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Abstract

Background: Pseudomonas aeruginosa is the prominent bacterial pathogen in the cystic fibrosis 

(CF) lung and contributes to significant morbidity and mortality. Though P. aeruginosa strains 

initially colonizing the CF lung have a nonmucoid colony morphology, they often mutate into 

mucoid variants that are associated with clinical deterioration. Both nonmucoid and mucoid P. 
aeruginosa variants are often co-isolated on microbiological cultures of sputum collected from CF 

patients. With regional variation in bronchiectasis, tissue damage, inflammation, and microbial 

colonization, lobar distribution of nonmucoid and mucoid P. aeruginosa variants may impact local 

microenvironments in the CF lung, but this has not been well-studied.

Methods: We prospectively collected lobe-specific bronchoalveolar lavage (BAL) fluid from a 

CF patient cohort (n=14) using a standardized bronchoscopic protocol where collection was 

performed in 6 lobare regions. The lobar BAL specimens were plated on P. aeruginosa-selective 

media and proinflammatory cytokines (IL-1, TNF, IL-6 and IL-8) were measured via cytokine 

array. Correlations between infecting P. aeruginosa variants (nonmucoid, mucoid, or mixed-variant 

populations), the lobar regions in which these variants were found, and regional proinflammatory 

cytokine concentrations were measured.

Results: P. aeruginosa mucoid and nonmucoid variants were homogenously distributed 

throughout the CF lung. However, infection with mucoid variants variants (found within single-or 

mixed-variant populations) was associated with significantly greater regional inflammation. The 

upper and lower lobes of the CF lung did not exhibit differences in inflammatory cytokine 

concentrations.
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Conclusions: Mucoid P. aeruginosa infection is a microbial determinant of regional 

inflammation within the CF lung.
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1. Introduction

Cystic fibrosis (CF) is a life-shortening genetic disease that affects approximately 30,000 

patients in the United States and more than 70,000 worldwide (1). CF patients suffer from 

devastating, chronic pulmonary infections associated with hyperinflammation and 

irreversible damage to the lower airways (2). As CF patients age, Pseudomonas aeruginosa 
becomes the predominant pathogen in the respiratory tract during the second decade of life 

for the majority of the patient population (3, 4). During the initial acquisition period, P. 
aeruginosa strains have a nonmucoid colony morphology (5). Once chronic infection is 

established, these bacteria may acquire mutations leading to the emergence of mucoid P. 
aeruginosa variants, which overproduce the exopolysaccharide, alginate, and exhibit 

enhanced recalcitrance to antimicrobial therapy (6-9). P. aeruginosa mucoid conversion is 

associated with a worse prognosis in CF, manifested as a precipitous decline in pulmonary 

function and heightened mortality (10-16).

Mucoid and nonmucoid variants are often co-isolated on microbial culture of CF sputum, 

suggesting a mixed-variant populations may have selective advantages withstanding 

endogenous and exogenous factors in the CF lung (i.e. from host immunity and/or 

antimicrobials, respectively) (17-27). Recent work from our laboratory demonstrates that co-

cultures of mucoid and nonmucoid P. aeruginosa strains are more resistant to innate 

antimicrobials, such as reactive oxygen species (e.g. H2O2) and a cationic antimicrobial 

peptide, LL-37, compared to mono-cultures of either variant (28).

CF lung disease is heterogeneous with a regional distribution of bronchiectasis, tissue 

damage, and inflammation. Radiographic and histopathology studies show an upper lobe 

predominance in the CF lung, which are marred by greater architectural changes (e.g. 

bronchiectasis, air trapping, and emphysema) compared to the lower lobes (29-36). The 

anatomic, microbial, and intrinsic immune factors contributing to interlobar variations in CF 

lung disease are poorly understood. Using bronchoalveolar lavage (BAL) fluid, studies have 

shed some light on the regional distribution of host and microbial factors contributing to the 

heterogeneity of CF lung disease (37-40). Neutrophils and neutrophil-derived antimicrobials 

