinuclear actin filaments 

apply compressive forces to the apical surface of the nucleus (45). Together with lateral 

forces transmitted to the nucleus from other cytoskeletal structures, such as microtubules, 

these forces strongly influence nuclear shape (46, 47). This concept is discussed further in 

the context of mechanotransduction in Section 3.

2.3. Nuclear Mechanics

Together, the highly interconnected nuclear constituents described above mediate the 

transmission of mechanical forces from the cytoskeleton to the nucleus, while providing 

structural support to the nucleus and defining its mechanical properties (44). The nucleus 

exhibits elasticity and compressibility that enable the nucleus to act as a mechanical shock 

absorber (48). Both the nuclear lamina and chromatin contribute to nuclear mechanical 

response to strain (49, 50). Nuclear lamina stretch dominates at nuclear strains above 30%, 

while the mechanical properties of chromatin, which exhibits viscoelastic properties, govern 
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nuclear deformation at lower strains (49). Physical cross-links between chromatin and INM 

proteins such as SUN-domain proteins can provide further mechanical stability to the 

nucleus (51). Prolonged mechanical stress can cause irreversible deformation and 

reorganization of chromatin, which may correspond to altered transcriptional or 

differentiation states (52). Lamin A/C levels correlate to nuclear stiffness and ability to 

withstand force: Increased levels result in stiffer and more viscous nuclei (11, 53), whereas 

decreased levels correspond to softer, more deformable nuclei with increased fragility (31, 

53–55). Lamin phosphorylation results in increased solubility of lamins, decreased 

polymerization of the lamina, increased lamin turnover, and reduction of cellular tension and 

nuclear stiffness (11, 56).

3. THE ROLE OF THE NUCLEUS IN MECHANOTRANSDUCTION

Many non-mutually-exclusive mechanisms of nuclear mechanotransduction have been 

proposed to date. In this section, we briefly discuss the major proposed mechanisms and the 

evidence supporting them (Figure 2); we refer readers to excellent recent reviews (57, 58) 

for more details and additional proposed mechanisms. In our discussion, we focus general 

mechanisms of nuclear mechanotransduction; it is important to recognize that different cell 

types may respond differently to mechanical stimuli, owing to differences in both structural 

organization (e.g. when comparing epithelial cells, mesenchymal fibroblasts, leukocytes, and 

muscle cells) and cell-type specific signaling pathways downstream of the mechanosensing 

event.

3.1. Nuclear Membrane and Pore Stretching

During nuclear membrane stretch, NPCs take on a dilated, more open conformation (59, 60). 

Although NPCs make up less than 10% of the nuclear surface area at rest (61), the 

mechanically induced increase in NPC diameter accounts for one-sixth of the total increase 

in nuclear membrane surface area in HeLa cells during nuclear swelling (59). Force 

application to the nucleus, such as during cell spreading on a 2D substrate or by indentation 

with an atomic force microscopy tip, triggers partial opening of nuclear pores, promoting 

active nuclear import of YAP (60). Osmotic swelling, however, does not trigger YAP import 

(60), suggesting that some elements, such as Nesprin-1 (8) or other LINC complex 

constituents, are required for the opening of nuclear pores and the mechanosensing process.

Flux of calcium in response to force application or nuclear stretching may constitute another 

nuclear mechanosensing mechanism. NPCs and calcium channels on the nuclear envelope, 

including L-type, InsP3, cyclic ADP ribose-modulate, and possibly others, regulate the 

influx and efflux of calcium from the nucleus (62–64). Cell spreading and nuclear stretching 

increase nuclear calcium through stretch-activated calcium channels on the nuclear 

membrane, which enhances transcription factor (CREB) expression and regulates gene 

transcription, protein import, apoptosis (63, 64), and downstream mechanosignaling (65).

In addition to the opening of NPCs and channels, nuclear envelope stretch loosens packing 

of the nuclear membrane phospholipid bilayers, allowing for the insertion of hydrophobic 

protein residues into the bilayer (65). Osmotic swelling in response to tissue damage triggers 

nuclear translocation of cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LOX) 
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and incorporation of these proteins into the INM, where their activity triggers downstream 

inflammatory signaling cascades (65). Mechanosensitive incorporation of cPLA2 and 5-

LOX is regulated by increased calcium levels in the cell, which aids residue insertion into 

the membrane (65, 66), and by nuclear lamina rigidity, as a stiff nuclear lamina may not as 

readily allow stretching of the INM and therefore reduces protein incorporation into the 

INM (50, 65).

3.2. Protein Phosphorylation and Conformation Change in Response to Mechanical Force

Phosphorylation states serve as common mechano-switches in mechanical response, such as 

cytoskeletal stretch-dependent phosphorylation of Cas (67, 68) for contraction or 

phosphorylation of Paxillin and Vinculin during tension-mediated focal adhesion maturation 

(69). In the nucleus, Lamin A/C and Emerin phosphorylation modulate nuclear stiffness and 

nucleo-cytoskeletal coupling in response to mechanical stimulation (10, 11, 56). Lamin A/C 

phosphorylation increases in cells with low cytoskeletal tension, that is, when cells are 

grown on soft substrates (11, 56), increasing Lamin A/C mobility and turnover (56, 70). 

