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)e recent advance in the microarray data analysis makes it easy to simultaneously measure the expression levels of several
thousand genes.)ese levels can be used to distinguish cancerous tissues from normal ones. In this work, we are interested in gene
expression data dimension reduction for cancer classification, which is a common task in most microarray data analysis studies.
)is reduction has an essential role in enhancing the accuracy of the classification task and helping biologists accurately predict
cancer in the body; this is carried out by selecting a small subset of relevant genes and eliminating the redundant or noisy genes. In
this context, we propose a hybrid approach (MWIS-ACO-LS) for the gene selection problem, based on the combination of a new
graph-based approach for gene selection (MWIS), in which we seek tominimize the redundancy between genes by considering the
correlation between the latter and maximize gene-ranking (Fisher) scores, and a modified ACO coupled with a local search (LS)
algorithm using the classifier 1NN for measuring the quality of the candidate subsets. In order to evaluate the proposed method,
we tested MWIS-ACO-LS on ten well-replicated microarray datasets of high dimensions varying from 2308 to 12600 genes. )e
experimental results based on ten high-dimensional microarray classification problems demonstrated the effectiveness of our
proposed method.

1. Introduction

In recent years, DNA microarray technology has grown
tremendously, thanks to its unquestionable scientific merit.
)is technology developed in the early 1990s allowed re-
searchers to simultaneously measure the expression levels of
several thousand genes [1, 2], )ese levels of expression are
very important for the detection or classification of the
specific tumor type. )e microarray data is transformed into
gene expression matrices, where a row represents an ex-
perimental condition and column represents a gene; each
value of xij is the measure of the level of expression of the jth

gene in the ith sample (see Table 1).
For the cancer classification problem, each line contains

information about the class of a sample (the type of cancer).
)us, DNA microarray analysis can be formulated as a su-
pervised classification task [3].

In the cancer classification task, a small number of
samples are available, while each sample is described by
a very large number of genes. )ese characteristics of the
microarray data make it very likely the presence of re-
dundant or irrelevant genes, which limit the performance of
classifiers. )us, extracting a small subset of genes con-
taining valuable information about a given cancer is one of
the principal challenges in the microarray data analysis [4].

Gene selection has becomemore andmore indispensable
over the last few years. )e main motivation of this selection
is to identify and select the useful genes contained in
a microarray dataset for distinguishing the sample classes. It
also provides a better understanding and interpretation of
the phenomena studied. Also, it surpasses the curse of di-
mensionality in order to improve the quality of classifiers. In
general, gene selection methods are divided into two sub-
classes: wrapper approaches and filter approaches [5]. In
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wrapper methods, the selection can be seen as an exploration
of all the possible subsets, and the principle is to generate
a subset of genes and evaluate it afterward. Indeed, the
quality of a given subset is measured by a specific classifier.
In the aforementioned method (wrapper), the classification
algorithm is used several times at each evaluation. Generally,
the accuracy according to the final subset of genes is high
because of the bias of the process of generating the classifier
used. Another advantage is their conceptual simplicity: just
generate and test. However, they do not have any theoretical
justification for the selection and do not allow us to un-
derstand the dependency relationships that may exist be-
tween genes. On the other hand, the selection procedure is
specific to a particular classifier, and the found subsets are
not necessarily valid if we change the classifier. Besides, they
typically suffer from a possible overfitting and high com-
putational cost [5, 6]. Also, these approaches become un-
feasible because the evaluation of large gene subsets is
computationally very expensive [7]. While in filter methods,
the final subset is selected based on some gene score
functions and significance measures. Unlike wrappers, the
selection is independent of the classifier used. )e operating
principle of these methods is based on the evaluation of each
gene individually to assign it a score. )e gene selection is
performed by selecting the best-ranked genes. Filters are
generally less expensive in computing time, so they can be
used in the case where the number of genes is very high
because of their reasonable complexity. But, the main
negative point of these methods is that they do not take into
consideration the possible interactions between genes. In the
literature, there are several individual gene-ranking methods
(filter) such as t-test [8], Fisher score [9], signal-to-noise
ratio [10], information gain [7], and ReliefF [11].

In wrapper methods, metaheuristics are commonly used
to generate high-quality subsets of genes. Examples of
classification algorithms used for measuring the quality of
each candidate solution include support vector machines
(SVMs) and K nearest neighbor (KNN) [12].

)e first works on the DNA microarray classification
were published at the end of the 1990s [13, 14]. In this
context, several researchers have utilized metaheuristic
methods and the ACO algorithm for solving the feature
selection problem (particularly gene selection), in order to
facilitate recognition of cancer cells: ACO [15–20] algo-
rithm, PSO [4, 6, 21–25] genetic algorithm [4, 26, 27], in-
corporating imperialist competition algorithm (ICA) [28],
and binary differential evolution (BDE) algorithm [29].

)e ant colony optimization algorithm (abbreviated as
ACO) is a population-based metaheuristic [30, 31]. )anks
to its efficiency, it has been used to solve several optimization

problems in different fields. In the ACO algorithm, each ant
presents a candidate solution to the problem, and the ants
build approximate solutions iteratively (step-by-step). )e
process of constructing solutions can be regarded as a path
(between home and food source of ants) on a graph. )e
choice of the best path by ants is influenced by the quantities
of pheromone left in these pathways and a piece of heuristic
information that indicates the goodness of the decision
taken by an ant.

)us, metaheuristics find application in solving the gene
selection problem which is known to be NP-hard [32, 33]. In
the last decade, several researchers have also adopted graph-
based techniques to select near-optimal subset of a feature
set [34–36].

In this study, we propose a hybrid approach for solving
the gene selection problem. Our two-stage proposed ap-
proach starts with a first stage in which a new graph-based
approach is proposed (MWIS) without using any learning
model. In the second stage, a wrapper method based on
a modified ACO and a new local search algorithm guided by
the 1NN classifier is developed. In this step, the role of 1NN
is to evaluate each candidate gene subset generated. )e
proposed approach has not been previously investigated by
previous researchers.

)is paper is organized as follows: in Section 2, we
present the proposed gene selection method. Section 3
provides a detailed exposition of the experiments that we
have put on ten microarray datasets to evaluate our ap-
proach. Finally, we conclude our paper.

2. Methods

2.1. Graph &eory Approach for Gene Selection

2.1.1. Notations. In this work, we use X to denote a dataset
(Table 1) of M samples � (x1, x2, . . . , xM) xi ∈ RN. We use
g1, g2, . . . , gN􏼈 􏼉, gi ∈ RM to denote theN genes vectors. Y �

(y1, y2, . . . , yM) are the class labels.
Graph theory gives an abstract model to represent the

relationships between two or more elements (vertices) into
a given system. Let G � (V, E) be an undirected graph where
V is a nonempty finite set called the set of vertices and E is
the set of edges. We define a vertex-weighted graph (G, W)

as a graph G together with a function W (the vertex
weighting function) such that W(u) ∈ R+∗ for all u ∈ V

[37, 38]. )e maximum weight independent set (MWIS) is
one of the most important optimization problems, thanks to
their several domains of application [39], particularly, in the
gene selection problem, where we can transform the DNA
microarray data into a vertex-weighted graph (gene-

Table 1: A gene expression matrix composed with M samples and N genes.

Geneid Gene1 Gene2 · · · GeneN Class label
Sample1 x11 x12 · · · x1N y1
Sample2 x21 x22 · · · x2N y2
Sample3 x31 x32 · · · x3N y3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
SampleM xM1 xM2 · · · xMN yM
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similarity graph). In this graph, each gene can be considered
as a vertex and their Fisher score as weight of this vertex.)e
set of edges represents the existence of significant correlation
(relationship) between these genes; this relation is nothing
but the degree of linear association (Pearson correlation)
between the latter. After transforming the DNA microarray
data, we try to find the maximum weight independent set.
)is set of genes will be used in the second stage of our
proposed method.