(e.g. elastase) are at higher concentration levels in BAL fluid from upper lobes compared to 

lower lobes (37). Regional compartmentalization of bacteria has been reported in the CF 

lower airways with either homogenous or heterogenous distribution of bacterial species 

across lung lobes (38, 39, 41-44). However, few studies have examined the effect of regional 

co-localization of both bacterial and host products within the CF lung to investigate dynamic 

microbial-immune interactions and local inflammation. More importantly, the lobar 

distribution and associated regional inflammatory response to mixed communities of mucoid 

and nonmucoid variants of P. aeruginosa has not been studied.
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The goals of this study were two-fold. First, identify if P. aeruginosa mucoid or nonmucoid 

variants, either in single- or mixed-variant populations, preferentially localize to certain 

lobes of the CF lung. Second, determine if mucoid and nonmucoid variants are associated 

with differential patterns of regional inflammation, as measured by proinflammatory 

cytokines (i.e. IL-1β, TNF-α, IL-6 and IL-8). We collected lobar BAL fluid from CF 

patients, quantitated microbial density and P. aeruginosa colony variants by culture-based 

methods, and determined proinflammatory cytokine concentrations via multiplex array. We 

demonstrate that though mucoid and nonmucoid P. aeruginosa variants are homogenously 

distributed throughout the CF lung, infection with mucoid variants (in single- or mixed-

variant populations) correlates with greater lobar inflammation compared to nonmucoid 

variants. Our findings herein contribute to a growing understanding of host-pathogen 

interactions that shape regional microenvironments within the CF lung.

2. Materials and Methods

2.1. Study population and ethics statement.

The study was approved by the Nationwide Children’s Hospital (NCH) Institutional Review 

Board (IRB07-00396 and IRB15-00800) with informed consent and assent obtained from all 

patient volunteers.

2.2. Bronchoalveolar lavage (BAL) protocol.

While undergoing clinically-indicated surgical procedures, BAL fluid was collected from 14 

patients with CF via flexible fiberoptic bronchoscopy (FFB). All volunteers had clinically 

stable CF lung disease, had performed spirometry to assess pulmonary function [e.g. forced 

expiratory volume in 1 second (FEV1)], and were not acutely ill or requiring antimicrobial 

treatment for pulmonary symptoms. Each subject had an endotracheal tube placed and 

received mechanical ventilation prior to their surgical procedure and during the FFB. The 

BAL fluid samples were collected within 10 minutes of initiation of mechanical ventilation 

for the entire cohort. For each subject, BAL fluid was obtained from subsegmental airway of 

the right upper lobe (RUL), right middle lobe (RML), right lower lobe (RLL), left upper 

lobe (LUL), lingula (LIN), and left lower lobe (LLL). Twenty mL of sterile normal saline 

was instilled sequentially into each subsegmental bronchus and immediately recovered by 

manual suction with no dwell time. The BAL fluid was placed on ice and transported to the 

research laboratory. Demographics of all patients in this study are delineated in Table 1.

2.3. Microbiological analyses.

Patient BAL fluid specimens were maintained on ice immediately following FFB and 

throughout specimen processing. Within 2 hours of specimen collection, each BAL fluid 

sample was serially-diluted in Phosphate Buffered Saline [(PBS), Gibco™, pH 7.4] and 

plated for colony forming units (CFUs/mL) on nonselective [Luria Agar (LA), 10g/L 

tryptone, 5g/L yeast extract, 10g/L NaCl solidified with 1.5% agar] and P. aeruginosa-

selective [Pseudomonas Isolation Agar (PIA)] medium. After 48 hours incubation at 37°C, 

bacterial colonies were counted on LA and PIA, and total bacterial CFUs/mL and P. 
aeruginosa CFUs/mL were determined from each type of medium, respectively. A minimum 

of 10 colonies of growth on LA and PIA was used as the limit-of-detection.
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P. aeruginosa variants (nonmucoid, mucoid, or mixed nonmucoid and mucoid) were 

identified and counted based on colony morphology on PIA. PIA, which contains Triclosan, 

facilitates growth and maintenance of mucoid P. aeruginosa variants more effectively 

compared to other culture media (i.e. given the instability of alginate production by clinical 

isolates grown in vitro) (18, 45-47). As such, PIA was specifically chosen here to identify 

and differentiate mucoid and nonmucoid P. aeruginosa variants within patient specimens.

