Skip to main content
. 2019 Oct 13;2019:7828590. doi: 10.1155/2019/7828590

Table 6.

Comparison of SVM, 1NN, MWIS-1NN, and MWIS-ACO-LS (LOOCV).

Datasets Performance SVM LR-L1 Avg Best LR-Elasticnet Avg 1NN MWIS MWIS-ACO MWIS-ACO-LS Best
11_Tumors Accuracy (%) 85.63 88.22 93.1 86.38 88,22 74,14 67,24 94,90 96 99,14 99,42
Genes 12533 12533 1308 463,00 460 166,9 101
Time (min) 0,82 91,33 123,2

9_Tumors Accuracy (%) 38.33 35.00 50.00 29.50 38,33 40,00 60,00 98,83 100 100,00 100,00
Genes 5726 5726 263 90,10 83 51 40
Time (min) 0,34 21,3 34,48

Brain_Tumor1 Accuracy (%) 88.89 85.67 88.89 85.44 88,89 85,56 80,00 96,56 100,00 99,22 100,00
Genes 5920 5920 246 55,90 46 22,9 19
Time (min) 0,22 29,14 45,81

Brain_Tumor2 Accuracy (%) 70.00 27.20 32.00 29.20 36,00 60,00 48,00 95,40 100,00 99,40 100,00
Genes 10367 10367 110 22,40 18 11,1 11
Time (min) 0,55 17,89 27,13

Leukemia1 Accuracy (%) 97.22 91.81 94.44 92.64 95,83 83,33 66,67 100,00 100,00 100,00 100,00
Genes 5327 5327 297 63,00 56 9,4 5
Time (min) 0,26 25,94 43,77

Leukemia2 Accuracy (%) 97.22 91.81 95,83 91.67 95.83 86.11 73.61 100.00 100.00 100.00 100.00
Genes 11225 11225 203 45.80 42 13.9 11
Time (min) 0,44 23,85 37.67

Lung_Cancer Accuracy (%) 95.07 91.67 94.10 91.03 93.60 87.68 90.15 98.42 99.01 98.92 99.51
Genes 12600 12600 602 180,00 183 34,8 36
Time (min) 0,82 74,61 107,3

SRBCT Accuracy (%) 100.00 97.59 100.00 97.10 98.79 85,54 91,57 100,00 100,00 100,00 100,00
Genes 2308 2308 109 15,60 15 7,6 6
Time (min) 0,14 23,48 38,24

Prostate_Tumor Accuracy (%) 92.16 81.47 88.23 80.69 83.33 82,35 79,41 98,24 99,04 99,12 100,00
Genes 10509 10509 193 47,30 43 20,3 21
Time (min) 0,39 29,2 46,59

DLBCL Accuracy (%) 97.40 91.95 97.40 91.43 94.80 84,42 87,01 100,00 100,00 100,00 100,00
Genes 5469 5469 147 25,7 22 7,2 6
Time (min) 0,17 27,18 43,63

Note: the best results are shown in bold. Remark: as the SVM, 1NN, and MWIS are of deterministic nature, the classification is calculated just in one run. Accuracy: the classification accuracy using LOOCV (leave-one-out-cross-validation). Genes: the number of genes used in the classification ofthe LR-L1 and LR-Elasticnet methods. Best: the best result found in all ten runs. Avg: the average of the ten experiments. Time: the execution time in minutes. SVM: the support vector machine classifier using a linear kernel. LR-L1: the logistic regression classifier with the lasso regularisation. LR-Elasticnet: the logistic regression classifier with the elastic net regularisation. 1NN: the 1-nearest neighbor classifier. MWIS: the maximum weight independent set for gene selection. MWIS-ACO: our method of selection combining MWIS and ACO without using LS. MWIS-ACO-LS: our improved method of selection combining MWIS and ACO and the local search algorithm (LS).