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Nicotinamide mononucleotide (NMN) supplementation
promotes anti-aging miRNA expression profile in the aorta
of aged mice, predicting epigenetic rejuvenation
and anti-atherogenic effects
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Abstract Understanding molecular mechanisms in-
volved in vascular aging is essential to develop novel
interventional strategies for treatment and prevention of

age-related vascular pathologies. Recent studies provide
critical evidence that vascular aging is characterized by
NAD+ depletion. Importantly, in aged mice, restoration of
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cellular NAD+ levels by treatment with the NAD+ booster
nicotinamide mononucleotide (NMN) exerts significant
vasoprotective effects, improving endothelium-dependent
vasodilation, attenuating oxidative stress, and rescuing
age-related changes in gene expression. Strong experimen-
tal evidence shows that dysregulation of microRNAs
(miRNAs) has a role in vascular aging. The present study
was designed to test the hypothesis that age-related NAD+
depletion is causally linked to dysregulation of vascular
miRNA expression. A corollary hypothesis is that func-
tional vascular rejuvenation in NMN-treated aged mice is
also associated with restoration of a youthful vascular
miRNA expression profile. To test these hypotheses, aged
(24-month-old) mice were treated with NMN for 2 weeks
and miRNA signatures in the aortas were compared to
those in aortas obtained from untreated young and aged
control mice. We found that protective effects of NMN
treatment on vascular function are associated with anti-
aging changes in themiRNAexpression profile in the aged
mouse aorta. The predicted regulatory effects of NMN-
induced differentially expressed miRNAs in aged vessels
include anti-atherogenic effects and epigenetic rejuvena-
tion. Future studies will uncover the mechanistic role of
miRNA gene expression regulatory networks in the anti-
aging effects of NAD+ booster treatments and determine
the links between miRNAs regulated by NMN and sirtuin
activators and miRNAs known to act in the conserved
pathways of aging and major aging-related vascular
diseases.

Keywords Senescence . Atherosclerosis . Vascular
cognitive impairment . Epigenetics . Vascular aging .

Endothelial dysfunction . Oxidative stress

Introduction

Age-related diseases of the cardiovascular system are a
leading cause of morbidity and mortality in the elderly
(Abdellatif et al. 2018; Minamino and Komuro 2007;
Wang and Bennett 2012; Alfaras et al. 2016; Ungvari
et al. 2018). Vascular aging is associated with stiffening
of the large arteries, endothelial dysfunction, oxidative
stress, and inflammation, promoting the development of
atherosclerotic vascular diseases (ischemic heart diseases,
stroke, peripheral artery disease) and aorta aneurysm
(Wang and Bennett 2012; Ungvari et al. 2018). Microvas-
cular aging is also a major contributing factor to the
pathogenesis of vascular cognitive impairment (VCI),

Alzheimer’s disease, cerebral microhemorrhages,
sarcopenia, heart failure, chronic kidney disease and
(Ungvari et al. 2018; Mullins et al. 2014; Ungvari et al.
2017a; Toth et al. 2017; Tarantini et al. 2017a; Tarantini
et al. 2016a; Sagare et al. 2013; Sweeney et al. 2018;
Montagne et al. 2017; Kisler et al. 2017; Payne 2006;
Hoenig et al. 2008; Long et al. 2012). Understanding
molecular mechanisms involved in vascular aging is es-
sential to develop novel interventional strategies for treat-
ment and prevention of age-related vascular pathologies.