Non-Pseudomonas CFUs were calculated by subtracting P. aeruginosa colonies on PIA from 

all colonies counted on LA. Percentage of P. aeruginosa colonies (%P.a. isolates) was 

calculated by taking P. aeruginosa growth on PIA as a percentage of total microbial growth 

on LA. Percent mucoid colonies (%Mucoidy) was calculated by taking mucoid colonies 

identified on PIA as a percentage of total P. aeruginosa colonies. Each lobar specimen 

(regardless of patient-of-origin) was stratified into non-overlapping groups based on 

microbial populations as follows: No P. aeruginosa growth (i.e. only observed microbial 

growth on LA), and only nonmucoid, only mucoid, or mixed P. aeruginosa morphotypes.

2.4. Proinflammatory cytokine arrays.

On the same day of specimen collection and after plating for microbial growth, BAL fluid 

was centrifuged and filter-sterilized to remove host and bacterial cells. Cell-free fractions of 

BAL fluid were subsequently stored at −80°C. Proinflammatory cytokine concentrations 

within these BAL samples were subsequently quantitated using V-PLEX Proinflammatory 

Panel 1 Human Cytokine Arrays (Meso Scale Diagnostics, LLC). All cytokine arrays were 

performed by The Ohio State University Clinical Research Center based on manufacturer’s 

specifications.

2.5. Statistical analyses.

Statistical analyses were performed using GraphPad Prism v.7 (Graphpad Software). 

Statistical significance was determined using a p-value <0.05. All assays with patient 

specimens were performed in duplicate.

3. Results

3.1. Single- and mixed-variant populations of mucoid and nonmucoid P. aeruginosa were 
isolated from CF patient specimens.

Previous studies had shown that both mucoid and nonmucoid variants of P. aeruginosa are 

often isolated in mixed communities from chronically-infected CF patients (17-27); 

however, the anatomic distribution of these variants within the CF lung has not been well-

studied.

From multiple patient specimens, we were able to isolate both mucoid and nonmucoid 

variants of P. aeruginosa, both in single- and mixed-variant populations (Fig. S1A, B, and 

C). The mixed-variant colony morphologies of one CF patient’s P. aeruginosa infection are 

shown, visualized directly upon medium surface by handheld camera and with standard light 

microscopy (10X magnification) (Fig. S1A). Conversely, a proportion of patients were not 

infected with P. aeruginosa (indicated as “No P.a.”) at the time of specimen collection (Fig. 
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S1B); however, in all instances, specimens from these CF patients did produce microbial 

growth on LA, suggesting the presence of non-P. aeruginosa species, which were not 

specifically identified for the purposes of this study.

Of all patients infected with mucoid variants (“mucoid P.a. + patients”), a small majority 

(56%) showed mixed mucoid/nonmucoid P. aeruginosa populations, whereas others were 

infected only with mucoid variants (Fig. S1C). In total, these data indicated that mixed-

variant P. aeruginosa communities were well-represented within our patient cohort, thereby 

enabling us to study regional and inflammatory correlates with infection.

3.2. Both mucoid and nonmucoid P. aeruginosa morphotypes were distributed 
throughout the CF lung.

To determine the lobar distribution of mucoid, nonmucoid, and mixed-variant populations of 

P. aeruginosa, BAL fluid from 6 lobar regions (RUL, RML, RLL, LUL, LIN, and LLL), 

regardless of patient-of-origin, were independently examined for total bacterial, total P. 
aeruginosa, and total mucoid/nonmucoid variant CFUs. This approach was justified because 

some patients had distinct microbial populations in different lobar specimens (Table S1). For 

instance, some patients were infected with only mucoid P. aeruginosa in certain lobes but 

had mixed variant populations in other regions. There were also patients who had no P. 
aeruginosa isolates in some lobar specimens but nonmucoid isolates in others. As such, each 

lobar specimen was treated independent of patient-of-origin to determine density and 

localization of the microbial populations.

However, there were no statistically significant trends for bacterial density across the 

different lung lobes of the entire cohort (Fig. 1A, B, and C). Similarly, we examined two 

other calculated measures of microbial populations: %P. aeruginosa isolates (calculated as a 

percentage of P. aeruginosa colonies of total microbial growth) and %mucoidy (calculated as 

a percentage of mucoid P. aeruginosa isolates out of total P. aeruginosa growth). Again, there 

were no differences for either the relative presence of P. aeruginosa (%P.a.) or mucoid 

variants (%mucoidy) throughout different regions of the CF lung (Fig. 1D and E). 