2.2. Construction of Gene-Similarity Graph. )e construc-
tion of gene-similarity graph requires the definition of some
statistical notions: starting with the Fisher score to calculate
the weight of each vertex (gene).

2.2.1. Fisher Score Fi [9]. It is mainly applied in gene se-
lection as a filter [40]. )e Fisher score value of each gene
represents its relevance to the dataset; a higher Fisher score
means that the gene contributes more information. )is
information helps to measure the degree of separability of
the classes through a given gene gi. It is defined by

Fi �
􏽐

c
k�1nk μi

k − μi( 􏼁
2

􏽐
c
k�1nk σi

k􏼐 􏼑
2 , (1)

where c, nk, μk
i , and σ

i
k represent, respectively, the number of

classes, the size of the k-th class, and mean and standard
deviation of kth class corresponding to the ith gene. μi is the
global mean of the ith gene.

2.2.2. Pearson Correlation Coefficient. )e Pearson corre-
lation coefficient is a measure of the strength of the linear
relationship between two variables (genes). Let g1 and g2 be
two random variables, and the correlation coefficient be-
tween g1 and g2 is defined by

ρg1,g2
�
cov g1, g2( 􏼁

σg1
σg2

, (2)

where cov(g1, g2) is the covariance between g1 and g2, σg1
is

the standard deviation of g1, and σg2
the standard deviation

of g2.
)e correlation coefficient may take on a range of values

from − 1 to +1. Let (rij � |ρgi,gj
|) be the absolute value of the

correlation between gi and gj.
Now, we can define the adjacency matrix AG � (aij)N×N,

with zeros on its diagonal to represent (G, W). Where aij � 1
if (i, j) ∈ E is an edge of G and aij � 0 if (i, j) ∉ E. More
precisely, a value of 1 represents the existence of a re-
lationship between gi (row i) and gj (column j), while
a value of 0 means the nonexistence of this relationship. )e
creation of AG requires the definition of the absolute cor-
relation matrix R � (rij)N×N. Based on this matrix, we fill
AG; let r0 be a fixed value in [0, 1]; we assume that if rij > r0
then the mutual information between gi and gj is high (i.e.,
the two vertices are adjacent). More exactly, the matrix AG is
filled based on the rule below: for i≠ j,

aij �
1, if rij > r0,

0, otherwise,
􏼨 (3)

where r0 ∈ [0, 1] is the minimum correlation value for which
we consider two genes in relation. )e experimental study
carried out in our method proves that r0 � 0.35 behaves well
with the high-dimensional data. For example, if we have
a dataset composed of 7 genes g1, g2, . . . , g7􏼈 􏼉, Table 2 shows
the corresponding absolute correlation matrix to these data.

For r0 � 0.35, the adjacency matrix is given in Table 3.
We define the weight of a vertex i (gi), by using the

Fisher score: W(i) � Fi. A gene i with a high score in the
DNAmicroarray dataset corresponds to a vertex with a high
weight in (G, W). )is weight gives important information
about the gene relevancy to the data. Indeed, if there are two
genes connected by an edge in G we prefer the gene which
has the best weight. On the basis of the steps defined before,
we were able to transform a determined DNA data
microarray into a vertex-weighted graph (Algorithm 1).

Figure 1 shows the gene-similarity graph equivalent to
the adjacency matrix (Table 3); we associate to each gene
(vertex) a weight by using the Fisher score:

In the context of gene selection for cancer classification,
the microarray datasets are characterized by a very large
number of genes. )e application of an evolutionary algo-
rithm such as ACO directly without passing by a pre-
processing step is highly expansive. )is is where filter
methods become so useful in order to extract a subset of
possibly informative genes, and then the evolutionary
metaheuristic is applied to select the near-optimal subset of
genes [19]. As examples, generalized Fisher score, ReliefF,
and BPSO are combined in [6], an information gain filter
and a memetic algorithm in [41], chi-square statistics and
a GA are used in [26], information gain and improved
simplified swarm optimization in [42].and ReliefF, mRMR
(minimum redundancy maximum relevance), and GA in
[11]. Zhao et al proposed a hybrid approach by combining
the Fisher score with a GA and PSO [40]. In order to
overcome the disadvantages of filter methods, we propose an
efficient approach based on graph theory techniques to select
the first subset. )is method takes into account possible
interactions between genes.

2.3. Gene Selection Based on the Maximum Weight In-
dependent Set. Let (G, W) be a vertex-weighted undirected
graph, where V is the set of its vertices, E is the set of edges,
and W is the vertex weighting function. For each v ∈ V

we define NG(v) the neighborhood of v, i.e.,
NG(v) � u ∈ V : u≠ v, (u, v) ∈ E{ }. A subset I⊆V is an
independent set of G if there are no two adjacent vertices in I
(i.e., connected by an edge). )e MWIS is the independent
set with the maximum weight (the weight of a subset of
vertices in V is defined as the sum of the weights of the
vertices in this subset [43]).

We remark that in filter methods for gene selection based
on the rank of genes, the correlation between the selected
genes is not considered. )is implies the selection of subsets
with a high level of redundancy that penalizes the
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classification performances; on the other hand, these
methods eliminate the genes with a low individual score,
ignoring the possibility that they can become highly relevant
when combined with other genes [44]. )is motivates us to
propose a graph-based approach to overcome these

problems. In the first stage of our method, we consider the
gene selection problem as the search for the maximum
weight independent set in the gene-similarity graph (G, W).
)e choice of this subset is justified by two arguments: First,
the termmaximumweight can be translated in the context of
gene selection as selecting a subset of genes with maximum
relevance. Second, the notion of independent ensures the
choice of a subset with minimum redundancy; i.e., in this
subset, there are no two genes with high correlation. In
addition, this subset can contain genes with a low score.
)erefore, the proposed method in this stage gives a good
subset of genes for applying an evolutionary algorithm such
as ACO.

)e MWIS into a given graph is an NP-hard problem
[45], and since in our case the gene-similarity graph is large
(several thousands of vertices and edges), then it is im-
possible to find an exact solution to our problem in a rea-
sonable time. For this, we propose a greedy algorithm
(heuristic) to quickly obtain an approximate solution. )e
main lines of this algorithm are presented in Algorithm 2.

We illustrate the execution of our greedy algorithm
(Algorithm 2) on the graph from Figure 1 formed by
g1, g2, . . . , g7􏼈 􏼉. In the first iteration, we select the best gene

g1 (W(g1) � 1.6), then we remove their neighborhood
g2, g4, g7􏼈 􏼉, and in the next iteration we choose the best gene

Table 2: Correlation (similarity) matrix.

g1 g2 g3 g4 g5 g6 g7

g1 1 0.59 0.19 0.45 0.1 0.24 0.67
g2 0.59 1 0.36 0.3 0.11 0.07 0,66
g3 0.19 0.36 1 0.31 0.24 0.06 0.29
g4 0.45 0.3 0.31 1 0.49 0.81 0.12
g5 0.1 0.11 0.24 0.49 1 0.72 0.66
g6 0.24 0.07 0.06 0.81 0.72 1 0.57
g7 0.67 0.66 0.29 0.12 0.66 0.57 1

Table 3: Adjacency matrix.

g1 g2 g3 g4 g5 g6 g7

g1 0 1 0 1 0 0 1
g2 1 0 1 0 0 0 1
g3 0 1 0 0 0 0 0
g4 1 0 0 0 1 1 0
g5 0 0 0 1 0 1 1
g6 0 0 0 1 1 0 1
g7 1 1 0 0 1 1 0

Input: DNA microarray data, r0
Output: Gene-similarity graph (G, W).
Begin
Calculate the weight of each gene W(gi) � Fi by using the Fisher score (1).
Calculate the absolute correlation matrix R � (rij)N×N by using (2).
Fill the adjacency matrix AG � (aij)N×N associated to G, based on the rule (3).
Create the gene-similarity graph (G, W).
Return (G, W).