MicroRNAs (miRNA) are short, endogenous, non-
coding transcripts that repress gene expression at the
post-transcriptional level in both physiological and patho-
logical conditions. Strong experimental evidence suggest
that miRNAs have a role in regulation of lifespan in model
organisms (Boehm and Slack 2005; Grillari and Grillari-
Voglauer n.d.; Ibanez-Ventoso et al. 2006) and that alter-
ations in cellularmiRNAexpression profile also play a role
in mammalian aging (Bates et al. n.d.; Maes et al. 2008;
Inukai et al. 2012; Inukai and Slack 2013; Ito et al. 2010;
Mercken et al. 2013; Smith-Vikos and Slack 2012;
Ungvari et al. 2013a; Zhang et al. 2012; Zovoilis et al.
2011; Smith-Vikos et al. 2016; ElSharawy et al. 2012).
Importantly, miRNAs were also reported to regulate sev-
eral important aspects of endothelial biology and vascular
function (Bonauer et al. 2009; Doebele et al. n.d.;
Kuehbacher et al. 2007; Chen et al. 2015a; Hergenreider
et al. 2012; Kim et al. 2014; Leung et al. 2013; Lovren
et al. 2012; O’Rourke and Olson 2011; Rotllan et al. 2013;
Stellos and Dimmeler 2014; Weber et al. 2014; Zampetaki
et al. 2014). Several studies have demonstrated that age-
related miRNA dysregulation importantly contributes to
the development of vascular aging phenotypes (Ito et al.
2010; Ungvari et al. 2013a,b; Menghini et al. 2014; Badi
et al. 2018; Guo et al. 2017; Hazra et al. 2016; Regina et al.
2016; Boon et al. 2013; Csiszar et al. 2014) and promotes
the pathogenesis of atherosclerotic diseases (Ono et al.
2011) encompassing every step from sterile vascular in-
flammation, plaque formation to plaque destabilization and
rupture (Hartmann et al. 2016; Lu et al. 2018; Zhang et al.
2018). Dysregulation of miRNA expression has also been
linked to microvascular aging phenotypes, including im-
paired angiogenesis (Ungvari et al. 2013b; Csiszar et al.
2014; Che et al. 2014; Jansen et al. 2015). Experimental
interventions that both extend lifespan and prevent/delay
age-related vascular dysfunction in rodents, including ca-
loric restriction (Csiszar et al. 2014) and induction of early-
life IGF-1 deficiency (Tarantini et al. 2016b), were shown
to reverse aging-induced alterations in vascular miRNA
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expression. Despite these advances, fundamental cellular
and molecular processes of aging that are responsible for
dysregulation of vascular miRNA expression have not
been elucidated.

NAD+ is a rate-limiting co-substrate for sirtuin en-
zymes, which are key regulators of pro-survival pathways
in the vasculature (Das et al. 2018; Csiszar et al. 2009a;
Csiszar et al. 2009b; Csiszar et al. 2008). Aging is asso-
ciated with cellular NAD+ depletion (Gomes et al. 2013;
Massudi et al. 2012), which has been proposed to be a
critical driving force of aging processes. In support of this
theory, it was demonstrated that enhancing NAD+ bio-
synthesis extends lifespan in lower organisms (Anderson
et al. 2002) and improves health-span inmousemodels of
aging (Mitchell et al. 2018). Recent studies provide crit-
ical evidence that vascular aging is also characterized by
NAD+ depletion (Tarantini et al. 2019; Csiszar et al.
2019; Kiss et al. 2019). Importantly, we 69 and other
laboratories demonstrated (Das et al. 2018; de Picciotto
et al. 2016) that in agedmice restoration of cellular NAD+

levels by treatment with the NAD+ precursor nicotin-
amide mononucleotide (NMN) (Yoshino et al. 2018)
confers potent anti-aging vascular effects, reversing en-
dothelial dysfunction, improving mitochondrial function,
and attenuating oxidative stress.

The present study was designed to test the hypothesis
that age-related NAD+ depletion is causally linked to
dysregulation of vascular miRNA expression. A corollary
hypothesis is that functional vascular rejuvenation in
NMN-treated aged mice is also associated with restoration
of a youthful vascular miRNA expression profile. To test
these hypotheses, aged mice were treated with NMN for
2 weeks and miRNA signatures in the aortas were com-
pared to those in aortas obtained from untreated young and
aged control mice.