Furthermore, by examining all strata used to categorize each lobar specimen based on 

microbes isolated- no P. aeruginosa infection (i.e. infection with non-P. aeruginosa species), 

and infection with nonmucoid, mucoid, and mixed-P. aeruginosa variants, we observed no 

trends for lobe-dependent frequency of any of these microbial communities (Fig. 1F). These 

results suggested that within our patient cohort, there was no detectable propensity of P. 
aeruginosa variants to localize within certain anatomic lobes of the CF lung.

3.3. Independent of microbial infection, regional differences in proinflammatory cytokine 
concentrations were not observed.

Given that we did not observe significant regional differences in bacterial burden and P. 
aeruginosa variants in our CF patient cohort, we next queried the regional inflammatory 

status of these patients’ lungs by measuring proinflammatory cytokines within BAL fluid 

specimens. Based on aforementioned studies, we hypothesized that there would be intrinsic 

differences between the upper and lower lobes of CF lungs in concentrations of 

inflammatory indices used here: IL-1β, TNF-α, IL-6, and IL-8. All four cytokines have been 
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quantitated previously within the CF airway, shown to be relevant to the CF disease process 

(at the host-microbial interface), and found to be reliable indicators of inflammation in other 

diseases as well (37, 48-52).

Within our patient cohort, we did not observe any statistically-significant, interlobar 

differences in proinflammatory cytokine concentrations (Fig. 2A, B, C, and D). There were 

subtle, but noticeable differences, between the upper and lower lobes, wherein IL-1β 
concentrations were generally higher in the LUL compared to LLL and TNF-α 
concentrations were higher in the RUL and LUL compared to RLL and LLL respectively; 

however, these differences fell short of significance (p>0.05) (Fig. 2A and B). 

Concentrations of IL-8, a potent neutrophil chemokine, were high across all patient 

specimens and all lung lobes (Fig. 2D); this observation aligns with previous work 

demonstrating IL-8 as a hallmark of neutrophil-dominated, CF lung immunopathology (53). 

These data suggested that independent of microbial infection, there were no regional 

differences in proinflammatory cytokines within CF patient lungs.

3.4. Mucoid and mixed-variant P. aeruginosa infections were associated with elevated 
proinflammatory cytokine concentrations within regional BAL fluid.

Multiple laboratory and patient studies have demonstrated that bacterial infection is a critical 

driver of the inflammatory process in CF (54-56). Though, we did not find significant 

interlobar variations in inflammation or in the density and distribution of microbial 

populations independently, we postulated that regional inflammation and microbes may still 

be interrelated in our cohort. Specifically, we hypothesized that P. aeruginosa colony variants 

may be driving inflammation differentially, independent of their location within the CF lung.

As described earlier, each lobar BAL specimen was grouped only based on microbes 

isolated therein (i.e. infected with no P. aeruginosa or with nonmucoid, mucoid, or mixed-

variants of P. aeruginosa). Subsequently, proinflammatory cytokine concentrations in each of 

these groups were analyzed. Indeed, regional BAL specimens from which we isolated P. 
aeruginosa mucoid or mixed variants contained higher concentrations of IL-1β, TNF-α, and 

IL-8 compared to specimens that were culture-negative for P. aeruginosa or contained 

nonmucoid P. aeruginosa variants only (Fig. 3A, B, and D). We did not observe any 

statistically-significant differences among these groups for IL-6 concentration (Fig. 3C).