Conversely, when forces are applied to the nucleus via nesprins, Src-mediated Emerin 

phosphorylation recruits Lamin A/C to the nuclear periphery and promotes Sun2–Lamin 

A/C interactions (10). The precise mechanism by which mechanical forces can modulate 

phosphorylation of nuclear envelope proteins remains unclear, including whether this 

process is regulated by altering kinase activities or accessibility of the kinase substrate 

amino acids. Regardless, the observed mechanically induced phosphorylation implicates a 

structural role for phosphorylation in mechanotransduction through control of nuclear 

stiffening and nucleo-cytoskeletal coupling (10, 11, 56), which can also affect downstream 

transcription by downregulating some mechanoresponsive genes (VCL and SRF) and 

reducing YAP/TAZ translocation into the nucleus (10).

Alongside phosphorylation, protein conformation plays a role in mechanical response at the 

nuclear envelope. Partial unfolding of the Lamin A C-terminal immunoglobulin (Ig)-like 

fold in response to mechanical forces may expose normally hidden residues, such as Cys522 

(11, 71). This conformational change could alter interaction with binding partners, expose 

cryptic signaling sites, or destabilize the protein. Unfolding may expose some amino acid 

residues to kinases, thus allowing for altered phosphorylation and modulating downstream 

signaling.

3.3. Chromatin Stretching, Organization, and Modification

Mechanical microenvironmental cues, such as architecture and mechanical loading (e.g., 

tension and compression), alter chromatin modifications and condensation to control gene 

expression (72–77). Dynamic mechanical loading can cause rapid short-lived, prolonged, 

and even irreversible changes in chromatin condensation, depending on the intensity and 

duration of the mechanical load (75–77). Highly transcriptionally active chromosomes 

preferentially orient along the mechanical axis of the nucleus on anisotropic micropatterned 

materials (73, 78, 79), demonstrating that chromatin organization is responsive to 

extracellular and cytoskeletal mechanical cues. Such changes in chromatin organization 

likely affect the transcriptional profile of the cells. Although these phenomena are widely 

observed, the specific mechanisms guiding mechanoresponsive gene expression are not well 
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characterized. In particular, it remains unclear whether these changes are direct responses to 

forces acting on the nucleus or are downstream of other mechanotransduction events.

Importantly, the observed changes in chromatin organization, condensation, and 

modification are dependent on the actin cytoskeleton and LINC complex (75–77, 80). 

Perinuclear actin filaments bind to the LINC complex on the apical surface of the nucleus 

and cause accumulation of Lamin A/C and hyperacetylated, transcriptionally active 

euchromatin at the INM, demonstrating that the perinuclear actin filaments interact with 

euchromatin via nucleo-cytoskeletal coupling (81). Furthermore, cytoskeletal contraction 

triggers mechanosensitive ATP release and calcium signaling to mediate nuclear import and 

activation of the histone–lysine N-methyltransferase EZH2 and histone deacetylase (HDAC) 

(73, 75–77), which stimulates gene silencing by altering methylation (74) and gene 

transcription by increasing histone acetylation (72, 73). Prolonged force application drives 

changes in methylation states for gene regulatory control by decoupling heterochromatin 

from the nuclear lamina, and driving chromatin compaction, and a switch from H3K9me3 to 

H3K27me3to attenuate transcription and silence promotors (74).

Previous research suggested that force-dependent transcriptional regulation depends upon 

lamin–chromatin interactions (30), but until recently, studies have struggled to show a direct 

effect of mechanical force on chromatin to control transcription. Wang and colleagues (82) 

used 3D magnetic twisting cytometry to apply extracellular stretching with RGD-coated 

magnetic beads, which demonstrated the direct stretching of a reporter transgene flanked by 

two green fluorescent protein–labeled loci and rapid, stretch-dependent transcription of the 

reporter gene. This study suggests that force is transmitted through integrins, the actin 

cytoskeleton, the LINC complex, and then lamin–chromatin interactions, which stretch 

chromatin and result in upregulation of transcription (82). Disruption of any one of these 

components weakens the mechanically induced response (82). Nonetheless, studies using 

endogenous genes will be required to confirm these findings in a general context, and it 

remains unclear how chromatin stretching results in activation of specific mechanosensitive 

genes. Euchromatin endures greater deformation under strain than heterochromatin, which 

would induce larger conformational changes (77), and may promote stretch-dependent 

transcription.

3.4. Nuclear and Perinuclear Actin

Recently, nuclear and perinuclear actin assemblies have emerged as key players in nuclear 

mechanotransmission and mechanosignaling. Nuclear actin polymerization regulates nuclear 

structure and gene expression (26, 83–86). The LINC complex mediates nuclear actin 

polymerization in response to cell spreading to form a nuclear scaffold (1, 87), which is 

accelerated by Emerin binding to the actin pointed end (26, 83). Both Lamin A/C and 

Emerin bind nuclear actin, thereby increasing nuclear strength (26, 83). Furthermore, 

nuclear actin acts as a transcriptional cofactor for polymerases I, II, and III (84). Nuclear 

actin polymerization can regulate transcription factor activity via increased import and 

export, primarily through myocardin-related transcription factor A (MRTF-A) and serum 

response factor (SRF), which demonstrates the downstream effects of force-driven nuclear 

actin dynamics (85, 86). Highlighting the interplay between nuclear envelope proteins, actin, 
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and MRTF-A/SRF, loss of Lamin A/C and Emerin disturb nuclear and cytoskeletal actin 

dynamics and impair MRTF-A/SRF signaling (ref).

