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Abstract

Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in 

fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as 

suction production and capturing elusive prey. Identifying the developmental factors that alter 

protrusion ability will improve our understanding of fish diversification. In the zebrafish 

protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in 

trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid 

hormone production. We tested whether thyroid hormone affects the development of zebrafish 

feeding mechanics. We found that it affected all developmental stages examined, but that effects 

were most pronounced after metamorphosis. Thyroid hormone levels affected the development of 

jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish 

utilize protrusile jaws, but an absence of thyroid hormone impaired development of the 

premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish 

and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and 

Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes 

in how the developing skulls of danionin minnows respond to thyroid hormone may have 

promoted diversification into different feeding niches.
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1 | INTRODUCTION

Many if not most fishes undergo a metamorphosis during which their bodies are extensively 

remodeled (McMenamin & Parichy, 2013). It is during metamorphosis and postmetamorphic 

development that most fishes acquire the behavioral and morphological characters that allow 

them to occupy their adult niches. Premetamorphic (larval) and postmetamorphic (juvenile 

and adult) fishes of the same species frequently live in different habitats and occupy 

disparate feeding niches (Leis & McCormick, 2006; McCormick & Makey, 1997; 

McCormick, Makey, & Dufour, 2002; McMenamin & Parichy, 2013). The ecological 

diversification of adults in many fish lineages is therefore closely linked to evolutionary 

changes in the processes that shape their postlarval development. Most molecular 

developmental studies have focused on early development, particularly embryonic stages 

(Albertson & Yelick, 2004; Cooper, Wirgau, Sweet, & Albertson, 2013; McMenamin & 

Parichy, 2013; Parsons, Andreeva, Cooper, Yelick, & Albertson, 2010), but if we are to 

understand the developmental changes that have permitted the adaptive diversification of 

adult fish feeding we need a better understanding of the controls of morphogenesis in late 

development.

Protrusile jaws are an important evolutionary innovation in fish feeding. Highly moveable 

skull linkages that allow the jaws to protrude forward from the face have evolved 

independently in at least six lineages of bony fishes and protrusion has been lost, gained, 

reduced, and enhanced many times in these clades (Ferry-Graham, Gibb, & Hernandez, 

2008; Staab, Holzman, Hernandez, & Wainwright, 2012; Wainwright, McGee, Longo, & 

Hernandez, 2015). Two of these, Cypriniformes (~3,200 species, including the zebrafish) 

and Acanthomorpha (~17,000 species), have been particularly successful and together 

comprise more than one-third of living vertebrates (Near et al., 2013; Staab et al., 2012; 

Wainwright et al., 2015; Yang et al., 2010). Maximum jaw protrusion distance has been 

closely linked with diet (Cooper, Carter, Conith, Rice, & Westneat, 2017) and an ability to 

rapidly transition between morphs capable of different degrees of protrusion appears to 

support diversification into different feeding niches (Cooper & Westneat, 2009; Cooper et 

al., 2010; Ferry-Graham et al., 2008; Staab et al., 2012; Wainwright et al., 2015).

Although protrusile jaws can confer multiple functional abilities in adults, particularly the 

enhancement of suction production via rapid expansion of the mouth cavity (i.e., buccal 

cavity; Ferry-Graham et al., 2008; Holzman, Collar, Mehta, & Wainwright, 2012; Konow & 

Bellwood, 2005; Staab et al., 2012), the relatively high water viscosities experienced by 

small aquatic organisms severely limits the utility of protrusile jaws in fish larvae 

(Hernandez, 2000; Hernández, Barresi, & Devoto, 2002; Yaniv, Elad, & Holzman, 2014). 

Small fishes live in a low Reynolds number environment in which viscous forces are greater 

than inertial forces (Hernandez, 1995; Hernandez, 2000). These animals experience water as 

a “sticky” fluid that can reduce the effectiveness of feeding techniques that are viable at 
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larger body sizes (Hernandez, 1995; Hernandez, 2000). Protrusile jaws would most likely 

interfere with suction feeding in fish larvae and jaw protrusion does not arise until after 

metamorphosis in the zebrafish (Hernández et al., 2002; McMenamin, Carter, & Cooper, 

2017).