ALGORITHM 1: Construction of a gene-similarity graph.

g1
1.6

g4
0.9

g5
1.2

g6
0.3

g7
0.5

g2
1.2

g3
0.9

Figure 1: An example of gene-similarity graph.
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g5 in the second graph composed by g3, g5, g6􏼈 􏼉. In the last
iteration, we have only one gene to choose g3. )en I �

g1, g3, g5􏼈 􏼉 (Figure 2) is an approximate maximum weight
independent set, and we can notice that our greedy algo-
rithm gives the exact MWIS for this example.

2.4. Ant ColonyOptimization for Gene Selection. ACO is one
of the algorithms based on swarm intelligence. It was in-
troduced as a method for solving optimization problems in
the early 90s by Dorigo et al. [30, 31] and developed after in
[46, 47]. Initially, ACO was designed to solve the traveling
salesman problem by proposing the first ACO algorithm:
“Ant System” (AS) [48]. Subsequently, other applications
that were considered early in the history of ACO such as
quadratic assignment [49], sum coloring [50], vehicle
routing [51], constraint satisfaction [52], and gene selection
[15–17, 19, 20].

)e ACO algorithm is inspired by the social behavior of
ants. )e artificial ants used in the ACO can cooperate with
each other (by exchanging information via pheromones) to
solve difficult problems; this is performed by building ap-
proximate solutions iteratively (step-by-step). )e feasible
solutions can be regarded as a path between home and food
source of ants. )e method of choice of this last path is
detailed in the next subsections.

2.4.1. ACO for Gene Selection. Denote the p genes as
g1, g2, . . . , gp􏽮 􏽯 to adopt the ACO for gene selection
problem, and a novel ACO is proposed; the path of each ant
from the nest to food is coded as a p-dimensional binary
string where each bit of the pathway is attached to a gene; the
selection of the pathway “1” means that gene has been
chosen. On the other hand, a pathway “0” indicates that the
gene is not selected in the final subset. Suppose that p is 10,
the coding of our modified ACO is presented and explained
in Figure 3.

)e ants seek to find the best path that maximizes the
accuracy and minimizes the number of selected genes.
Figure 4 describes the gene section procedure proposed on
our ACO. Each ant starts from the nest to the food source
with the aim to find the best path (best subset of genes). )e
building of this path is done step-by-step; in each step i, the

ant decides to add the gene i to the candidate subset of genes
or not, based on the pheromone and heuristic information
assigned to this gene (Figure 4). )e ant terminates its tour
in p steps and outputs a subset of selected genes as it reaches
the food source.

As indicated previously, the task of each ant is to con-
struct a candidate subset of genes using heuristic in-
formation and pheromone; this is performed via
a probabilistic decision rule. We compute the probability of
selecting a pathway as below:

pij �
ταij􏼐 􏼑 ηβij􏼐 􏼑

ταi0( 􏼁 ηβi0􏼐 􏼑 + ταi1( 􏼁 ηβi1􏼐 􏼑
, (i � 1, 2, . . . , p; j � 1, 0),

(4)

Input: Gene-similarity graph (G0, W)

Output: An approximate maximum weight independent set I.
Begin
I ≔ ∅; i ≔ 0; Gi ≔ G;

3: while V(Gi)≠∅ do
Choose the best vertex vi in Gi, (i.e., vertex with the high weight).
I ≔ I∪ vi􏼈 􏼉;

6: Gi+1 ≔ Gi;
V(Gi+1) ≔ V(Gi)\ NGi

(vi)∪ vi􏼈 􏼉􏽮 􏽯; % NGi
(vi) is the neighborhood of vi.

i� i+ 1;
9: end while
Return I.

ALGORITHM 2: Greedy algorithm to approximate the MWIS.

g1
1.6

g4
0.9

g5
1.2

g6
0.3

g7
0.5

g2
1.2

g3
0.9

Figure 2: Example of maximum weight independent set.

Gene data

Ant path

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

1 1 0 0 1 0 1 0 0 1

Genes selected are {g1, g2, g5, g7, g10}

Figure 3: An illustrated example with generated subset and path
representation.
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where i represents the ith gene, j takes the value 1 or 0 to
denote whether the corresponding gene has been selected
or not, τij is the pheromone intensity that indicates the
importance of the selection of the ith gene, and ηij rep-
resents the heuristic reflecting the desirability of the se-
lection of this gene or not. α and β are two parameters
controlling the relative importance of the pheromone
intensity versus visibility; with α � 0, only the visibility
(heuristic information) of the gene is taken into account,
and the ants will decide to select or not a given gene based
just on ηij. Since the previous research experience is lost,
therefore there is no cooperation between ants in this case.
On the contrary, with β � 0, only the trail pheromone
trails play. To avoid too rapid convergence of the ACO
algorithm, a compromise between these two parameters is
necessary to ensure the diversification and intensification
of the search space.

2.4.2. &e Heuristic. )e choice of a good heuristic, which
will be used in combination with the pheromone in-
formation to build solutions, is an important task in the
ACO implementation [53]. In our ACO, this heuristic is
used to indicate the quality of a gene based on a scoring
algorithm.

For a given ant, the heuristic information ηi1 is the
desirability of adding the gene i to the subset of selected
genes. We define this quantity based on the Fisher score Fi

(1) which measures the quality of this gene and the number
of genes selected by the ant before arriving at gene i Ns. ηi1 is
calculated as follows:

ηi1 �
Fi

1 + Ns
. (5)

For the value of ηi0, we combine themean of the scores of
Fisher of all genes and Ns. )is means that the ants tend to
choose the small subsets of genes that have high relevance:

ηi0 �
1

p 1 + Ns( 􏼁
􏽘

k�p

k�1
Fi. (6)

2.4.3. Updating the Pheromone Trail. )e goal of the
pheromone update is to increase the pheromone values
associated with good solutions while reducing those asso-
ciated with bad ones.

)e updates of pheromones are made in two stages,
a local update and a global update.

Once the ant k has finished the built of its path, the
pheromone in all of the pathways will be updated. )e
updated formula is described below:

τij⟵ 1 − ρloc( 􏼁τij + ρlocΔτij, (7)

where ρloc is the local pheromone evaporation coefficient
parameter (0< ρloc < 1) which represents the evaporation of
trail and Δτij is the amount of pheromone deposited by the
ant k; in our ACO, it is given by

Δτij �

CA1NN(S)∗ λ −
# genes

p
􏼠 􏼡, if the ant k uses the pathway

jwhen it arrived at gene i,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where S is the candidate solution created by the ant, CA1NN is
the r-fold cross-validation classification accuracy of 1NN
classifier (nearest neighbor) based on S, #genes is the number
of selected genes in S, and λ is a parameter that indicates the
importance of the number of selected genes in S (1≤ λ).

At each iteration T, after all ants finish their traverses,
a global update of pheromone quantities is made for all
pathways chosen by the best ant (the best candidate solution)
during the iteration T.

)e global update is carried out as follows:

τij⟵ 1 − ρglob􏼐 􏼑τij + ρglobΔτij(T), (9)

where ρglob is the global pheromone evaporation coefficient
parameter and Δτij(T) is the amount of pheromone de-
posited by the best ant during the iteration T given by
Chiang et al. [15].

To avoid stagnation of the search, the range of possible
pheromone trails is limited to an interval [τmin; τmax].

2.5. Fitness Function. In order to guide our novel ACO
towards a high-quality subset of genes, we need to define
a “fitness function” f. )e quality of a candidate subset can be
measured by combining the number of genes into this subset
(size) and the classification accuracy using a specific clas-
sifier, and in gene selection the aim is to maximize the
accuracy and minimize the number of genes used.