Applied force can induce perinuclear actin filament assembly within minutes (77, 88), in a 

process that requires Lamin A/C, Emerin, and the LINC complex (33–35, 45). The presence 

of perinuclear actin is key in mechanotransmission of forces to the nucleus via the LINC 

complex, but the initial polymerization reaction likely occurs downstream of Rho GTPase 

(77) and calcium mechanosignaling (88). Thus, perinuclear actin plays a crucial role in 

mechanotransmission to the nucleus, a requirement for nuclear mechanotransduction. At the 

same time, perinuclear—and nuclear—actin polymerization is downstream of other 

mechanoresponsive signaling pathways and can further modulate mechanotransduction 

signaling by interaction with MRTF-A and SRF. As a whole, this mechanosensitive 

mechanistic web is thought to work to guide cellular functions, such as stem cell fate (as 

discussed in Section 4), and disruption of this intricate network can cause a host of human 

diseases (see Section 5).

4. NUCLEAR MECHANICS GUIDE STEM CELL FATE

In addition to soluble factors, the stem cell microenvironment provides mechanical 

stimulation to guide lineage commitment and differentiation. Seminal research by Engler et 

al. (89) demonstrated that mesenchymal stem cell (MSC) fate is guided by extracellular 

matrix (ECM) elasticity. Motivated by these findings, researchers have focused on 

harnessing the mechanical environment for directing stem cell differentiation (i.e., 

mechanically induced differentiation), both with (89–91) and without (75, 92) the use of 

soluble factors. It is now recognized that matrix geometry, stiffness, adhesion, stress 

relaxation, micro- and nanopatterned surfaces, and applied cellular stretch can guide stem 

cell fate (8, 75, 90–92). Nonetheless, the specific mechanisms by which stem cell nuclei 

adapt to and differentiate within their mechanical environments remain incompletely 

understood. Thus, this section highlights nuclear mechanotransduction mechanisms guiding 

stem cell fate and describes how mechanotransduction can instill mechanical memory of 

differentiation states (Figure 3).

4.1. Mechanisms of Stem Cell Nuclear Mechanotransduction for Guiding Cell Fate

Compared with somatic cells, stem cells exhibit altered DNA and histone modifications 

(93), including highly condensed chromatin conformations, primarily at the nuclear 

periphery (94, 95), and altered expression of nuclear envelope proteins (52, 96, 97). Stem 

cells either completely lack or have reduced levels of Lamin A/C, resulting in more 

deformable nuclei (52). Lamin A/C interacts with chromatin to control gene expression (98) 

and restricts heterochromatin protein dynamics (96, 97). However, lamins are not required 

for differentiation. Embryonic stem cells (ESCs) lacking Lamin A/C, B1, and B2 [i.e., triple 

knockout (TKO)] differentiate into all three germ layers in vitro (16); keratinocyte-specific 

lamin TKO does not interfere with gestation in vivo but causes fatal skin defects upon birth 

(99). Together, these results suggest that lamins may be required for proper tissue 

architecture, rather than differentiation or organogenesis (16, 99). Nonetheless, experiments 

with MSCs and pluripotent stem cells (PSCs) indicate an intriguing connection between 
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Lamin A/C and mechanically induced differentiation. MSCs, which express Lamin A/C, can 

undergo mechanically induced differentiation (75, 89–92), whereas minimal progress has 

been made toward mechanically induced differentiation in PSCs, which express little to no 

Lamin A/C (100). One potential pathway is the mechanosensitive phosphorylation of Lamin 

A/C, which enables nucleoplasmic Lamin A/C–LAP2α complex formation and subsequent 

regulation of adult stem cell proliferation and differentiation pathways, such as through 

retinoblastoma protein, to control stemness (101, 102). Given the intimate role of Lamin 

A/C in mechanotransduction, its specific contributions in regulation of mechanically induced 

stem cell differentiation should be further explored.

In addition to lamins, LINC complex proteins play a role in mechanically induced 

differentiation of MSCs. Nesprin-1 promotes mechanoresponsive YAP nuclear import (8) 

and is required for force transmission to the nuclear lamina and chromatin. Conversely, 

cyclic tensile strain downregulates Sun2 in MSCs, causing a global drop in transcription 

(103), downregulation of tubulin expression (104), and disturbed perinuclear microtubule 

organization (104), causing impaired nucleo-cytoskeletal decoupling. Taken together, these 

results suggest both positive and negative roles of the LINC complex and nuclear envelope 

in mechanically induced differentiation by mediating cytoskeletal organization, nucleo-

cytoskeletal coupling, and regulation of gene expression through transcription factor import 

and signaling regulation. However, future studies should aim to further elucidate the roles of 

LINC complex proteins in nuclear mechanotransduction and mechanically induced 

differentiation of stem cells.

Additionally, stem cell pluripotency genes may be subject to mechanosensitive activation 

and silencing via downstream transcriptional control and chromatin modifications (74, 105). 

Mechanical strain independently localizes Emerin to the ONM (74, 106), which reduces 

H3K9me3-silenced heterochromatin, promotes the polymerization of perinuclear actin, and 

reduces nuclear actin levels (74). The decrease in nuclear actin diminishes RNA polymerase 

II activity, resulting in attenuated transcription, accumulation of phosphorylation, and 

H3K27me3 modification of chromatin, which corresponds to a more silenced state (74). 