The reshaping of multiple skull bones must be coordinated during the larva-to-juvenile 

transition for a fish to have a properly integrated mature skull. This need for integrated 

development should be particularly strong for fishes with complex, highly kinetic adult 

skulls in which motion is transferred through multiple linkages. Hormones reach all body 

organs essentially simultaneously via circulating blood, and therefore have the potential to 

act as agents of developmental coordination that stimulate multiple organs, including 

different bones, to transform at the same time. Along with additional endocrine factors, 

thyroid hormone (TH) signaling plays a major role in directing late-developmental skeletal 

remodeling in vertebrates, and TH stimulates metamorphosis or metamorphosis-like 

processes in many species (Das et al., 2006; Hu et al., 2019; Laudet, 2011; McMenamin & 

Parichy, 2013; Paris et al., 2010; Wojcicka, Bassett, & Williams, 2013). Thyroid hormone is 

known to play an important role in skull morphogenesis and multiple cranial malformations 

are associated with aberrant TH signaling (Desjardin et al., 2014; Hanken & Hall, 1988; 

Hanken & Summers, 1988; Hirano, Akita, & Fujii, 1995).

Thyroid hormone exerts extensive effects on the growth and remodeling of both 

endochondral and intramembranous bone by regulating gene expression (Bassett & 

Williams, 2003; Gogakos, Bassett, & Williams, 2010; Harvey et al., 2002; Waung, Bassett, 

& Williams, 2012; Wojcicka et al., 2013). The membranes of most skeletal cells possess TH 

transporters that facilitate hormone uptake (Gogakos et al., 2010). Active (T3) and inactive 

(T4) forms of TH are secreted by thyroid follicles and both are transported into bone cells 

where T4 is activated by cytoplasmic enzymes via the removal of an iodine molecule 

(Waung et al., 2012). Gene transcription is activated by T3 when it enters the nucleus and 

forms complexes with TH receptors bound to TH response elements in a number of target 

genes (Gogakos et al., 2010; Waung et al., 2012). The transcription products of these genes 

mediate the initiation and duration of bone matrix formation by regulating the differentiation 

and activity of bone-building cells (osteoblasts) and bone-resorbing cells (osteoclasts; 

Bassett & Williams, 2003; Harvey et al., 2002; Wojcicka et al., 2013).

In addition to the known roles of TH in both vertebrate metamorphosis and bone 

morphogenesis, changes to TH signaling may have been an important component of the 

diversification of the functional morphology of cypriniform feeding (McMenamin et al., 

2017; Shkil & Smirnov, 2015; Shkil et al., 2015; Shkil, Kapitanova, Borisov, Abdissa, & 

Smirnov, 2012). To better understand the controls of fish metamorphosis and the 

developmental determinants of cypriniform jaw protrusion ability we measured the effects of 

different TH levels on the development of the functional morphology of feeding in the 

zebrafish. We also sought to determine whether modulating TH levels would alter zebrafish 

skull development in ways that could affect evolutionary potential. Variation in heritable 

traits facilitates evolutionary change and higher levels of variation tend to increase 

evolutionary potential (i.e., “evolvability”; Klingenberg, Duttke, Whelan, & Kim, 2012; 

Lavergne & Molofsky, 2007). Covariation among traits will facilitate their coordinated 
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evolution, but will tend to constrain independent evolutionary changes among subsets of 

covarying traits (Cooper, Wernle, Mann, & Albertson, 2011; Klingenberg, 2008; Sanger, 

Mahler, Abzhanov, & Losos, 2012; Young & Hallgrimsson, 2005). To gain insight into 

whether changes in TH levels could affect the evolutionary potential of fish skulls we 

compared both cranial shape variation and patterns of shape covariation between different 

skull regions among zebrafish that experienced a range of TH levels during development.