)e estimation of the classification accuracy is measured
by a given classifier using the cross-validation rule. In this
study, we use the K-nearest neighbor classifier (KNN).

2.5.1. K-Nearest Neighbor (KNN). )e KNN method is
a supervised learning algorithm and was introduced by Fix
and Hodges in 1951 [54]. It is based on the notion of
proximity (neighbor) between samples for making a de-
cision (classification) [55].

In order to determine the class of a new example, we
calculate the distance between the new one and all testing
data, and finally the classification is given by a majority vote
of its K neighbors. )e neighbors are determined by the
Euclidean distance which is defined as follows:

Nest
1

0

1

0

1

0
Food

Gene 1

Gene 1 is selected Gene p is eliminated

Gene 2 Gene p

Figure 4: )e gene selection procedure of modified ACO.
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D X1, X2( 􏼁 �

������������

􏽘

p

i�1
x1i − x2i( 􏼁

2

􏽶
􏽴

. (10)

In our proposed method, we use the 1NN classifier,
which is a particular case of KNN (with K � 1). Let X be
a new sample to classify and T a sample from the training
data, then the class of X is determined as below:

Class(X) � Class(argmin(D(X, T))). (11)

Note that, the genes into gene expression data had
different scales, and the KNN classifier is influenced by the
measure of distances between samples.)erefore, we modify
our 1NN by normalizing the training data to transform them
to a common scale. )is transformation is carried out based
on the mean and the standard deviation of each gene, and
the latter values are used for the scaling of the test data.

2.5.2. Objective Function. )e fitness value of a candidate
solution S in our ACO is calculated as follows:

f(S) � w1 ∗CA1NN(S) + 1 − w1( 􏼁∗ 1 −
#genes

p
􏼠 􏼡, (12)

where w1 is a weight coefficient in [0, 1] that controls the
aggregation of both objectives (maximizing the predictive
accuracy andminimizing the number of genes), #genes is the
number of selected genes in S, and p is the total number of
genes.

Mention that“CAKNN” is nothing but the average cross-
validation classification accuracy calculated by the KNN
classifier, using leave-one-out-cross-validation (LOOCV)
[56], in which we divide our dataset intoM nonoverlapping
subsets (M tissue samples). At each iteration, we train our
KNN classifier on (M − 1) samples based on the selected
genes, and we test it on the remaining sample. )e“CAKNN”
associated to LOOCV is calculated based on the rule below:

CAKNN �
the number of correctly predicted samples

M
.

(13)

2.6. Local Search. )e local search algorithm is used to
improve the solutions given by ants and provide good so-
lutions within a reasonable time. With this aim, we are
inspired by the framework proposed in [57], in which a local
search based on the filter ranking method is used to solve the
feature selection problem.

Given a candidate solution generated by an ant, we
defineX and Y as the subset of selected and eliminated genes,
and X and Y both are ranked using Fisher score, respectively.
We further define two basic operators of the local search
algorithm:

(i) Add: select gene from Y based on its ranking and add
it to S

(ii) Del: select gene from X based on its ranking and
remove it from S

)e selection of the gene i from Y to move it to S by Add
operator in our proposed method is based on the Roulette
wheel developed by Holland [58]. Let Y � g1, g2, . . . , gn1

􏽮 􏽯

and F1, F2, . . . , Fn1
􏽮 􏽯 be its Fisher score values. )en the

selection probability Pi for gene gi is defined as follows:

Pi �
Fi

􏽐
j�n1
j�1 Fj

. (14)

Similarly, for the operator Del, we define the probability
of selecting a gene gi of X � g1, g2, . . . , gn2

􏽮 􏽯 to remove it
from S with a probability defined by:

Pi �
Fi

􏽐
j�n2
j�1 Fj

, (15)

where Fj � max(F1, . . . , Fn2
) − Fj, for j � 1, . . . , n2, and

F1; F2, . . . , Fn1
􏽮 􏽯 are the Fisher score values of
g1, g2, . . . , gn2

􏽮 􏽯.
Based on the probabilities defined before, we can remark

that Add operator prefers the genes with the high score to
add to S, on the other hand, Del operator prefers the genes
with the low score to remove from S.

Our local search algorithm (Algorithm 3) is character-
ized by the number maximal of Add nadd and Del ndel
operations, and itmax the maximal number of consecutive
iterations without improvement in the best solution. In
addition, this local search algorithm is general and efficient,
for example, if we fix nadd at 0, the local search algorithm
becomes a backward generation, in which we try to remove
the not relevant genes at each iteration.

2.7. Proposed Method for Gene Selection (MWIS-ACO-LS).
Our hybrid method for solving the gene selection problem is
based on combining filter and wrapper approaches. )is is
carried out taking advantage of the low computing time in
filters (MWIS) and the high quality of the subsets provided
by the wrapper methods (ACO and LS). )e overall process
of MWIS-ACO-LS can be seen in Figure 5.

)e process begins by transforming the initial dataset
into a vertex-weighted graph (Algorithm 1), where we search
the MWIS, which is well-known as an NP-hard problem, so
we have proposed a greedy algorithm (Algorithm 2) to find
a near-optimal set of vertices (representing genes in our
problem). )e subset of genes selected in the later stage is
taken as input into the second stage of selection, which used
an evolutionary algorithm (ACO), combined with a local
search algorithm to select the minimum number of genes
that gives the maximum classification accuracy for the 1NN
classifier. In this stage, artificial ants cooperate to build
a high-quality subset of genes based on the transition rules
already presented in Section 2. Also, a local search (Algo-
rithm 3) is proposed to help the ants to achieve good results
in a reasonable time. )e pseudocode of our proposed
method is presented as follows.

2.8. Complexity Analysis of MWIS-ACO-LS. Suppose that N
is the number of the original genes and M is the number of
samples. Our method is divided into three principal stages:

Computational and Mathematical Methods in Medicine 7



Stage 1: In the first step (Algorithm 1), the weight
values of the genes are evaluated using the Fisher
score, thus the time complexity is O(NM). More-
over, the absolute correlation values between each
pair of genes are computed, so the time complexity is

O(N2M). And finally, for the filling of the adjacency
matrix AG (implicitly the construction of gene-
similarity graph), the time complexity is O(N2). In
the second step of this stage (Algorithm 2), the
weight of each vertex is already defined, and then we

Input: DNA microarray data; itmax; S a candidate solution given by an ant;
nadd the maximal number of Add operations;
ndel the maximal number of Del operations;
Output: A candidate solution Sbest better than S.

Begin
k� 0;

3: while k< itmax do
Determine the subsets X and Y.
na � ⌊rand∗(madd + 1)⌋; nd � ⌊rand∗ (mdel + 1)⌋ % ⌊.⌋ is the floor function.

6: Repeat na times of Add operation to S.
Repeat nd times of Del operation to S.
Create new candidate solution S′

9: if f(S′)>f(S) then
S � S′
k � − 1

12: end if
k� k+ 1

end while
15: Sbest � S

Return Sbest.

ALGORITHM 3: Local search algorithm for gene selection.

Stage1: MWIS

Load the dataset

Score each gene
based on a Fisher score

Select a first subset
of genes based on

a greedy
algorithm (Algorithm 2)

Start

Stage2: ACO and LS

No

Setup the ACO and
the LS parameters

Initialize pheromone
matrix 

Each ant constructs
it solution based on

(4)

Store the local and the
global best solution Update solution

based on the
new pheromone

matrix

 Termination
criteria?