BAL fluid samples containing mixed-variant P. aeruginosa isolates differed in the relative 

density of mucoid and nonmucoid constituents (i.e. CFUs of mucoid and nonmucoid 

variants or “%mucoidy” for these specimens varied significantly); some specimens within 

this group showed predominantly mucoid isolates, whereas others contained mostly 

nonmucoid P. aeruginosa. As such, we performed linear regression analyses to determine 

associations between total CFUs of mucoid/nonmucoid isolates and proinflammatory indices 

across all BAL specimens. We found statistically-significant, positive correlations between 

mucoid P. aeruginosa CFUs and IL-1, TNFα, and IL-8 (Fig. 4A, B, C, and D); in contrast, 

density of nonmucoid P. aeruginosa variants was not positively correlated with any 

proinflammatory cytokine (Fig. 4E, F, G, and H). However, there was a negative correlation 

between nonmucoid P. aeruginosa CFUs and IL-6 concentration (Fig. 4G).
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Additional associations between microbial variables (e.g. total bacterial CFUs, non-P. 
aeruginosa CFUs, %mucoidy, etc.) and proinflammatory cytokines were documented as well 

(Table S2). There were positive correlations between total bacterial burden as well as non-P. 
aeruginosa CFUs with cytokine concentrations, suggesting that future studies should 

examine the regional impact of other bacterial and fungal species upon the CF lung as well. 

Importantly, however, only %mucoidy was positively correlated with all four 

proinflammatory cytokines examined (Table S2). In total, these data suggested that P. 
aeruginosa variants differentially impact the inflammatory microenvironment of the CF 

lung, and specifically, mucoid variants are associated with greater regional inflammation 

than nonmucoid variants.

4. Discussion

The regional heterogeneity of the CF lung with respect to bronchiectasis, tissue damage, and 

microbial colonization has been well described with the pathophysiologic mechanisms being 

poorly understood (29-36). The etiology of interlobar variations in the CF lung often 

manifested with upper lobes predominance may be attributable to host-pathogen 

interactions. However, few studies have addressed co-localization of bacterial pathogens and 

host immune factors as an influencing factor in this clinical scenario of the CF airway. Given 

the importance of P. aeruginosa in the CF and the important clinical implications of mucoid 

conversion, we successfully examined the regional distribution of mucoid and nonmucoid 

variants of P. aeruginosa to improve our understanding how these bacterial morphotypes 

may differentially impact the inflammatory microenvironment of the CF lung.

This study made three important observations: 1) Mucoid and nonmucoid variants of P. 
aeruginosa (including mixed populations) were distributed throughout the CF lung, without 

preferential localization to an anatomic lobe/region; 2) Independent of bacterial infection, 

the upper lobes of the CF lung showed marginally greater proinflammatory cytokine 

concentrations compared to the lower lobes, though these differences did not meet statistical 

significance; 3) Mucoid variants of P. aeruginosa (and to a lesser extent, mixed-variant 

populations) were associated with greater regional inflammation compared to nonmucoid 

variants.

As indicated by published studies, more airway destruction is seen in the CF lung where 

greater concentrations of neutrophils and neutrophil-derived products exist (37). Similarly, 

mixed variant populations of mucoid and nonmucoid P. aeruginosa exhibit enhanced 

resistance to neutrophil antimicrobials (i.e. LL-37 and H2O2) in vitro (28). Although the 

isolation frequency of mucoid, nonmucoid, and mixed P. aeruginosa variants among 

different lobes did not achieve statistical significance in the current study, we believe further 

analysis is needed in larger CF cohorts as mixed communities of both P. aeruginosa variants 

may be an important factor why an upper lobe predominance occurs in CF.

Recent work investigated interlobar variations in microbial communities in the CF lung that 

examined regionality of genotypic and phenotypic variants of bacterial pathogens. While 

some studies showed regional compartmentalization of clonally-related variants of P. 
aeruginosa (and of other bacterial species), others found a more homogenous distribution of 
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microbes (38, 39, 41-44). To our knowledge, the lobar distribution of mucoid and 

nonmucoid variants of P. aeruginosa has not been previously explored. Bjarnsholt et al. 

showed differences in the presence of mucoid and mixed mucoid/nonmucoid-variant 

populations within the conductive and respiratory zones of explanted CF lungs (21); 

however, both zones are represented in each lung lobe [i.e. the conductive zones within 

proximal, larger airways (e.g. segmental bronchi), and the respiratory zones within the 

terminal bronchioles/alveoli]. The current study examined P. aeruginosa morphotypes 

isolated from all lobes of the lung including the lingula to better understand aforementioned 

evidence of local interlobar differences in the CF lung and found mucoid and nonmucoid 

variants were not geographically restricted by the lobe.