We collected morphological and functional data from a developmental range of zebrafish in 

which TH production was elevated (TH+), normal, or eliminated (TH−). We also collected 

morphological data from the premaxillary bones of nine additional species of danionin 

minnows (Danionini; Danioninae; Cyprindae) that exhibit extensive diversity in adult jaw 

protrusion ability. Most cypriniform fishes possess a jaw protrusion mechanism that differs 

from those typically found in acanthomorphs in that they have a medial, mobile kinethmoid 

bone in the anterodorsal region of the skull that contributes motion to jaw protrusion 

(Gidmark, Staab, Brainerd, & Hernandez, 2012; Hernandez, Bird, & Staab, 2007; Motta, 

1984). Although variation in jaw protrusion mechanisms have evolved among the ~20,000 

cypriniform and acanthomorph fishes, in both clades the ascending arm of the premaxilla 

(sometimes referred to as the ascending process) typically slides anteriorly over the rostrum 

(the anterior portion of the neurocranium) during jaw protrusion and the length of the 

ascending arm is an important determinant of maximum protrusion distance (Cooper, Carter, 

et al., 2017; Motta, 1984).

We tested the following predictions: (a) normal TH levels are required for the development 

of functional abilities important to adult zebrafish feeding; (b) TH levels lead to alterations 

in the level of developmental variation in zebrafish head shape; (c) normal TH levels are 

required for the development of the wild-type pattern of covariation between different 

regions of the zebrafish skull; and (d) the functional morphology of jaw protrusion in adult 

TH− zebrafish closely resembles that in related minnows with limited protrusion abilities.

2 | MATERIALS AND METHODS

2.1 | Study system

We utilized three zebrafish lines to study the effects of TH on the development of their 

feeding biomechanics: (a) the transgenic line Tg(tg:nVenus-2a-nfnB)wp.rt8 in which the 

thyroid follicles can be chemically ablated; (b) the mutant line opallusb1071, hereafter TH+, 

which has a missense mutation in thyroid stimulating hormone receptor (tshr) that causes 

constitutive hyperthyroidism (i.e., elevated TH levels; McMenamin et al., 2014); and (c) the 

AB wild-type line (euthyroid, i.e., normal TH). Both the transgenic and the mutant lines 

originated in the AB line (McMenamin et al., 2014). All fish were maintained under 

standard conditions at 28°C and a 14-hr light/10-hr dark cycle under approved WSU IACUC 

Protocol 04285.

Hypothyroid specimens (TH−) were produced via nitroreductase-mediated cell ablation of 

thyroid follicles in Tg(tg:nVenus-2a-nfnB)wprt8 larvae at 4 days postfertilization (dpf) 

following McMenamin et al. (2014). Ablation was performed immediately after formation 

of the thyroid follicles so that they were rendered permanently incapable of hormone 
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production. In brief, TH-fish were produced by placing specimens in a solution of 1% 

dimethyl sulfoxide (DMSO) and 10 mM metronidazole for 4 hr. Control Tg (tg:nVenus-2a-
nfnB)wp.rt8 fish treated with 1% DMSO only for 4 hr will be referred to as “DMSO” 

hereafter.

All specimens were fed live paramecia exclusively from 5 dpf until they were large enough 

to begin feeding on live Artemia. Artemia were introduced slowly into the diet from ~14dpf 

until all specimens in an aquarium were capable of consuming brine shrimp (as indicated by 

exhibiting pink, distended bellies after feeding), at which point paramecia were no longer 

used. To provide more nutritionally complete Artemia, newly hatched brine shrimp were 

collected after 24 hr and fed for an additional 24 hr with an infusion of Spirulina sp. algae 

(RGcomplete, Reed Mariculture, Inc., Campbell, CA). To prevent exposure to exogenous 

TH present in most prepared fish foods, all fish were fed exclusively with enriched Artemia 
after they were large enough to be fully weaned off of paramecia. All specimens were 

maintained in 9 L aquaria from 5 dpf onward on a recirculating system with carbon filters. 

Specimens from each treatment were sampled for kinematic and shape analyses at 8, 15, 30, 

60, and 100 dpf.