Local search

Update pheromone
matrix

Apply a backward
generation local

search algorithm to S

End

Create a new dataset using
the selected genes

Store the best set
of genes: SYes

Figure 5: Flowchart of our proposed approach for gene subset selection in DNA microarray data.
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can conservatively assume that in each iteration we
remove only the vertex itself to get a time complexity
of O(N). )erefore, the overall time complexity of
this stage (MWIS) is O(NM + N2M + N2 + N) �

O(N2M).
Stage 2: First, we mention that p represents the
number of selected genes in the first stage; generally
(p≪N).
In this stage, the fitness of each candidate subset of
genes is calculated using LOOCV (leave-one-out-cross-
validation) and the 1NN as a classifier equation (13). Let
us analyze now the complexity of fitness calculation
using 1NN (LOOCV): we compute the distance be-
tween the single sample of the testing set and each
training set sample, requiring O(p(M − 1)), this
process is repeated M times, so the fitness calculation
need O(p(M − 1)M).
In each iteration of our ACO, each ant from them ants
starts from g0 to gp passing by all p genes, then the
construction of a path by an ant as O(p), and each path
is evaluated by LOOCV. )is process is repeated nmax
times by the m ants, in addition, updating the pher-
omone values has O(pnmax); therefore, the overall
computational complexity of ACO without local search
is O(pnmax + pnmaxmp (M − 1)M) � O(nmaxmp2

(M − 1)M).
Concerning the local search algorithm, for the LS used
in the second stage (line 20 Algorithm 4) repeated nmax
times, the complexity time is O((nadd + ndel)it
maxnmaxp(M − 1)M).
Generally, (nadd + ndel)itmax≃m, so the total complexity
time of the second stage is O(nmaxmp2(M − 1)M).
Stage 3: For the last stage (line 24 Algorithm 4), the
complexity of the backward generation is
O(itmaxndelp(M − 1)M).

Consequently, the total time complexity of the proposed
method MWIS-ACO-LS is O(itmaxndelp(M − 1)M + nmax
mp2(M − 1)M + N2M) � O(nmaxmp2(M − 1)M + N2M).

3. Experimental Studies

)is section presents the performance of our proposed
approach (MWIS-ACO-LS) on ten well-known gene ex-
pression classification datasets, and we compare our results
with those of the state-of-the-art. Furthermore, the char-
acteristics of the used datasets, the parameter settings, and
the numerical results will be described in the following
sections.

)e implementation of the proposed approach (MWIS-
ACO-LS) is performed using Matlab R2017a.

As far as the KNN classifier is concerned, we have chosen
a predefined function in Matlab. Similarly for the SVM
classifier [59, 60] used in the comparison a predefined binary
linear classifier was chosen. In addition, we have developed
a multiclass SVM classifier based on the one-against-all
strategy.

Concerning the logistic regression (LR) classifier we
have regularized the cost function by two penalties, the
first is lasso (L1) and the second is the elastic net regu-
larization.)e minimizing the cost functions used on LR −

L1 and LR-Elasticnet is assured by the stochastic gradient
descent (SGD) algorithm implemented in the Scikit-learn
package [61]. Experimental initial parameters are given in
Table 4.

Additionally, in this study, we use leave-one-out-cross-
validation (LOOCV) to measure the quality of the candidate
subsets of genes and for comparing our results with the other
works.

3.1. Environment. To evaluate our approach, we have chosen
ten datasets (DNAmicroarray) concerning the recognition of
cancers [62], which are publicly available and easily accessible.
In addition, these datasets are used in several supervised
classification works, particularly in the papers using in the
“Comparison with state-of-the-art algorithms” section.

All datasets used are described in Table 5. )e latter
datasets have a multitude of distinguishing characteristics
(number of genes, number of samples, and binary classes or
multiclasses). )e number of samples in some datasets is
small (Brain_Tumor2, 9_Tumors, etc.), while others have
a higher number (Lung_Cancer, 11_Tumors, etc.). Also,
some of them have binary classes (Prostate_Tumor,
DLBCL) while others have multiclasses (Leukemia1,
Lung_Cancer, etc.). And as our proposed method is
designed for the high-dimensional microarrays, all these
datasets are characterized by thousands of genes ranging
from 2308 to 12600.

3.2. Parameters. We note that our approaches have been run
on an Acer Aspire 7750g laptop with Intel Core I5 2.30GHz
processor and 8GB RAM, under system runningWindows 7
(64 bit).

Several tests were carried out in order to obtain an
appropriate parameterization; indeed, a set of initial values
for the parameters were fixed, and then we change the value
of one parameter for different runs until the solutions could
not be ameliorated. )e process of adjustment was repeated
for each parameter until the solutions could not be im-
proved. )is process is carried out based on one dataset of
cancer classification. Table 5 represents the parameters of the
proposed approach.

3.3. Results and Comparisons. Firstly, in order to limit the
search space and accelerate the speed of convergence of our
proposed approach, the first subset of genes was selected
based on a graph-theory algorithm for gene selection
(MWIS), and then a modified ACO-1NN coupled with
a local search algorithm was applied to find more excellent
subset of genes.)e quality of a candidate subset is measured
by the performance of the KNN classifier obtained using
LOOCV and the size of this subset.
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Input: DNA microarray data; nmax; m; α; β; ρloc; ρglob; λ; τi0; τi1; τmin; τmax; w1.

Output )e global best candidate solution Sgbest.
Begin
Stage 1: !e selection of the first subset of gene

3: Step 1: Use the Algorithm 1 to construct the gene-similarity graph.
Step 2: Apply the greedy algorithm (Algorithm 1) to select an initial subset of genes.
Stage 2: !e application of ACO to the subset of gene selected in the first stage

6: Step 1: ACO combined with the local search
Initialize the pheromone matrix by ones.
for T � 1; T< � nmax; T + + do

9: for i � 1; i< � m; i + + do
build the path (candidate solution S)of the ant based on the probabilistic decision rule defined by (4), (5) and (6).
Calculate the fitness of the candidate solution using LOOCV in (11).

12: if i� � 1 then
Sbest � S

end if
15: if f(Sbest)≤f(S) then

Sbest � S

end if
18: Do a local update of pheromones based on S.

end for
Apply the Local search (Algorithm 3) to Sbest.

21: Do a global update of pheromones based on Sbest.
end for
Find the global best solution Sgbest

24: Step 2: Apply a backward generation to Sgbest.
Return Sgbest.

ALGORITHM 4: Proposed approach (MWIS-ACO-LS).

Table 4: Parameters used for experiments (common parameters for MWIS-ACO-LS).

Common parameters for MWIS Value
r0 )e correlation for crating a vertex 0.35
Common parameters for ACO
m Population size 30
nmax )e number of iteration 100
α Influence of the pheromone 1.2
β Heuristic information 0.2
ρloc Local evaporation of pheromone 0.002
ρglob Local evaporation of pheromone 0.06
λ Factor of updating pheromone 1.6
τi0 )e initial pheromone of pathway 0 1.0
τi1 )e initial pheromone of pathway 1 1.0
τmin )e lower pheromone 0.05
τmax )e upper pheromone 1.4
w1 )e weight coefficient in the fitness function 0.99
Common parameter for the local search algorithm
itmax )emaximal number of iteration without improvement 5
nadd )e maximal number of Add operations 3
ndel )e maximal number of Del operations 5
Common parameter for the backward generation algorithm
itmax )emaximal number of iteration without improvement 20
nadd )e maximal number of Add operations 0
ndel )e maximal number of Del operations 2
Common parameter for the KNN classifier
K )e number of neighbors 1
)e distance used )e Euclidean distance
Common parameters for the logistic regression model (LR)
αLR )e regularization term constant 0.0001
l1ratio )e weight given to L1 into the Elasticnet 0.5
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)e objectives of the experiments carried out on the ten
datasets of (DNAmicroarray) are as follows: to test the effect
of gene selection on the improvement of the classification
accuracy and to validate the proposed method and verify its
effectiveness.

Given the nondeterministic nature of our approach and
the SGDlogistic classifier, ten independent runs were per-
formed for each dataset to obtain a more reliable result.