Methods

Animals, NMN supplementation

Young (3-month-old) and aged (24-month-old) male
C57BL/6 mice were purchased from the aging colony
maintained by the National Institute on Aging at
Charles River Laboratories (Wilmington, MA). The
biological age of 24-month-old mice corresponds to
that of ~ 60-year-old humans. Mice were housed un-
der specific pathogen-free barrier conditions in the
Rodent Barrier Facility at University of Oklahoma

Health Sciences Center under a controlled photope-
riod (12 h light; 12 h dark) with unlimited access to
water and were fed a standard AIN-93G diet (ad
libitum). Mice in the aged cohort were assigned to
two groups. One group of the aged mice was injected
daily with NMN (i.p. injections of 500 mg NMN/kg
body weight per day) or the equivalent volume of
PBS for 14 consecutive days at 6 PM and 8 AM on
day 14 and were sacrificed 4 h after last injection.
Similar dosages of NMN have been shown to exert
potent anti-aging effects on mouse health span (de
Picciotto et al. 2016). All procedures were approved
by the Institutional Animal Use and Care Committees
of the University of Oklahoma Health Sciences Cen-
ter. All animal experiments complied with the AR-
RIVE guidelines and were carried out in accordance
with the National Institutes of Health guide for the care
and use of Laboratory animals (NIH Publications No.
8023, revised 1978). The effects of NMN treatment on
cognitive function, cerebromicrovascular responses,
and aorta endothelial function in the same cohort of
mice have been recently reported (Tarantini et al. 2019).

Quantitative real-time RT-PCR and miRNA expression
profiling

A quantitative real time RT-PCR technique was used to
analyze miRNA expression profiles in the aorta of mice
from each experimental group as reported (Ungvari et al.
2013b; Csiszar et al. 2014; Tarantini et al. 2016b). In
brief, total RNAwas isolated with a mirVana™ miRNA
Isolation Kit (ThermoFisher Scientific) and was reverse
transcribed using TaqMan® MicroRNA Reverse Tran-
scription Kit as described previously (Ungvari et al.
2013b; Csiszar et al. 2014; Tarantini et al. 2016b). The
expression profile of mouse miRNAs in aortas derived
from young and aged control mice and aged NMN-
treated mice was analyzed using the TaqMan Array Ro-
dent MicroRNA A+B Cards Set v3.0 (ThermoFisher
Scientific). The qPCR data were quantified using the
ΔΔCt method (Livak and Schmittgen 2001). Predicted
and experimentally validated microRNA targets were
obtained from the TargetScan database (Agarwal et al.
2015), and Gene Ontology enrichment analysis was per-
formed on differentially expressed microRNA targets
using Fisher’s exact test between TargetScan targets and
annotations from the Gene Ontology database (Harris
et al. 2004). To identify relationships between miRNA
targets and terms in the biomedical literature, we utilized
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the IRIDESCENT system (Wren and Garner 2004). IR-
IDESCENTuses a statistical model to determine whether
each target gene co-occurs with a term of interest more
frequently than would be expected by chance, and quan-
tifies this in terms of the mutual information measure.

Results

Changes in vascular miRNA expression profile in mice
associated with aging and with NMN treatment

We assessed changes in miRNA expression in the
mouse aorta associated with aging and with NMN treat-
ment. Hierarchical clustering (Fig. 1a) and principal
component analysis (Fig. 1b) of miRNA expression
showed a clear separation between the young and aged
groups. Aged control mice and aged NMN-treated mice
were also separated in the principal component analysis
and hierarchical clustering. In contrast, miRNA expres-
sion in young mice and NMN-treated aged mice was
similar and these groups did not separate well in the
principal component analysis and hierarchical cluster-
ing. The Venn diagram in Fig. 1c shows that expression
of several miRNAs, which are differentially expressed
in the aortas of young and aged mice, was restored to
youthful levels in aortas of NMN-treated aged mice.
These data suggest that NAD+ depletion has a critical
role in age-related dysregulation of vascular miRNA
expression. Figure 2 shows changes in expressions of
individual miRNAs in the mouse aorta associated with
age and NMN treatment.

Since the discovery of miRNA regulation of genes,
several studies have been focused on predicting the biolog-
ically relevant target genes for miRNAs. We have used
TargetScan database to predict putative biological targets
of miRNAs differentially expressed with age whose expres-
sion is restored to youthful levels in aortas of aged mice by
NMN supplementation (Table 1). GO terms enriched
among miRNAs differentially expressed with age whose
expression is restored to youthful levels in aortas of aged
mice by NMN supplementation are shown in Table 2.
Analysis of the differentially expressed miRNAs indicated
that a statistically significant number of them had target sites
within genes associated with pathways regulating the intra-
cellular signaling, protein homeostasis, and inflammation
(Table 2). The results are consistent with the predicted
anti-aging effects of NMN treatment.