2.2 | Kinematic analyses

To test our first prediction that normal TH levels are required for the development of 

functional abilities important to adult zebrafish feeding we used high speed video to measure 

multiple aspects of feeding performance in zebrafish from all TH treatment groups. Fish 

were filmed in lateral view while feeding on either paramecia (8 and 15 dpf) or Artemia (30, 

65, and 100 dpf). We analyzed kinematic data from five feeding strikes for each individual 

and examined five specimens of each age class from each treatment group. Feeding strikes 

were recorded at 500 frames/second using an Edgertronic monochrome high-speed video 

camera (Sanstreak Corp., San Jose, CA). Kinematic analyses of feeding strikes were 

performed using the ImageJ software program (Schneider et al., 2012). We measured the 

following variables in each video frame of all feeding strikes (see Figure 1a for reference): 

gape angle (the angle created between landmarks A, B, and C with B as the vertex), jaw 

protrusion (linear distance between landmarks A and F minus the minimum distance 

recorded between A and F for that strike), hyoid depression (linear distance between 

landmarks D and E minus the minimum distance recorded between D and E for that strike), 

and cranial elevation angle (the angle created by the intersection of a line running along the 

dorsal edge of the head with a line running along the dorsal edge of the body, with landmark 

F denoting the point of head rotation). All measurements were made by the same researcher 

to minimize introduction of operator error. Jaw protrusion and hyoid depression were 

standardized by fish standard length (SL). Maximum values for every variable were recorded 

for each feeding strike of every specimen. These maxima were used to calculate a mean 

value for each specimen. For each age class we used analysis of variance (ANOVA) to test 

for differences between treatment groups for the maximum value of each variable. When a 

significant difference was detected we used a Tukey’s honestly significant difference (HSD) 

test to determine which treatment groups were significantly different from each other.
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2.3 | Morphological analyses

The specimens used in feeding trials were also used for morphological analyses. Euthanized 

specimens were fixed in 4% formalin for 24 hr and then stepped over into 70% ethanol. 

They were then cleared and stained for bone and cartilage. The smaller specimens (8–30 

dpf) were processed according to Walker and Kimmel’s (2007) acid-free staining protocol. 

Larger specimens (65 and 100 dpf) were cleared and stained according to Potthoff (1984). 

Specimens were then stepped into 80% glycerol and photographed in lateral view using an 

Olympus DP25 digital camera interfaced with an Olympus SZ61 dissecting microscope.

The program tpsDIG2 (http://life.bio.sunysb.edu/morph/ ) was used to place landmarks 

(LM) and semi-landmarks (semi-LM) on digital images of fish heads (Figure 1b,c). We 

chose skeletal LM that are present at all of the developmental stages examined. Semi-LM 

were used to capture the shape of curved surfaces LM (Figure 1b,c). The programs tpsUtil 

and tpsrelW (http://life.bio.sunysb.edu/morph/) were then used to superimpose semi-LM 

using a chord-distance (Procrustes distance) based “sliders” method and to remove size and 

orientation differences from LM and semi-LM position data via Procrustes transformations. 

Pooled shape data from all specimens of all ages in each hormonal treatment group (N = 25 

for each treatment) were used to: (a) test for differences in head shape variation over the 

course of development; and (b) test for differences in the patterns of covariation between 

LM and semi-LM locations over the course of development.

To test our second prediction that changes in TH levels will affect developmental variation 

we measured head shape variation in each of our TH treatment groups. We then used a 

resampling approach to test for differences in shape variation. Head shape variation was 

quantified by calculating the Foote disparity value for each treatment group (Foote, 1993). A 

permutation procedure (2,000 iterations) was used to test for differences in disparity 

between pairs of data sets. If actual differences in shape disparity values were greater than 

the upper bound of a 95% confidence interval calculated via permutation, then the disparity 

values were considered to be significantly different. We used DisparityBox, which is an 

analytical tool available within the PCAGen8 program, to perform these calculations.

We used a principal components based resampling method to test our third prediction that 

normal TH levels are required for the development of the wild-type pattern of covariation 

between different regions of the zebrafish skull. We performed principal components 

analysis (PCA) of LM and semi-LM positions using the program PCAGen8. These PCAs 

utilized covariation matrices that capture patterns of positional covariation. To determine if 

patterns of covariation were significantly different between the hormonal treatments we 

conducted pairwise comparisons of PC axis orientations using a bootstrapping procedure 

(4,900 sets).

