Skip to main content
. 2019 Oct 26;20:521. doi: 10.1186/s12859-019-3135-4

Table 5.

Performance comparison between multi-task [10] and meta-learning neural networks

Assay ID Multi-task Proposed (Meta-learning)
1851_1a2 0.938 0.943
1851_2c19 0.903 0.908
1851_2c9 0.907 0.908
1851_2d6 0.861 0.892
1851_3a4 0.897 0.920
1915 0.750 0.764
2358 0.751 0.807
463213 0.676 0.694
463215 0.654 0.634
488912 0.816 0.700
488915 0.873 0.739
488917 0.894 0.841
488918 0.842 0.801
492992 0.829 0.862
504607 0.670 0.726
624504 0.889 0.904
651739 0.825 0.809
651744 0.900 0.909
652065 0.792 0.832

The mean AUC values for both neural networks are shown (bold: top AUC on each dataset)