Table 6 shows the results obtained using a new graph-
based approach (MWIS) for gene selection, and then, using
the MWIS-ACO method where we apply to the subset se-
lected by the MWIS and ACO algorithm, and finally using
our new improved methodMWIS-ACO-LS, where the ACO
is coupled with the local search (LS) method. )e classifi-
cation accuracy in MWIS, MWIS-ACO, and MWIS-ACO-
LS is calculated using the 1NN classifier, on the other hand,
these methods are compared with SVM, 1NN, and
SGDlogistic penalized classifiers without selection to dem-
onstrate the usefulness of our selection approach. We an-
alyze our results in three ways:

(i) )e classification accuracy
(ii) )e number of genes used in the classification
(iii) )e execution time

4. Discussion

First of all, we start by the execution time analysis of our
proposed methods. We can remark that the execution
time is appropriate to the complexity analysis; in the filter-
based approach MWIS, the execution time is low, but the
accuracy is not good since the selection is independent to
the classifier. While in MWIS-ACO and MWIS-ACO-LS
the execution time is important because of the nature of
the wrappers method used and the use of the 1NN clas-
sifier at each evaluation, but the classification accuracy is
high. Now passing to the analysis of the different stages of
our proposed method MWIS-ACO-LS (from Figures 6
and 7 and Table 6), we can remark that the role of the ACO
is to improve the classification accuracy and reduce the
number of genes used. In addition, the local search has
a primordial role in the refinement of the candidate so-
lutions provided by the ants by reducing the number of

genes, while retaining the classification accuracy proved
by ants.

)e proposed approach (MWIS-ACO-LS) derives its
effectiveness from the remarkable improvement in the
classification accuracy and the reduction of the number of
the genes used in the classification (shown in bold in
Table 6), in all datasets (Figure 8).

)e “MWIS,” “MWIS-ACO,” and “MWIS-ACO-LS”
methods select a reduced subset of informative genes
compared to the original subset of genes in the datasets.

From Table 6 and Figure 8, it can be observed that MWIS
overcomes the results obtained by the 1NN classifier for
“9_Tumors,” “Lung_Cancer,” “SRBCT,” and “DLBCL”
datasets which is amazing because the role of the MWIS
algorithm is just to find a candidate subset of genes to apply
our modified ACO. )at subset can contain weak genes and
the process of the selection in this method is independent of
the classifier used.

Based on the experiments and the application of our
approach on ten dataset concern the cancer recognition,
we can observe that the proposed method (MWIS-ACO-
LS) outperforms all four algorithms in terms of classi-
fication accuracy and the number of genes used in the
classification. )e improvement in performance is more
significant for the 9 Tumors; we are passed from
a classification accuracy less than 60% to a perfect
classification using just 40. So, we can conclude (from
Table 6 and Figure 8) that MWIS-ACO-LS can suc-
cessfully select a small subset of genes which can obtain
a high classification accuracy. For all datasets, the
“MWIS-ACO-LS” approach has reached a great classi-
fication accuracy, more exactly, a classification greater
than 99.42% using only a small subset of genes from the
original genes. In addition, MWIS-ACO-LS gave a per-
fect accuracy of 100% for the majority of datasets:
(9_Tumors, Brain_Tumor1, Brain_Tumor2, Leukemia1,
Leukemia2, SRBCT, Prostate_Tumor, and DLBCL) using
just 5 genes for Leukemia1, and 6 genes for SRBCT and
DLBLC dataset.

However, with regard to the MWIS approach based on
some graph theory principles, we remark that the subset of
genes selected by this method gives acceptable classification
accuracy according to the number of genes used. )is goes

Table 5: Description of the datasets (DNA microarray) used.

Dataset name Diagnostic task Number of samples Number of genes Number of classes
11_Tumors 11 various human tumor types 174 12533 11
9_Tumors 9 various human tumor types 60 5726 9
Brain_Tumor1 5 human brain tumor types 90 5920 5
Brain_Tumor2 4 malignant glioma types 50 10367 4

Leukemia1 Acute myelogenous leukemia (AML), acute
lympboblastic leukemia (ALL) B-cell, and ALL T-cell 72 5327 3

Leukemia 2 AML, ALL, and mixed-lineage leukemia (MLL) 72 11225 3
Lung_Cancer 4 lung cancer types and normal tissues 203 12600 5
SRBCT Small, round blue cell tumors (SRBCT) of childhood 83 2308 4
Prostate_Tumor Prostate tumor and normal tissues 102 10509 2

DLBCL Diffuse large B-cell lymphomas (DLBCL) and
follicular lymphomas 77 5469 2
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back to the procedure used for the construction of this
subset in which we give to the genes with the low score the
opportunity to be present. As detailed in Section 2, our two-
stage proposed method MWIS-ACO-LS starts by selecting
a small initial subset of genes that contains the major
information in the first stage using MWIS, and then we call
our modified ACO combined with a local search algorithm.
In this second stage, our algorithm tries to find the smallest
subset of genes that give the highest classification accuracy,
and Table 6 shows how the second stage plays a crucial role
in the increase of the classification for all dataset, especially
(Brain_Tumor2, 9_Tumors, 11_Tumors, and Leukemia1)
where the results are significantly different (great im-
provement in the classification accuracy).

In Figures 9–12, the abscissa axis expresses the number
of generations in the second stage of MWIS-ACO-LS, and
the ordinate axis expresses the classification accuracy of
the best candidate solution during each iteration. )is is
done for the average of all solutions and the best solution
found for the datasets “9_Tumors, Brain_Tumor1,

Brain_Tumor2, and Leukemia1.” )ese figures clearly
show that the use of our modified ACO and the local
search algorithm play a crucial role in the amelioration of
the classification accuracy. As we can remark in these
figures the difference between the best solution and the
average solution is not great. )erefore, MWIS-ACO-LS
possesses a faster convergence speed and achieves the
optimal solution rapidly.

In Figures 13–16, we show the evolution of the number
of genes selected on the ordinate axis relative to the
number of generations (the abscissa axis) for the
“9_Tumors, Brain_Tumor1, Brain_Tumor2, and Leuke-
mia1” datasets. )ese figures illustrate the role of our
wrapper algorithm based on ACO in reducing the number
of genes. Moreover, the second stage of our proposed
approach based on the modified ACO and the local search
algorithm plays a key role in increasing the classification
accuracy and minimizing the number of genes used.
Indeed, the ACO aims to identify the near-optimal subset
of candidate genes, called the best ant, during each

Table 6: Comparison of SVM, 1NN, MWIS-1NN, and MWIS-ACO-LS (LOOCV).

Datasets Performance SVM LR-L1 Avg Best LR-Elasticnet Avg 1NN MWIS MWIS-ACO MWIS-ACO-LS Best

11_Tumors
Accuracy (%) 85.63 88.22 93.1 86.38 88,22 74,14 67,24 94,90 96 99,14 99,42

Genes 12533 — — — — 12533 1308 463,00 460 166,9 101
Time (min) — — — — — — 0,82 91,33 — 123,2 —

9_Tumors
Accuracy (%) 38.33 35.00 50.00 29.50 38,33 40,00 60,00 98,83 100 100,00 100,00

Genes 5726 — — — — 5726 263 90,10 83 51 40
Time (min) — — — — — — 0,34 21,3 — 34,48 —

Brain_Tumor1
Accuracy (%) 88.89 85.67 88.89 85.44 88,89 85,56 80,00 96,56 100,00 99,22 100,00

Genes 5920 — — — — 5920 246 55,90 46 22,9 19
Time (min) — — — — — — 0,22 29,14 — 45,81 —

Brain_Tumor2
Accuracy (%) 70.00 27.20 32.00 29.20 36,00 60,00 48,00 95,40 100,00 99,40 100,00

Genes 10367 — — — — 10367 110 22,40 18 11,1 11
Time (min) — — — — — — 0,55 17,89 — 27,13 —

Leukemia1
Accuracy (%) 97.22 91.81 94.44 92.64 95,83 83,33 66,67 100,00 100,00 100,00 100,00