Although the different PC axes derived from the same data are orthogonal to each other, they 

are not independent, since only those aspects of covariation that were not associated with 

PC1 can be used to define subsequent axes. It therefore impossible to compare the 

orientations of PC axes subsequent to PC1 individually. All analyses that involved multiple 

axes determined whether the alignments of planes (2 axes) or multidimensional hyperplanes 

(≥3 axes) were significantly different.
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The shape of the premaxillary bone in the upper jaw is a major determinant of maximum jaw 

protrusion distance in fishes (Cooper, Carter, et al., 2017; Motta, 1984). We used a principal 

components based resampling method to test our fourth prediction that the functional 

morphology of jaw protrusion in adult TH− zebrafish closely resembles that in related 

minnows with limited protrusion abilities. We compared developmental variation in the 

premaxillary shape of AB and TH− zebrafish to the variation in adult premaxillary shape that 

has evolved among other members of the cyprinid tribe Danionini (sensu Tang et al., 2010). 

We obtained specimens of the following fishes through the pet trade: Danio albolineatus, 
Danio erythromicron, Danio feegradei, Danio kyathit, Danio nigrofasciatus, Danionella 
translucida, Devario aequipinnatus, Devario maetaengensis, and Mi-crodevario kubotai. 
Adult specimens (2–4 per species) were cleared and stained following Potthoff (1984). AB 

zebrafish at 35, 65, and 100 dpf were also cleared and stained (five specimens per age class). 

We used 35 dpf specimens instead of 30 dpf fish because some 30 dpf specimens did not 

have well-ossified premaxillae. Premaxillae were removed from all specimens after clearing 

and staining and then photographed as descried above. Anatomical LM and semi-LM 

(Figure 4b,c) were used to quantify premaxillary shape. PC scores were used to calculate a 

developmental trajectory for premaxillary shape change in AB zebrafish.

For all shape analyses we used the program Coord-Gen8 to transform the LM and semi-LM 

coordinate data from the format used by the tpsDIG2 program into the format utilized by 

Mac OS (Apple Inc.) versions of the IMP-8 series of programs. The IMP-8 programs Coord-

Gen8, PCAGen8, TwoGroup8, and PCAGen8 were developed by David Sheets and are 

available for download at: http://www3.canisius.edu/~sheets/IMP8.htm.

3 | RESULTS

3.1 | Ossification patterns

All specimens possessed largely cartilaginous crania at 8 and 15 dpf. Skulls were mostly, but 

not completely, ossified by 30 dpf in specimens from all treatment groups except TH− 

(Figure 2). We will refer to 8 and 15 dpf specimens as “premetamorphic,” 30 dpf specimens 

as “mid-metamorphic” and 65 and 100 dpf specimens as “postmetamorphic.” Euthyroid and 

TH+ fish had fully ossified skulls by 65 dpf, while TH− specimens retained cartilaginous 

regions in the calvarium (skull vault) at this stage and in some TH− fish this region failed to 

ossify by 100 dpf (Figure 2).

3.2 | Standard length

Fish SLs did not differ significantly between the AB, DMSO, and TH+ treatments at any 

developmental stage (Figure 3). Note that since age alone is a limited proxy for development 

(Parichy, 2009; McMenamin, Chandless, & Parichy, 2016), individuals within these age 

categories likely represented a range of developmental stages. Nonetheless, SL did not differ 

significantly different for any treatment before 65 dpf. At 65 and 100 dpf, TH− fish were 

shorter than those in other treatments, suggesting TH is required for normal growth rates 

(Figure 3).
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3.3 | Jaw morphology

The lower jaws of TH+ specimens began to show abnormal enlargement by 30 dpf (Figures 

2 and 3). Lower jaw morphology was normal in TH− specimens (Figures 2 and 3). The 

maxillary and premaxillary bones of the upper jaw were smaller in 65 and 100 dpf TH− 

zebrafish relative to both euthyroid and TH+ specimens (Figure 2). Upper jaw morphology 

in TH+ specimens appeared comparable to that in euthyroid specimens (Figure 2).