Inhibiting this mechanism reduces methylation-mediated silencing, lineage commitment, 

and morphogenesis (74). Thus, this mechanism could explain how mechanically induced 

differentiation without soluble factors may be achieved: through regulation of stemness or 

promotion of differentiation.

4.2. Mechanically Induced Differentiation and Mechanical Memory

Mechanically induced differentiation has introduced the intriguing concept that stem cells 

can exhibit so-called mechanical memory. Whereas mechanotransduction typically involves 

rapid responses to changes in the physical environment of cells, this mechanical memory 

may allow stem cells to retain information and results of past mechanical conditions, which 

influences their future behavior and phenotype (Figure 3b). For example, culture of stem 

cells on stiff materials results in sustained nuclear YAP localization and osteogenic RUNX2 
expression, even when cells are transferred to a soft substrate, on which YAP is typically 

cytoplasmic and RUNX2 is not expressed (107). Initial nuclear YAP translocation is likely 

mediated by cytoskeletal mechanotransduction and nuclear membrane stretch to open NPCs 
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(60) via nucleo-cytoskeletal coupling through Nesprin-1 (8, 106). Subsequent nuclear 

stiffening, triggered by phosphorylation of Emerin to facilitate recruitment of Lamin A/C to 

the nuclear envelope (8), may contribute to the memory effect. Additionally, condensed 

chromatin stabilized via actin polymerization can persist after mechanical loading to create 

mechanical memory (75). Both of these mechanisms trigger chromatin condensation and 

nuclear stiffening, which correspond to a more differentiated state (92).

As mechanotransduction and signaling typically result in rapid adaptation to the mechanical 

environment, the concept of sustained mechanical memory is somewhat paradoxical: How 

do the classical mechanosensing mechanisms achieve permanent changes that resist further 

adaptation when the mechanical conditions have changed? The answer may lie in the 

persistent changes associated with stem cell differentiation. Mechanically induced stem cell 

differentiation causes altered chromatin organization, chromatin modifications, and gene 

expression, including that of nuclear and cytoskeletal proteins, thereby affecting nuclear 

mechanics, mechanotransmission, and mechanotransduction. These mechanoresponsive 

changes may be permanent and cannot easily be overcome by subsequent changes in the 

physical microenvironment, such as stiff to soft substrates or cessation of loading. However, 

further research is needed to fully elucidate the molecular events underlying the mechanical 

memory of stem cells and to determine how to harness this knowledge for applications using 

stem cells.

5. NUCLEAR MECHANOTRANSDUCTION GONE WRONG: SPOTLIGHT ON 

LAMINOPATHIES

Collectively, the laminopathies refer to diseases arising from mutations of the LMNA and 

LMNB genes. More than 450 different LMNA mutations give rise to ~14 different human 

diseases (see http://www.umd.be/LMNA/). Examples of human LMNA laminopathies 

include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), dilated 

cardiomyopathy (DCM) with conduction defects, and Hutchinson–Gilford progeria 

syndrome. Many laminopathies primarily affect mechanically stressed tissues such as 

skeletal muscle, heart, and tendons. In contrast, only two human diseases have been 

associated with the LMNB1 and LMNB2 genes to date: adult-onset autosomal dominant 

leukodystrophy, resulting from duplication of the LMNB1 gene (108), and acquired partial 

lipodostrophy, associated with mutations in the LMNB1 gene (109). Most laminopathies are 

currently incurable, and several result in premature death. Intriguingly, mutations in genes 

encoding the LINC complex proteins (Emerin, Nesprins-1/2, Sun1/2) can cause several of 

the same or similar human diseases as LMNA mutations, including EDMD, DCM, and 

Charcot–Marie–Tooth syndrome (reviewed in Reference 41). Thus, these diseases are also 

referred to as nuclear envelopathies. With similar disease phenotypes observed in these 

nuclear envelopathies, altered nucleo-cytoskeletal coupling, nuclear mechanics, and 

disturbed mechanotransduction could be clear culprits in the disease pathology.

Classically, two cellular mechanisms by which laminopathies act in disease have been 

suggested: structural disruption and gene misregulation. The structural hypothesis proposes 

that mutant lamins cause nuclear fragility, leading to increased nuclear damage and cell 
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death, particularly in mechanically stressed tissues. The gene regulation hypothesis suggests 

that lamin mutations play a tissue-specific role in gene expression by altering gene activation 

and silencing (98) or by inhibiting tissue-specific factor binding (110). Impaired stem cell 

differentiation caused by mutant lamins has been proposed as part of the gene regulation 

hypothesis. A third hypothesis, disrupted nuclear mechanotransduction, can bridge the 

mechanistic gap between the structural and gene regulation hypotheses, as disturbed gene 

regulation may, at least in part, be the product of physical disruption of nuclear 

mechanotransmission and mechanosensing (Figure 4). In the following subsections, we 

discuss laminopathies in the context of disrupted nuclear mechanics and 

mechanotransduction, particularly in light of the mechanisms discussed in Section 3.