Genes 5327 — — — — 5327 297 63,00 56 9,4 5
Time (min) — — — — — — 0,26 25,94 — 43,77 —

Leukemia2
Accuracy (%) 97.22 91.81 95,83 91.67 95.83 86.11 73.61 100.00 100.00 100.00 100.00

Genes 11225 — — — — 11225 203 45.80 42 13.9 11
Time (min) — — — — — — 0,44 23,85 — 37.67 —

Lung_Cancer
Accuracy (%) 95.07 91.67 94.10 91.03 93.60 87.68 90.15 98.42 99.01 98.92 99.51

Genes 12600 — — — — 12600 602 180,00 183 34,8 36
Time (min) — — — — — — 0,82 74,61 — 107,3 —

SRBCT
Accuracy (%) 100.00 97.59 100.00 97.10 98.79 85,54 91,57 100,00 100,00 100,00 100,00

Genes 2308 — — — — 2308 109 15,60 15 7,6 6
Time (min) — — — — — — 0,14 23,48 — 38,24 —

Prostate_Tumor
Accuracy (%) 92.16 81.47 88.23 80.69 83.33 82,35 79,41 98,24 99,04 99,12 100,00

Genes 10509 — — — — 10509 193 47,30 43 20,3 21
Time (min) — — — — — — 0,39 29,2 — 46,59 —

DLBCL
Accuracy (%) 97.40 91.95 97.40 91.43 94.80 84,42 87,01 100,00 100,00 100,00 100,00

Genes 5469 — — — — 5469 147 25,7 22 7,2 6
Time (min) — — — — — — 0,17 27,18 — 43,63 —

Note: the best results are shown in bold. Remark: as the SVM, 1NN, and MWIS are of deterministic nature, the classification is calculated just in one run.
Accuracy: the classification accuracy using LOOCV (leave-one-out-cross-validation). Genes: the number of genes used in the classification ofthe LR-L1 and
LR-Elasticnet methods. Best: the best result found in all ten runs. Avg: the average of the ten experiments. Time: the execution time in minutes. SVM: the
support vector machine classifier using a linear kernel. LR-L1: the logistic regression classifier with the lasso regularisation. LR-Elasticnet: the logistic
regression classifier with the elastic net regularisation. 1NN: the 1-nearest neighbor classifier. MWIS: the maximumweight independent set for gene selection.
MWIS-ACO: our method of selection combining MWIS and ACO without using LS. MWIS-ACO-LS: our improved method of selection combining MWIS
and ACO and the local search algorithm (LS).
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iteration that maximizes the objective function, and once
the subset in question is found, our local search algorithm
is called to ameliorate the accuracy or reduce the number
of genes used while retaining the classification accuracy
found previously. After 100 generations of the ACO al-
gorithm, we apply a backward local search algorithm to
reduce the number of genes used in the last found best
solution (Figures 13–16). )ereafter, statistical analysis

has been performed using the Kruskal–Wallis statistical
test to evaluate our results and test the significance of the
difference in the results (accuracy) obtained by our
approach.

)e Kruskal–Wallis statistical test presented in Figures
17 and 18 shows a comparison of the results obtained by
MWIS, MWIS-ACO, MWIS-ACO-LS, and 1NN classifier.
According to these figures, the performance of MWIS-ACO
and MWIS-ACO-LS approaches exceeds that of the MWIS
method and the 1NN classifier. In terms of the statistical
significance of the results (classification accuracy), the said
test proves that the difference between the classification
accuracy in (“1NN,” “MWIS”) and “MWIS-ACO-LS” is
statistically significant (remarkable).

Table 7 lists the best subset of genes selected by our
proposed approach (MWIS-ACO-LS) for the datasets in
which MWIS-ACO-LS gives the best performances com-
pared to the other works (9_Tumors, Brain_Tumor1,
Brain_Tumor2, and Prostate_Tumor). )ese genes are po-
tential biomarkers in cancer identification.

Based on the experiments we carried out, we can con-
clude that our approach of gene selection (MWIS-ACO-LS)
is well-founded. Indeed, of the ten datasets used, our method
has achieved a high classification accuracy. More exactly, the
proposed method yielded a classification accuracy equal to
or greater than 99.42% for all datasets, with a perfect
classification (100%) for 9_Tumors, Brain_Tumor1,
Brain_Tumor2, Leukemia1, Leukemia2, SRBCT, Prosta-
te_Tumor, and DLBCL using less than 40 genes. )e high
classification accuracy found by our proposed methodology
returns to two elements: the first is the combination of
a method of the graph theory (MWIS) and the ACO met-
aheuristic, and the second is the use of a modified 1NN
classifier where we normalize the training data in order to
transform it to a common scale.

In the following, we do a comparison between our
proposed method and some recent optimization algorithms
using several classification datasets.

4.1. Comparison with State-of-the-Art Algorithms. In this
section, we compare our method with eight recently referred
algorithms in the literature [6, 21–25, 28]. And to make sense
of this comparison, the experiments are performed under
the same conditions in each algorithm. Specifically, our
approach is executed ten times on each dataset, and then we
choose the average and the best subset of genes found. We
indicate that the papers [22, 23] report just the best results
found.

Table 8 summarizes the classification accuracy and the
number of selected genes (taken from the original papers)
for the different approaches. )e (− ) symbol indicates that
the result is not reported in the related work. We remark
that the results obtained by our approach are very en-
couraging compared to previous work. Indeed, for most of
the datasets examined, the classification accuracies ob-
tained by the proposed gene selection method matched or
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Figure 6: Comparison of the classification accuracy between
MWIS, MWIS-ACO, and MWIS-ACO-LS (for MWIS-ACO and
MWIS-ACO-LS we take the average solution).
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outperformed those obtained using other methods
[6, 21–25, 28].

First, for the dataset (9_Tumors) we achieve a perfect
accuracy classification with only 40 genes. We find that the
best performance for this dataset is attained by our ap-
proach (MWIS-ACO-LS), exceeding the best-known result
by 5% in the accuracy [6]. We note that the number of genes
reported in the FBPSO-SVM [6] is 71 genes to have a good
accuracy.

Similarly, for the datasets (11 Tumors, Brain_Tumor1,
Brain_Tumor2, and Prostate_Tumor), we get the best per-
formance. In addition, we have a perfect classification
(100%) for (Brain_Tumor1, Brain_Tumor2, and Prostate_-
Tumor) with less than 21 genes.

Table 9 reports the rank of the proposed method
compared to other existing methods according to the
average accuracy. )e results mentioned in the table
show that the proposed method has achieved the best
average accuracy in most datasets. Indeed, we clearly see
that our method is more suitable for gene selection. As
shown in Tables 8 and 9, we match or exceed the
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Figure 8: Comparison of the average classification accuracy between the five methods (for MWIS, MWIS-ACO-LS, and LR − L1 we take the
average solution).
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Figure 11: Comparison of the evolution of the classification ac-
curacy for “Brain_Tumor2.”
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Figure 12: Comparison of the evolution of the classification ac-
curacy for “Leukimia1.”
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Figure 13: Comparison of the evolution of the number of genes
used for “9_Tumors.”
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Figure 14: Comparison of the evolution of the number of genes
used for “Brain_Tumor1.”
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Figure 15: Comparison of the evolution of the number of genes
used for “Brain_Tumor2.”
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Figure 16: Comparison of the evolution of the number of genes
used for “Leukimia1.”
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performance of all comparison methods; except for the
Brain_Tumor2 and Prostate_Tumor datasets, in which
our approach comes in the second rank after the FBPSO-
SVM approach.

)e results of this comparative analysis with previous
methods for the gene selection in the context of cancer clas-
sification have enabled us to conclude that our nature-inspired
optimization method is useful in the gene selection problem.