3.4 | Kinematic analyses

Three kinematic variables could be measured at all of the developmental stages examined 

(cranial elevation, gape distance and hyoid depression). At each developmental stage these 

three variables were compared among all treatment groups (six comparisons per variable). In 

regard to these three variables there were therefore 36 comparisons of kinematic 

performance both before (8 and 15 dpf) and after (65 and 100 dpf) metamorphosis. Of the 36 

premetamorphic comparisons, 11 of them exhibited significant differences (30.6%), while 

there were significant differences between 13 of the 36 postmeta-morphic comparisons 

(36.1%; Table 1). Treatment groups were most similar in regard to cranial elevation (five 

significant differences total) and most different in regard to gape angle (13 significant 

differences total; Table 1). Fish from the euthyroid treatments (AB and DMSO) showed the 

most similarity in cranial movement, with only three significant kinematic differences 

between these two treatments (all developmental stages combined; Table 1). Fish from the 

TH− treatment exhibited the most limited range of cranial element motion during feeding 

(Table 1 and Figures 5 and S2). There were also 22 significant kinematic differences (all 

developmental stages combined) between TH− specimens and all other treatment groups, 

which was the highest number for any of the treatment groups (Table 1).

Maximum gape angle occurred at or near time 0 for all treatment groups throughout 

development (Figure 5a,b and S2). AB fish exhibited high gape angles throughout 

development (Figures 5a,b and S2), while TH− fish exhibited low gape angles throughout 

development (Figures 5a,b and S2). Maximum hyoid depression occurred after time 0 for all 

treatment groups throughout development (Figure 5c,d and S2). Hypothyroid fish exhibited 

low levels of hyoid depression throughout development until 100 dpf, when they displayed a 

high degree of hyoid depression (Figures 5c,d and S2). Maximum cranial elevation occurred 

at or immediately after time 0 throughout development (Figures 5e,f and S2). Hypothyroid 

fish exhibited low levels of cranial elevation throughout development (Figures 5e,f and S2). 

Measureable upper jaw protrusion was not observed before 30 dpf in any treatment group, 

but a small number of euthyroid and TH+ specimens exhibited marginal upper jaw 

movement at this stage. Specimens from all treatment groups except TH− exhibited 

protrusile upper jaws by 65 dpf. In contrast, hyperthyroid fish demonstrated low levels of 

jaw protrusion at both 65 and 100 dpf and were significantly different from all other 

treatment groups at both stages (Table 1 and Figure 5g,h).

3.5 | Developmental variation in head shape

Hypothryoid fish showed significantly less developmental variation in head shape than any 

other treatment group (Table 2). Hyperthyroid fish showed significantly greater 

developmental variation in head shape than both TH− and DMSO specimens.

Galindo et al. Page 8

Evol Dev. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.6 | Shape covariation

Patterns of shape covariation were highly similar in the skulls of all treatments with one 

exception: TH− versus TH+. These two treatments produced zebrafish skulls that exhibited 

similar patterns of shape covariation in that the orientations of their PC1 axes were not found 

to be significantly different from parallel to one another (Table 3). However, their PC2 axes 

were not parallel, which indicates a moderate difference in anatomical trait covariation 

(Table 3). Less pronounced differences in TH levels did not produce detectable differences 

in patterns of skull shape covariation. The first four PC axes described similar covariation 

patterns when the skulls of euthyroid fish (both AB and DMSO) were compared to those of 

either TH− or TH+ specimens (Table 3). The first four PC axes also described similar 

covariation patterns in skulls from the two euthyroid treatments (Table 3).

3.7 | Head and premaxilla shape

Head shape differences between TH treatments were present at all ages examined, but those 

from fish in different treatments were most similar at the youngest ages (8 and 15 dpf; 

Figure S1). By 100 dpf TH+ and TH− head shapes were highly distinct from each other 

(Figure S1).

The ascending arm of the premaxilla (Figure 1), is extremely short at 35 dpf in AB fish, but 

elongates significantly by 100 dpf (Figure 4). Premaxilla shape in 100 dpf TH− specimens 

was similar to that of newly ossified premaxillae in 35 dpf AB fish, in that they had very 

short ascending arms (Figure 4). Both the maxillae and premaxillae in the upper jaws of TH
− fish exhibited limited growth in size that was unaccompanied by the shape changes seen in 

those of postmetamorphic euthyroid and TH+ fish (Figures 2 and 4).

Variation in ascending arm length was strongly associated with both postmetamorphic AB 

zebrafish development and danionin evolution (Figure 4). Developmental variation in AB 

premaxilla shape was not significantly different from the variation in premaxilla shape that 

has evolved among nine additional danionin species (i.e., the first 4 PC axes derived from 

these two data sets were parallel; Table 3). Among the species that we examined, those from 

the genus Danio have longer premaxillary ascending arms than those from other danionin 

genera, with Danio erythromicron having the longest arms (Figure 4). The premaxillae of 

Danionella, Devario, and Microdevario were most similar to those from 35 dpf AB and 100 

dpf TH− zebrafish. Manipulation of freshly euthanized specimens from these three genera, 

as well as observations of their feeding using high-speed video (personal observation; S. 