5.1. Disrupted Mechanotransduction as a Driver of Laminopathy Pathology

The physical consequences of laminopathies on the structure and function of the nuclear 

lamina have been known for nearly two decades (111–113). Mutant or mislocalized proteins 

can lead to disrupted interactions between lamins and their binding partners, thus disturbing 

the mechanical integrity of the lamina, connections to chromatin and LINC complex 

proteins, and transcriptional regulators. LMNA mutations associated with muscular defects 

frequently result in reduced nuclear stability (31, 114, 115). Furthermore, LMNA mutations 

increase susceptibility of Lamin A to phosphorylation (116), thereby increasing their 

solubility and promoting disassembly of the nuclear lamina. LMNA mutant nuclei are often 

subject to nuclear envelope blebbing and both spontaneous rupture and rupture due to 

mechanical stress (53, 54, 114). Nuclear instability and rupture yield reduced cellular 

viability (53), loss of cellular compartmentalization that can mislocalize both proteins and 

whole organelles (54, 117, 118), and DNA damage (115).

Changes in LINC expression or anchoring at the nuclear envelope due to LMNA mutations, 

overexpression of Sun1 (119), loss of Emerin (120), or loss or mislocalization of Nesprin-2G 

(121) disrupts mechanotransmission across the nuclear envelope. This impaired nucleo-

cytoskeletal coupling (119–121) could explain disturbed nuclear positioning in skeletal 

muscle (122–124) and the loss of perinuclear actin filaments in LMNA mutant cells (34, 35, 

45), which is associated with increased nuclear height, abnormal nuclear shape, and 

impaired YAP translocation into the nucleus (34, 45). Disruption of YAP translocation in 

response to cyclic stretch results in poor matrix adhesion and decreased cytoskeletal tension 

(125) that may be due to both loss of mechanically induced NPC opening (60) and 

Nesprin-1 disruption (8).

Loss of Lamin A/C results in NPC clustering (18, 126, 127), and mutations in the 

immunoglobulin fold of Lamin A/C result in defective binding to nucleoporin (128), which 

may inhibit the roles of NPCs in mechanosensitive gene regulation. Altered nuclear 

mechanics and nucleo-cytoskeletal coupling could further disrupt mechanosensitive NPC 

opening and nuclear import of transcription factors and downstream gene expression (60). 

Moreover, since nucleoporins interact with transcriptionally active euchromatin (129, 130), 

improper distribution of NPCs and nucleoporins resulting from LMNA mutations may 

perturb transcriptional regulation. Similarly, as lamin sequesters heterochromatin to the 

nuclear periphery, altered chromosome location due to LMNA mutations could dysregulate 
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chromatin organization and gene expression. Several studies have demonstrated that relevant 

striated muscle genes are mislocalized to either the nuclear periphery or the center, 

depending on the mutation (131, 132). Such mislocalization could explain the altered tissue-

specific gene expression observed in laminopathies (131–133), a concept that should be 

further explored using genome mapping technologies (see Section 6).

Furthermore, possibly as a downstream effect of disturbed nuclear or cytoplasmic 

mechanosensing, several critical signaling pathways regulating differentiation and 

proliferation are disrupted in LMNA mutant muscle. These include transforming growth 

factors β1 and 2 (134, 135). MyoD (136), MAPK (specifically extracellular signal–regulated 

kinases (ERK) 1 and 2, JNK, and p38α) (137, 138), and WNT/β-catenin (137–139), which 

may compromise tissue homeostasis. Consequently, LMNA mutations can disrupt myogenic 

differentiation in skeletal muscle (122, 136, 140), although other studies found that Lamin 

A/C–deficient myoblasts differentiation into myotubes is normal (115, 141). Lamin A/C is 

expressed in both muscle stem cells (MuSCs) and differentiated myofibers. Mutant forms 

cause improper cell cycle exit, decreased MuSC fusion with myofibers, and increased 

apoptosis during differentiation (140), as well as slower and less efficient differentiation 

(136). As a possible explanation for increased muscle wasting, DNA-dependent protein 

kinase (DNA-PK), which was recently linked to aging-related muscle wasting (142, 143), is 

activated in response to DNA damage (115). This activation may drive muscle health decline 

in EDMD, possibly through apoptosis mediated by the activation of Caspase-3 (115).

5.2. Strategies to Remedy Cellular Pathology

Targeting disrupted signaling in LMNA laminopathies may open a window for the 

pharmaceutical treatment of laminopathies (144). WNT/β-catenin stimulation (139) and 

p38α MAPK inhibition (138, 145, 146) improve cellular pathology and disease outcomes, 

including improved cellular mechanical properties, cytoskeletal structure, cardiac 

contractility, and survival. Targeting impaired nuclear stability may present another 

therapeutic avenue. Pharmaceutical stabilization of microtubules, which reduces nuclear 

deformation, and depletion of the microtubule motor kinesin 1, involved in nuclear shuttling 

in skeletal muscle, prevented accrual of nuclear damage by nuclear envelope rupture and 

chromatin protrusions in Lamin A/C–deficient skeletal muscle cells in vitro (115). Although 

preliminary, these results demonstrate that reducing mechanical stress on the nucleus can 

positively influence laminopathic prognosis and represent a new treatment option that should 

be explored for laminopathies affecting skeletal muscle.

6. CURRENT TECHNOLOGIES FOR THE STUDY OF 

MECHANOTRANSDUCTION, NUCLEAR MECHANICS, AND RELATED 

DISEASES

Our knowledge of mechanotransduction and nuclear mechanics in stem cell biology and 

disease (laminopathies) is often the product of innovative technologies. From nuclear- to 

cellular- to tissue-level technologies, creative force application methods, imaging 

techniques, and model systems have defined the study of nuclear mechanotransduction 

(Table 1). In this section, we discuss current technological innovations, including super-
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resolution imaging, fluorescence molecular reporters, and engineered tissue constructs for 

analyzing the role of the nucleus and the corresponding mechanisms in mechanotransduction 

and disease (laminopathies).