Fig. 1 NMN treatment reverses age-related changes in miRNA ex-
pression profile in the mouse aorta. a The heat map is a graphic
representation of normalized miRNA expression values in aortas de-
rived from young (3-month-old), aged (24-month-old), and NMN-
treated aged mice. Hierarchical clustering analysis revealed the similar-
ities on miRNA expression profiles of aortas from young and NMN-
treated aged mice. b Principal component analysis (PCA) plot of
miRNA expression profiles from aortas derived from young, aged
control, and NMN-treated aged mice. The profiles from aged mice
(red dots) cluster separately to clusters representative of young mice
(blue circles) and NMN-treated aged mice (green triangles). PC1 and
PC2: Principal components 1 and 2, respectively. c Venn diagrams
showing the differentially expressed miRNAs in each group, which
are significantly up- or down-regulated in aortas from aged mice
compared to those from young mice or aged NMN-treated mice
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We also attempted to predict the biological effects of
the differentially expressed miRNAs by identifying re-
lationships between miRNA targets and terms in the
biomedical literature utilizing the IRIDESCENT system
(Wren and Garner 2004). The results of this analysis
suggest that NMN supplementation likely promotes epi-
genetic rejuvenation and confers anti-atherogenic ef-
fects (Table 3).

Discussion

Our study demonstrates that protective effects of NMN
treatment on vascular function is associated with anti-
aging changes in the miRNA expression profile in the
aorta in a mouse model of aging that recapitulates

vascular alterations and deficits present in elderly
humans at risk for cardiovascular and cerebrovascular
diseases.

Age-related changes in vascular miRNA expres-
sion likely play important pathogenic roles targeting
critical signaling pathways, inflammatory processes,
and cellular mechanisms involved in protein homeo-
stasis and thereby impairing the structural and func-
tional integrity of the vasculature (Fig. 3). Among
others, miR-29a (Huang et al. 2016), miR-27b
(Signorelli et al. 2016), miR-652 (Pilbrow et al.
2014), miR-221 (Wei et al. 2013), miR-28 (Wang
et al. 2017), miR-21 (Urbich et al. 2008), miR-125b-
5p (Ohukainen et al. 2015) , miR-494 (Wezel et al.
2015), and miR-145 (Faccini et al. 2017), which are
up-regulated in aging, have been implicated in vas-
cular inflammation and atherogenesis.

Fig. 2 Effects of aging and NMN treatment on miRNA expres-
sion in the mouse aorta. a, b qPCR data showing miRNA expres-
sion in aortas isolated from young (3-month-old), aged (24-month-

old), and NMN-treated aged mice. Data are mean ± S.E.M. (n = 3–
4 for each data point). *P < 0.05 vs. young; #P < 0.05 vs. aged
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To our knowledge, this is the first study to
demonstrate that NMN treatment in aged mice
reverses, at least in part, age-related, pro-inflam-
matory, and pro-atherogenic alterations in miRNA
expression profile in the aorta. These findings raise
the possibility that changes in post-transcriptional
control of expression of genes that encode critical
targets for vascular health contribute to the bene-
ficial effects of treatment with NAD+ boosters on
health span. Demonstration of NMN-induced
changes in miRNA biology in the vasculature is
particularly important as alterations in miRNA ex-
pression profile have been causally linked to the
development of cardiovascular aging phenotypes
(Ungvari et al. 2013a; Boon et al. 2013; Csiszar
et al. 2014) and the pathogenesis of cardiovascular
diseases (Ono et al. 2011). A single miRNA can
target up to several hundred mRNAs, thus capable
of significantly altering gene expression regulatory
networks. Systematic prediction of target pathways
supports the concept that chronic NMN treatment
may exert significant anti-atherogenic effects via
epigenetic rejuvenation of the vasculature. These
miRNA-mediated vasoprotective effects of NMN
treatment appear to be synergistic with its endo-
thelial protective, anti-aging, and pro-angiogenic
effects demonstrated by recent studies (Tarantini
et al. 2019; Csiszar et al. 2019; Kiss et al. 2019).