No significant differences in concentrations of proinflammatory cytokines, IL-1β, TNF-α, 

IL-6, and IL-8, across different lung lobes were found in our analysis (Fig. 2A, B, C, and D). 

However, there were slight trends towards higher concentrations of some of these 

inflammatory indices within the upper lobes. Independent of lung lobe, P. aeruginosa 
variants may differentially influence local inflammation in the CF lung. Regional BAL fluid 

specimens containing mucoid (and also mixed-mucoid/nonmucoid) isolates had higher 

concentrations of proinflammatory cytokines compared to specimens that were culture-

negative for P. aeruginosa or contained nonmucoid variants only (Fig. 3A, B, and D). Linear 

regression analyses demonstrated a direct relationship between the burden of mucoid 

variants and cytokine concentrations, indicating that the mucoid phenotype was the likely 

driver of inflammation in both single- and mixed-variant P. aeruginosa infections. These 

findings add further insight to a large body of clinical literature demonstrating deleterious 

impacts of mucoid conversion upon CF patients, thereby necessitating the development of 

therapeutics specifically targeting mucoid P. aeruginosa strains.

Surprisingly, we found that nonmucoid variants of P. aeruginosa were inversely correlated 

with IL-6 concentration in the BAL fluid analyzed (Fig. 4G). Bonfield et al. also reported 

that CF patients colonized with P. aeruginosa had lower concentrations of IL-6 in BAL fluid 

samples compared to patients not colonized (48). Based on these observations, we postulate 

that nonmucoid P. aeruginosa suppresses synthesis or abrogates stability of IL-6. To that end, 

a recent study reported that LasB protease of P. aeruginosa specifically degrades IL-6 in 
vitro as well as within a murine model of disease, thereby compromising IL-6-mediated 

tissue-protective and antimicrobial responses; in contrast, overexpression of IL-6 protects 

animals from lethal P. aeruginosa lung infection (57). Our findings and the aforementioned 

mechanistic study provide a rationale to further examine P. aeruginosa/IL-6 interactions, as 

these may shed light on P. aeruginosa evasion of innate immunity and illuminate avenues for 

novel therapeutic modalities.

Our study was limited by the use of a small, single-center cohort. There were also 

limitations regarding the majority of male patients undergoing surgery during the study 

period. Therefore, further studies with larger patient cohorts are needed to confirm 

associations between P. aeruginosa colony variants and inflammatory indices. Though not 

within the immediate scope of this work, correlations between microbial populations/

variants, inflammatory indices, and patient demographics (e.g. age, sex, race, genotype, etc.) 

could also be investigated. Here, we briefly considered an association between patient age, 
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mucoidy, and inflammation, finding that advanced patient age correlated with higher overall 

bacterial density (CFUs), greater relative presence of mucoid variants (%mucoidy), as well 

as higher concentrations of IL-1β and TNF-α in BAL specimens (Table S3). These data 

validate previous studies, demonstrating that mucoid P. aeruginosa becomes more prevalent 

with age and that CF lung inflammation is likely progressive throughout the course of a 

patient’s lifetime (11, 27, 55, 58-60).

The lung microbiome of the CF lung is very dynamic, so we cannot report on any effect of 

anesthesia, endotracheal tube placement, and mechanical ventilation on our findings. Given 

that all of these factors were limited to a short duration (less than 10 minutes for the entire 

cohort), we believe the effect is not significant. We also showed that total bacterial burden 

(as well as CFUs of non P. aeruginosa species, which were enumerated on non-selective 

medium but not specifically identified) also correlated with inflammatory cytokine 

concentrations.

In conclusion, mucoid and nonmucoid variants of P. aeruginosa are regionally distributed 

throughout the CF lung, and lobar infection with mucoid variants is correlated with greater 

inflammation than is infection with nonmucoid variants or non-Pseudomonas species. In 

addition to expanding the cohort size to optimize statistical power, future work in this area 

will include longitudinal studies to define dynamic host-pathogen interactions and account 

for non-Pseudomonad species, including Staphylococcus aureus and Burkholderia 
cenocepacia, which are also important bacterial pathogens in the CF population (61).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• P. aeruginosa mucoid/nonmucoid variants are distributed throughout the CF 