6.1. Molecular Probes for Nuclear Structure

Unraveling nuclear mechanotransduction has remained a challenge due to (a) the complex 

and interconnected nature of the nuclear constituents and (b) the microscopic scale required 

to mechanically probe the nuclear components. Thus, several techniques, such as 

superresolution microscopy, fluorescence reporters for nanoscale forces and deformation, 

and tools to probe nuclear structure and organization across the whole genome stand at the 

forefront of technologies to overcome such obstacles. Superresolution imaging techniques, 

such as structured illumination microscopy (17), dSTORM (direct stochastic optical 

reconstruction microscopy) (18), and cryo-ET (cryo–electron tomography) (14), among 

others, have enabled the observation of the organization of the nuclear lamina and their 

binding partners at the protein level and have revealed nuclear supramolecular structures and 

unexpected details of lamin filament organization (14). To further probe protein–protein 

interactions at the nuclear envelope in living cells and animals, investigators have developed 

BioID, in which a protein of interest, such as Lamin A, is fused to a promiscuous version of 

BirA, an Escherichia coli biotin ligase. Proteins in close proximity (~10 nm) to the protein 

of interest are biotinylated and can subsequently be identified by mass spectrometry (18, 

147). Newer versions of BioD have been developed to reduce the interaction radius and 

improved control over the timing of the biotinylation (148). BioID evades the removal of 

proteins from their native environment or the disruption of native protein interactions, as is 

the case with common alternative methods of yeast two-hybrid and coimmunoprecipitation 

assays (147). To date, these techniques have been used primarily to interrogate native 

nuclear protein conformations and Lamin A binding partners (147), but they could easily be 

applied to examine other key protein players and interactions in mechanically stressed or 

lamin-mutant nuclei in order to better understand mechanotransduction.

Characterization of the spatial organization of chromatin over time, termed the 4D 

nucleome(149) , has been a rapidly growing point of focus in cell biology. Genome 

interaction mapping techniques, evolved from the original 3C (chromosome conformation 

capture) methods to today’s 4C, 5C, Hi-C, and ChIA-PET (chromatin-interaction analysis 

by paired-end tag sequencing), have created high-resolution interaction maps of chromatin 

(149) and are beginning to be suitable for single-cell analysis. These techniques are now 

being applied to laminopathies(150), where they can yield novel insights into how 

transcription may be regulated in response to mechanical force or how chromatin may be 

disorganized in laminopathies.

6.2. Fluorescence Imaging for Nuclear Mechanics and Mechanotransduction

Chromatin reorganization, dynamics, interactions, condensation, and modifications may be 

better understood through fluorescence imaging techniques. Fluorescence tagging of 

chromatin using gene editing has been a common method of tracking reorganization of 

specific gene loci (82, 151, 152). Such methods and the use of multiple colors may, for 

example, allow tracking of several mechanosensitive genes simultaneously in response to 
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mechanical force to better understand mechanosensitive chromosome reorganization. FRAP 

(fluorescence recovery after photobleaching) experiments, using tagging of histones or 

chromatin modifications via fluorescently labeled specific antigen binding fragments (Fabs), 

can examine chromatin dynamics in live cells (153–156). These techniques may be 

particularly useful to understand how mechanical stimulation affects chromatin dynamics, 

reorganization, and modification (155). As an additional approach, Förster resonance energy 

transfer (FRET)-based reporters can be used to monitor chromatin modification and 

condensation (157–159) in living cells. Recent fluorescence lifetime imaging microscopy 

experiments have enabled high-throughput spatial tracking of condensation of fluorescently 

labeled chromatin in the nuclear interior simply by using the viscosity of chromatin and 

bypassing any gene modification, such as overexpression, required by other techniques 

(159). Chromatin may be labeled either through fluorescently tagged histones(159) or the 

use of DNA-binding dyes (160). High chromatin condensation is associated with low 

viscosity and low fluorescence lifetime, while decondensation causes an increase in 

viscosity due to reduction in chromatin packing and therefore has a high fluorescence 

lifetime(160). Thus, epigenetic modifications and changes in nuclear chromatin localization 

can be spatially and temporally tracked, which is useful for observing changes in response to 

mechanical stresses, for understanding chromatin changes during stem cell differentiation, 

and for studying diseases involved with disrupted interactions with chromatin.

In addition to understanding chromatin dynamics, related imaging techniques can be useful 

for the study of other mechanotransduction mechanisms. FRET between fluorophores of a 

single type, known as homoFRET, has been used to visualize and quantitatively measure 

changes in F-/G-actin ratios upon force application, based on the homoFRET signal 

produced when actin molecules labeled with enhanced green fluorescent protein assemble 

into filaments(77). Furthermore, tension-based FRET molecular biosensors, in which the 

FRET signal inversely correlates with the force transmitted across the tension-sensor-

containing molecule (121), enable one to probe mechanotransmission through various LINC 

complex proteins. This approach has already been successfully applied to measure forces 

across Nesprin-2G under different mechanical conditions (121). FRET biosensors could be 

further applied to examine the interactions of and force transmission across the cytoskeleton 

to other nuclear envelope proteins, reorganization or binding of the nuclear lamina to its 

many binding partners, or mechanically induced changes within the nucleus.