The molecular mechanisms contributing to
aging-induced decline in NAD+ in the vasculature
are likely multifaceted and may include down-
r e g u l a t i o n o f n i c o t i n a m i d e
phosphoribosyltransferase (NAMPT, also known
as NMN synthase; which catalyzes the rate limit-
ing step in the biosynthesis of NAD+) (Tarantini
et al. 2019) and increased utilization of NAD+ by
activated Poly [ADP-ribose] polymerase 1 (PARP-
1) (Csiszar et al. 2019; Pacher et al. 2002). Addi-
tional studies are warranted to determine the effi-
cacy of combination treatments that simultaneously
increase NAD+ production and inhibit its degrada-
tion (e.g., NMN plus a PARP-1 inhibitor) for the
prevention of age-related vascular pathologies.

Previous studies demonstrate that restoration of
NAD+ levels by NMN treatment exert protective
effects on endothelial vasodilation in aged rodents
by reducing ROS generation and restoring mito-
chondrial function in a sirtuin-dependent manner
(Tarantini et al. 2019). The mechanisms by whichT
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NAD+ boosters regulate miRNA expression are
likely multifaceted and may include both transcrip-
tional and post-transcriptional regulatory mecha-
nisms (Fig. 3). NMN-induced transcriptional regula-
tion may involve changes in the expression of
miRNA genes due to altered transcription factor
activity, changes in genome accessibility (e.g., his-
tone modifications), and altered methylation status
of the promoter of the miRNA genes. Post-

transcriptional mechanisms affected by NMN treat-
ment may include rescue of miRNA processing
pathways (Ungvari et al. 2013b) and miRNA stabil-
ity. Activation of sirtuins by NAD+ boosters, which
has been linked to attenuation of age-related vascu-
lar oxidative stress (Tarantini et al. 2019; Kiss et al.
2019), may potentially contribute to both transcrip-
tional and post-transcriptional regulation of miRNA
expression in the vasculature. In particular, future

Table 2 Predicted regulatory effects of miRNAs whose expres-
sion is restored to youthful levels in aortas of aged mice by NMN
supplementation. Shown are GO terms enriched among miRNAs
differentially expressed with age in the aorta whose expression is
significantly affected by NMN treatment. N = genes in each GO

category, targeted by miRNAs that are differentially regulated in
the aged mouse aorta. Significance was determined by Fisher’s
exact test; odds ratio: (observed to expected ratio); SLPV: signed
log10 P value