5. Conclusion

In this work, we have presented a hybrid approach (MWIS-
ACO-LS) for the gene selection in DNA microarray data.
)e two-stage proposed approach consists of a preselection
phase carried out using a new graph-theoretic approach
to select first a small subset of genes; in this stage, we model
the gene selection problem as an MWIS problem, and we

MWIS

1NN

MWIS-ACO-LS

MWIS-ACO

5 35 400 25 301510 20
2 groups have mean ranks significantly different from MWIS-ACO-LS

Figure 17: )e result of the Kruskal–Wallis test between the MWIS-ACO-LS, 1NN, and MWIS on the datasets (classification accuracy).
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MWIS-ACO-LS

MWIS-ACO

2010 15 25 305 35 400
2 groups have mean ranks significantly different from MWIS-ACO

Figure 18: )e result of the Kruskal–Wallis test between the MWIS-ACO, 1NN, and MWIS on the datasets (classification accuracy).

Table 7: List of selected genes using MWIS-ACO-LS.

Dataset name Selected genes’ gene no.

9_Tumors

79; 139; 507; 552; 712; 1297; 1364; 1387; 1432; 1444;
1858; 1952; 1967; 1999; 2022; 2058; 2448; 2498; 2989; 3114;
3370; 3473; 3662; 3860; 3876; 3922; 3991; 4018; 4050; 4081;
4525; 4688; 4724; 4783; 4967; 5175; 5265; 5282; 5550; 5698

Brain_Tumor1 26; 318; 868; 895; 925; 1509; 1880; 1950; 2703; 2704;
3789; 3941; 4269; 4690; 5291; 5342; 5404; 5604; 5746

Brain_Tumor2 1026; 3184; 4049; 4304; 4524; 4639; 4649; 5547; 6892; 8134; 8482

Prostate_Tumor 364; 1478; 1936; 2409; 2445; 2968; 3738; 4032; 4413; 4441;
4680; 4823; 4960; 5714; 6773; 7437; 8009; 8531; 8574; 9070; 10108
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Table 8: A comparison between our method (MWIS-ACO-LS) and methods of state-of-the-art.

Datasets Method
MWIS-ACO-

LS
RBPSO-
1NN

FBPSO-
SVM FRBPSO HICATS EPSO TS-

BPSO IBPSO IBPSO

)is work 2018 2018 2017 2016 2013 2009 2008 2011
Performances [6] [6] [21] [28] [25] [23] [22] [24]

11_Tumors

Best #Acc (%) 99.42 — — — 97.70 96.55 97.35 93.10 95.4
Best #Genes 101 — — — 287 243 3206 2948 228
Average #Acc

(%) 99.14 <1> — — — 95.86 95.40 — — 95.06

Average #Genes 166.9 — — — 307.5 237.70 — — 240.9

9_Tumors

Best #Acc (%) 100.00 83.33 95.00 — 83.33 76.67 81.63 78.33 78.33
Best #Genes 40 20 71 — 259 251 2941 1280 248
Average #Acc

(%) 100.00 <1> 81.83 92.222 — 78.33 75.00 — — 75.5

Average #Genes 51 29.1 45 — 248.5 247.10 — — 240.6

Brain_Tumor1

Best #Acc (%) 100.00 94.44 97,78 — 94.44 93.33 95.89 94.44 93.33
Best #Genes 19 11 21 — 6 8 2913 754 5
Average #Acc

(%) 99.22 <1> 94.00 97.22 90.67 93.10 92.11 — — 92.56

Average #Genes 22.9 24.7 22.4 803 8.9 7.5 — — 11.2

Brain_Tumor2

Best #Acc (%) 100.00 96.00 100.00 — 94.00 94.00 92.65 94.00 94.00
Best #Genes 11 15 12 — 3 4 5086 1197 4
Average #Acc

(%) 99.40 <2> 92.80 100.00 87.6 92.60 92.4 — — 91.00

Average #Genes 11.1 24.5 14.3 662 5.8 6.0 — — 6.4

Leukemia1

Best #Acc (%) 100.00 100.00 100.00 — 100.00 100.00 100.00 100.00 100.00
Best #Genes 5 8 6 — 3 2 2577 1034 2
Average #Acc

(%) 100.00 <1> 99.72 100.00 98.89 100.00 100.00 — — 100.00

Average #Genes 9.4 11.7 8.4 825 3 3.2 — — 3.2

Leukemia2

Best #Acc (%) 100.00 100.00 100.00 — 100.00 100.00 100.00 100.00 100.00
Best #Genes 11 5 6 — 5 4 5609 1292 4
Average #Acc

(%) 100.00 <1> 100.00 100.00 97.50 100.00 100.00 — — 100.00

Average #Genes 13.9 13.1 8.6 1028 6.80 6.8 — — 6.7

Lung_Cancer

Best #Acc (%) 99.51 — — — 97.04 96.06 99.52 96.55 96.55
Best #Genes 36 — — — 7 7 6958 1897 10
Average #Acc

(%) 98.92 <1> — — — 96.16 95.67 — — 95.86

Average #Genes 34.8 — — — 7.8 8.3 — — 14.9

SRBCT

Best #Acc (%) 100.00 100.00 100.00 — 100.00 100.00 100.00 100.00 100.00
Best #Genes 6 7 10 — 9 7 1084 431 6
Average #Acc

(%) 100.00 <1> 100.00 100.00 98.19 100.00 99.64 — — 100.00

Average #Genes 7.6 11.7 12.4 213 11.7 14.90 — — 17.5

Prostate_Tumor

Best #Acc (%) 100.00 99.02 100.00 — 98.04 99.02 95.45 92.61 98.04
Best #Genes 21 9 6 — 5 5 5320 1294 7
Average #Acc

(%) 99.12 <2> 98.24 100.00 92.43 97.75 97.84 — — 97.94

Average #Genes 20.3 11.2 8.3 418 7.2 6.6 — — 13.6

DLBCL

Best #Acc (%) 100.00 100.00 100.00 — 100.00 100.00 100.00 100.00 100.00
Best #Genes 6 6 4 — 3 3 2671 1042 4
Average #Acc

(%) 100.00 <1> 100.00 100.00 96.49 100.00 100.00 — — 100.00

Average #Genes 7.2 12.5 6.7 105 4.10 4.70 — — 6
< >: the rank of our method in a specific average accuracy. RBPSO-1NN� a gene selectionmethod based on the combination of ReliefF and BPSO and 1NN as
a classifier. FBPSO-SVM� a gene selection method based on the combination of Fisher score and BPSO and the SVM as a classifier; FRBPSO� a fuzzy rule
based binary PSO; HICATS�Hybrid Binary Imperialist Competition Algorithm and Tabu Search; EPSO� an enhancement of binary particle swarm
optimization; TS-BPSO�A combination of tabu search and BPSO; IBPSO� an improved binary PSO.
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present a greedy algorithm to approximate the MWIS of
genes and a search phase that determines a near-optimal
subset of genes for the cancer classification. )e latter is
based on a modified ACO and a LS algorithm.

)is approach aims to select a small subset of relevant
genes from an original dataset which contains redundant,
noisy, or irrelevant data.

)e experimental results show that our approach
compares very favorably with the reference methods in
terms of the classification accuracy and the number of se-
lected genes. Although the results obtained are interesting
and encouraging, many points are likely to be studied in
future works, such as

(i) Modifying the MWIS method in order to improve
the quality of the first subset of genes

(ii) Combining the MWIS filter with other meta-
heuristics such as VNS

)is field of research will always remain active as long as
it is motivated by the advances of data collection and storage
systems on one hand, and by the oncology requirements on
the other hand. )e best approach for judging this selection
of genes is to collaborate with experts (biologists) for a good
interpretation of the results.

Data Availability

)e datasets (DNA microarray) used in our paper are
publicly available and easily accessible [62] (http://web.
archive.org/web/20180625075744/http://www.gems-system.
org/) (visited on 2018).
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