6.3. Engineered Muscle for Examining Tissue Mechanics in Laminopathies

Current methods for the in vitro study of cardiac and skeletal muscle, particularly in 2D 

culture, insufficiently recapitulate the native structure and organization of mature muscle 

cells in tissues. Recently developed engineered skeletal muscle and cardiac tissues more 

closely mimicking native tissue structure and maturity present an intriguing opportunity for 

the study of laminopathies and their underlying nuclear and tissue mechanics, and offer 

better platforms for testing pharmacological treatments compared with 2D culture systems. 

Consequently, engineered muscle constructs, ranging from the micrometer to the centimeter 

scale, enable (a) examining cell and tissue structures, (b) examining tissue-generated forces, 

and (c) improving the maturity of tissues. To form tissues, muscle or heart cells or 

progenitors, either alone or in direct coculture with fibroblasts or other cell types (161), are 
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suspended in an ECM solution (Figure 5a). Cells remodel and compact the ECM to form a 

tissue-like structure between two flexible pillars, which apply passive tension across the 

tissue that results in cytoskeletal and sarcomere alignment (Figure 5b) (162, 163). The 

engineered muscle tissues further compact over time and begin to contract as the muscle 

cells mature. The deflection of the flexible pillars (Figure 5c) can used to measure the tissue-

generated forces (164). Optionally, mechanical and/or electrical stimulation can be applied 

to engineered tissues to further improve maturation (163, 165).

To date, engineered muscle has also been employed to study cardiac muscle maturation 

(163, 165, 166), examine cellular forces and anisotropy (162, 164), analyze generated 

contraction forces (164, 167, 168), and create disease models for examining cellular 

phenotype, such as Duchenne’s muscular dystrophy or EDMD (161). Engineered muscle 

tissues can be useful for assessing tissue structure or nuclear morphologies for various 

disease-causing mutations (161), assessing disruption of tissue-generated forces (168), and 

modeling of correction of disease-causing mutations (168). However, tissue and sarcomere 

maturity still do not fully recapitulate native tissue, particularly for stem cell–derived 

muscle, motivating further research.

7. CONCLUSIONS AND PERSPECTIVES

Over the past few decades, efforts to obtain a clearer picture of nuclear mechanotransduction 

have shed light on how the cellular microenvironment and mechanical force guide cellular 

behavior and phenotype, stem cell differentiation, and human diseases such as 

laminopathies. Mechanotransmission through perinuclear cytoskeletal assemblies and the 

LINC complex to the lamina and chromatin governs nuclear mechanical response to force 

and alters organization of chromatin and gene expression as well as downstream expression 

of LINC proteins. Mechanosensitive phosphorylation and protein conformation modulate 

nuclear strength by altering the organization of the nuclear envelope. Nuclear membrane 

stretch guides downstream mechanosignaling by stretching of NPCs for increased nuclear 

import of transcription factors and by allowing for mechanosensitive incorporation of 

proteins into the INM. Finally, chromatin organization, compaction, stretching, and 

modification control downstream mechanosensitive gene expression, although the specific 

guiding mechanisms should be further explored. Together, these nuclear 

mechanotransduction mechanisms guide mechanically induced stem cell differentiation and 

can instill mechanical memory of differentiation states. Disruption of any component or 

mechanism, such as in LMNA laminopathies, may induce a chain reaction of disrupted 

nuclear nucleo-cytoskeletal coupling, altered nuclear mechanics, and defective 

mechanotransduction elements and downstream mechanosignaling to cause human disease. 

An improved understanding of defective mechanotransmission and mechanotransduction 

signaling that enables targeting affected pathways and components may ultimately allow 

these pathologies to be remedied. Future research should aim to gain a more systematic 

understanding the cascade of nuclear mechanotransduction events. Particularly, which 

nuclear mechanisms are a direct response to mechanical force (i.e., true mechanosensors), 

and which are a product of downstream signaling? Elucidation of the positive and negative 

feedback loops driving nuclear mechanotransduction would clarify how the many individual 
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mechanisms relate and work together to guide downstream cellular phenotype and function 

and would shed new light on the nucleus as a mechanosensor.
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Figure 1. 
Constituents of the nucleus and nuclear envelope involved in mechanotransduction. The 

LINC (linker of the nucleoskeleton and cytoskeleton) complex—nesprins at the outer 

nuclear membrane (ONM) and SUN-domain proteins at the inner nuclear membrane (INM)

—spans the nuclear envelope, interacting with cytoskeletal filaments and associated proteins 

and the nuclear lamina to enable force transmission between the cytoskeleton and nuclear 

interior. Nuclear lamins (A/C and B1/2) form independent yet interacting meshworks 

underneath the INM and are responsible for maintaining nuclear shape and stiffness. Both 

A- and B-type lamins interact with nuclear pore complexes (NPCs), chromatin, and various 

other binding partners at the nuclear envelope and the nuclear interior. NPCs enable 

molecular transport between the cytoplasm and nucleoplasm.
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Figure 2. 
Proposed mechanisms of nuclear mechanotransduction. (a) Force application to the nucleus 

can results in conformational changes of nuclear envelope proteins, such as partial unfolding 

of lamins (11, 71), and phosphorylation of nuclear proteins, including lamins, SUN-domain 

proteins, and Emerin (10, 11, 56). (b) Nuclear membrane stretch in response to force opens 

nuclear pore complexes (NPCs) (59, 60) and calcium channels (65, 66) on the cytoplasmic 

side, thus increasing molecular influx into the nucleoplasm. The increased import of 

transcription factors (TFs) into the nucleoplasm can alter gene expression (60). (c) 

Mechanical forces acting on the nucleus can induce chromatin stretching, opening, and 

compaction, including DNA and histone modifications, that alter accessibility to 

transcription factors and lead to changes in gene expression (72–77) [add reference (82)]. 