GO term ID Name of biological process/molecular function N Odds Ratio SLPV

6886 Intracellular protein transport 20 3.17 3.26

7218 Neuropeptide signaling pathway 7 7.32 2.54

5198 Structural molecule activity 6 9.40 2.45

51082 Unfolded protein binding 7 5.49 2.20

45778 Positive regulation of ossification 6 6.27 2.07

50839 Cell adhesion molecule binding 10 3.49 1.92

15137 Citrate transmembrane transporter activity 3 inf 1.84

48227 Plasma membrane to endosome transport 3 inf 1.84

8188 Neuropeptide receptor activity 3 inf 1.84

7217 Tachykinin receptor signaling pathway 3 inf 1.84

42594 Response to starvation 3 inf 1.84

70536 Protein K63-linked deubiquitination 6 4.70 1.77

71108 Protein K48-linked deubiquitination 6 4.70 1.77

5102 Receptor binding 27 1.82 1.72

90630 Activation of GTPase activity 10 2.85 1.71

31338 Regulation of vesicle fusion 7 3.66 1.68

1664 G-protein coupled receptor binding 6 3.76 1.52

6631 Fatty acid metabolic process 6 3.76 1.52

45777 Positive regulation of blood pressure 4 6.25 1.47

32924 Activin receptor signaling pathway 4 6.25 1.47

70530 K63-linked polyubiquitin binding 4 6.25 1.47

10863 Positive regulation of phospholipase C activity 4 6.25 1.47

16579 Protein deubiquitination 8 3.13 1.47

18107 Peptidyl-threonine phosphorylation 9 2.57 1.42

48015 Phosphatidylinositol-mediated signaling 5 3.91 1.36

7200 Phospholipase C-activating G-protein coupled receptor signaling pathway 5 3.91 1.36

71837 HMG box domain binding 5 3.91 1.36

61578 Lys63-specific deubiquitinase activity 3 9.37 1.33

33674 Positive regulation of kinase activity 3 9.37 1.33

43122 Regulation of I-kappaB kinase/NF-kappaB signaling 3 9.37 1.33

50995 Negative regulation of lipid catabolic process 3 9.37 1.33
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studies should determine how NMN treatment and
sirtuin activation affect activity/expression of the
Dicer/TRBP complex (Ungvari et al. 2013b). Fur-
ther, the anti-aging vascular effects of caloric restric-
tion also have been causally linked to sirtuin activa-
tion (Csiszar et al. 2009a). Importantly, caloric re-
striction also promotes significant anti-inflammatory
and anti-atherogenic changes in vascular miRNA
expression (Csiszar et al. 2014). Various humoral
factors (e.g., hormones, cytokines) can also affect
vascular miRNA expression. Additional studies are
needed to determine the indirect effects of NMN-
induced changes in humoral factors (e.g. ,
adipokines) on vascular miRNA expression profile.
The available evidence also supports the concept
that a bi-directional link exists between NAD+
levels and miRNA expression (Choi et al. 2013).
Recent studies identify the miR-34a/NAMPT (nic-
otinamide phosphoribosyltransferase) regulatory
axis, which regulates SIRT1 activity through alter-
ing NAD+ levels (Choi et al. 2013). Interestingly,
miR-34a tends to be increased in the aged mouse
aorta (~ 2.9-fold), which associates with a down-
regulation of NAMPT (Tarantini et al. 2019).

Conclusions

In conclusion, rescue of vascular function and atten-
uation of oxidative stress in the vasculature of
NMN-treated aged mice is accompanied by anti-
aging changes in miRNA expression profile in the
aorta. The predicted regulatory effects of NMN-
induced differentially expressed miRNAs in aged
vessels include anti-atherogenic affects and epige-
netic rejuvenation (Fig. 3) and are consistent with
the anti-aging functional effects of treatment with
both NMN (Das et al. 2018; Tarantini et al. 2019;
Kiss et al. 2019; de Picciotto et al. 2016) and sirtuin
activators (Pearson et al. 2008; Csiszar et al. 2012;
Mattison et al. 2014; Toth et al. 2015; Toth et al.
2014; Zhang et al. 2009; Oomen et al. 2009; Minor
et al. 2011; Chen et al. 2015b; Gano et al. 2014)
observed both in vivo and ex vivo. We hope that our
findings will facilitate future endeavor of uncovering
the mechanistic role of miRNA gene expression
regulatory networks in the anti-aging effects of
NAD+ booster treatments. Future studies should
also investigate the links between miRNAsT
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regulated by NMN and sirtuin activators and
miRNAs known to act in the conserved pathways
of aging (Ungvari et al. 2018; Menghini et al. 2014;
Tarantini et al. 2016b; Kennedy et al. 2014; An et al.
2017; Ashpole et al. 2017; Bennis et al. 2017;
Deepa et al. 2017; Fang et al. 2017; Fulop et al.
2018; Lee et al. 2018; Reglodi et al. 2018; Menghini
et al. 2009; Fan et al. 2018) and major aging-related
diseases (Csiszar et al. 2017; Meschiari et al. 2017;
Tarantini et al. 2017b; Tucsek et al. 2017; Ungvari
et al. 2017b; Carlson et al. 2018; Csipo et al. 2018;
Tana et al. 2017; Feinberg and Moore 2016). Poten-
tially, miRNA-regulated anti-aging mechanisms of
NAD+ booster treatments and sirtuin activators
could be harnessed for development of new pharma-
cological approaches for the prevention and treat-
ment of age-related vascular diseases.
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