lung

• CF lung upper lobes are slightly more inflamed compared to the lower lobes

• P. aeruginosa mucoid variants are associated with greater regional 

inflammation
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Figure 1. Mucoid, nonmucoid, and mixed-variant P. aeruginosa populations are found 
throughout the CF lung.
Regional BAL specimens from CF patients (n=14 patients, 84 lobar BAL fluid samples) 

were plated on nonselective or selective media to quantitate microbial populations. A. Total 

bacterial colony forming units (CFUs/mL) enumerated on LA (non-selective medium) B. 
Total P. aeruginosa CFUs/mL enumerated on PIA C. Mucoid variants of P. aeruginosa 
enumerated on PIA D. Percentage of P. aeruginosa isolates of total microbial growth E. 
Percentage of mucoid variants of total P. aeruginosa isolates F. Relative frequencies of 

various microbial populations within regional BAL samples of the CF cohort. Statistical 

significance was determined via non-parametric, KruskalβWallis one-way analysis of 

variance (ANOVA). No statistically-significant differences were observed (ns). LA- Luria 

agar, PIA- Pseudomonas Isolation Agar, RUL- right upper lobe, RML- right middle lobe, 

RLL- right lower lobe, LUL- left upper lobe, LIN- lingula, LLL- left lower lobe.
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Fig. 2. Independent of infection, significant interlobar differences in proinflammatory cytokines 
were not observed.
Proinflammatory cytokine concentrations were measured in regional BAL specimens from 

all CF patients (n=14 patients= 84 lobar BALs) via V-PLEX array. Data from each specimen 

were stratified based upon lung lobe of origin. A. IL-1β (pg/mL) B. TNF-α (pg/mL) C. IL-6 

(pg/mL) D. IL-8 (pg/mL). Statistical significance was determined via non-parametric, 

Kruskal–Wallis one-way analysis of variance (ANOVA). No statistically-significant 

differences were observed (ns). RUL- right upper lobe, RML- right middle lobe, RLL- right 

lower lobe, LUL- left upper lobe, LIN- lingula, LLL- left lower lobe.
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Fig. 3. Mucoid or mixed-variant P. aeruginosa infections were associated with higher 
proinflammatory cytokines within regional BAL fluid.
Proinflammatory cytokine concentrations were measured in regional BAL specimens from 

all CF patients (n=14 patients= 84 lobar BALs) via V-PLEX array. Data from each specimen 

were stratified based upon type of microbial infection [No P.a. (n=29), Nonmucoid (n=9), 

Mucoid (n=32), Mixed (n=14)]. A. IL-1β (pg/mL) B. TNF-α (pg/mL) C. IL-6 (pg/mL) D. 
IL-8 (pg/mL). Statistical significance was determined via non-parametric, Kruskal–Wallis 

one-way analysis of variance (ANOVA). *p<0.05, **p<0.01, ***p<0.001, ns- not 

statistically significant.
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Fig. 4. Infection with mucoid P. aeruginosa directly correlates with higher proinflammatory 
cytokine concentrations within regional BAL specimens.
Proinflammatory cytokine concentrations were measured in regional BAL specimens from 

all CF patients (n=14 patients= 84 lobar BALs) via V-PLEX array. Cytokine concentrations 

are plotted versus mucoid P. aeruginosa CFUs/mL (A.-D.) or nonmucoid P. aeruginosa 
CFUs/mL (E.-H.) for each patient specimen. Correlation plots for A./E. IL-1β (pg/mL), 

B./F. TNF-α (pg/mL), C./G. IL-6 (pg/mL), D./H. IL-8 (pg/mL). R2 and slope p-values are 

shown. Statistically significant correlations (p<0.05) are highlighted in red text.
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Table 1.
Cohort demographics.

BMI- body mass index. FEV1- forced expiratory volume in 1 second.

CF patients

n= 14

Females (%) 30%

Age (years)

   Median 23

   Range 14-40

Pancreatic insufficiency (%) 100

Genotype (%)

   F508del homozygous 57%

   F508del heterozygous 29%

FEV1 (L)

   Median 2.36

   Range 0.95-3.87

FEV1 (%Predicted)

   Median 71

   Range 22-103

BMI

   Median 19.9

   Range 15.4-30.4
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