Abbreviation: NPC, nuclear pore complex.
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Figure 3. 
Nuclear mechanics guide stem cell fate and mechanical memory. (a) Stem cells may undergo 

mechanically induced differentiation in response to matrix mechanical properties, surface 

structure, and geometry. Nuclear mechanotransduction in response to matrix sensing alters 

the transcriptional program to ultimately guide downstream lineage commitment and cellular 

mechanical properties. (b) Substrate stiffness may enable stem cells to exhibit mechanical 

memory, in which a stiff phenotype is remembered upon transfer to culture on a soft 

substrate, via nuclear YAP retention and chromatin condensation.
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Figure 4. 
Defective mechanotransduction as a bridge between laminopathy hypotheses. Structural 

defects (increased nuclear fragility that leads to breakage and cell death) and gene 

misregulation (altered gene activation and silencing) are the two primary hypothesized 

mechanisms responsible for the muscle-specific defects in many laminopathies. A third 

hypothesis—defective nuclear mechanotransduction—synthesizes both the structural 

disruption and gene misregulation hypotheses, as it can explain how downstream gene 
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misregulation might be a product of nuclear weakness due to disruption of 

mechanotransduction mechanisms in and on the nucleus.
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Figure 5. 
Creation of engineered muscle tissue constructs for the study of tissue morphology and 

generated forces. (a) Devices are loaded with a cell (light brown) and extracellular matrix 

(pink) solution, and (b) cells reorganize and restructure the matrix to form a tissue around 

elastic pillars. (c) Tissues gradually compact and/or contract as cells elongate, thereby 

deflecting pillars. The force generated by the engineered tissue constructs can be calculated 

from the measured pillar deflection and the known material properties of the elastic pillars.
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Table 1

Prominent technologies for elucidating mechanotransduction mechanisms

Technique Description References

Detection techniques

Superresolution 
microscopy

Imaging techniques (i.e., SIM, dSTORM, cryo-ET) with protein-level resolution. Useful for 
examining nuclear organization, binding partners, and supramolecular structure.

14, 17, 18

BioID Proteins are biotinylated when in proximity to an engineered fusion protein (such as Lamin A) 
to label and identify novel binding partners with mass spectrometry. Can be used to examine 
protein interactions in mechanically stressed or lamin-mutant nuclei.

18, 169

4D nucleome Genome mapping techniques (i.e., 4C, 5C, Hi-C, and ChIA-PET), for observing spatial 
organization and condensation states of chromatin.

147

Genomic labeling Fluorescence tagging of chromatin using gene editing for tracking mechanosensitive 
reorganization of (multiple) gene loci.

82, 151, 152

FRAP A target protein is fluorescently tagged, a small area is photobleached, and time of recovery of 
fluorescence to the area is measured to understand the recovery dynamics, such as for 
chromatin histone organization or modifications.

153–156

FRET Visual monitoring of the interaction between fluorescently tagged proteins, which creates a 
FRET signal. Diverse applications to mechanotransduction, such as monitoring force-
dependent protein interactions, chromatin modification/condensation, actin assembly, or 
measuring tension forces.

77, 121, 157–159, 
170

FLIM Through fluorescence tagging of chromatin and examining fluorescence lifetime, which 
corresponds to viscosity due to degree of chromatin packing, can be used for high-throughput 
spatial tracking of chromatin condensation in the nucleoplasm.

159, 160

Mechanical manipulation techniques

Isolated nuclei Removal of the nucleus from a cell for the direct study of the nucleus and its constituents, 
eliminating any confounding effects from the cytoplasm and/or cytoskeleton. Force can be 
directly applied to the nucleus, such as for LINC complex force measurement or examination 
of nuclear changes.

121, 169

LINC complex 
disruption

Depletion or deletion of LINC complex proteins via gene editing. By examining any 
subsequent defects resulting from force application, the role of LINC complex proteins in 
mechanotransduction may be better understood.

Tissue engineering techniques

Engineered (muscle) 
tissues

Cells are suspended in an ECM solution, compact to form a tissue between two flexible pillars, 
and tissues contract to deflect the pillars. Useful for examining cell and tissue structures, tissue 
generated forces, and improving maturity of tissues.

161–168

Micropatterning, 
structured, and 
engineered substrates

Cells are cultured on micrometer- or nanometer-scale geometries/architectures. Examining the 
subsequent nuclear changes and cellular signaling, behavior, or phentoype can give an 
understanding of the role of the nucleus in matrix sensation, such as in stem cell 
differentiation.

72, 73

Abbreviations: ChIA-PET, chromatin-interaction analysis by paired-end tag sequencing; cryo-ET, cryo electron tomography; dSTORM, direct 
stochastic optical reconstruction microscopy; ECM, extracellular matrix; FLIM, fluorescence lifetime imaging microscopy; FRAP, fluorescence 
recovery after photobleaching; FRET, Förster resonance energy transfer; LINC, linker of the nucleoskeleton and cytoskeleton; SIM, structured 
illumination microscopy.
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