McMenamin et al., 2017), indicate that jaw protrusion is extremely limited to nonexistent in 

these species.

4 | DISCUSSION

We found strong evidence that TH levels affect the development of zebrafish feeding 

biomechanics (prediction 1), that TH increases developmental variation in zebrafish head 

shape (prediction 2), and that the functional morphology of jaw protrusion in adult TH− 

zebrafish duplicates that of closely related minnows with limited protrusion abilities 

(prediction 4). Normal TH levels do not appear to be required for the development of the 
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wild-type pattern of covariation between different regions of the zebrafish skull (prediction 

3), but specimens with highly divergent TH levels (TH− and TH+) did exhibit limited 

differences in cranial covariation patterns. We also found evidence that the developmental 

trajectory of premaxillary shape change in AB zebrafish is parallel to an important 

evolutionary axis of danionin diversification (premaxilla shape and jaw protrusion ability).

We found that differences in feeding biomechanics between our TH treatment groups were 

present at all of the developmental stages we examined, but that these differences increased 

with age and were more pronounced after metamorphosis (Table 1 and Figure S1). The 

presence of TH appears to be particularly important for the transition from larval to adult 

feeding mechanics in the zebrafish. An absence of TH delayed cranial ossification and 

arrested premaxillae formation so that upper jaw protrusion was absent or severely limited in 

postmetamorphic TH− zebrafish development to permit upper jaw protrusion (Table 1 and 

Figures 2, 4, and 5; S. McMenamin et al., 2017).

Hypothyroidism appeared to truncate aspects of zebrafish cranial development. In addition 

to arresting premaxilla morphogenesis immediately after ossification (Figure 4), lack of TH 

caused a significant reduction in the skull shape variation that arose between 8 and 100 dpf 

(Table 2). However, TH− fish grow more slowly than the other groups (Figure 3) and some 

of this decrease in variation may be attributable to TH− specimens’ slow growth or narrow 

range of developmental stages. Conversely, TH+ fish showed an increase in developmental 

variation in skull shape relative to both DMSO and TH−, though they were not significantly 

different from AB specimens in this regard (Table 2).

The only significant differences in cranial shape covariation that we observed were between 

the TH− and TH+ treatments, but these differences did not include PC1, which is the largest 

axis of shape variation (Table 3). Changes to patterns of anatomical trait covariation can 

have debilitating effects, especially in biomechanical systems where there is a high level of 

functional integration between different elements (Armbruster, Pelabon, Bolstad, & Hansen, 

2014; Kimmel et al., 2015; Walker, 2007) and both TH− and TH+ fish retained a sufficient 

level of integration between the various bones of the skull to feed successfully.

Premaxillary ascending arm length is an important determinant of maximum upper jaw 

protrusion distance (Figure 1; Cooper, Carter, et al., 2017; Hulsey, Hollings-worth, & 

Holzman, 2010; Motta, 1984). Eliminating TH produces zebrafish with highly reduced 

ascending arms and feeding mechanisms that resemble those of close relatives with 

nonprotrusile jaws (Table 1 and Figures 4 and 5; S. McMenamin et al., 2017). Many of these 

have been described as being paedomorphic (Britz, Conway, & Rueber, 2014; Kullander & 

Britz, 2015), a condition that is strongly associated with changes in TH signaling in 

vertebrates (De Groef, Grommen, & Darras, 2018; Ivanovic, Cvijanovic, Denoel, 

Slijepcevic, & Kalezic, 2014; Laudet, 2011). Differences in jaw protrusion ability are 

strongly associated with differences in diet in marine damselfishes (Cooper, McGraw, 

Khazanchi, & Ieee., 2017), and although diet data for wild danionins is limited or 

nonexistent, we suspect that the same may be true for the species examined here. Although 

TH− zebrafish did not develop adult jaw protrusion abilities, they retained sufficient 

functional integration to be able to feed successfully in the lab environment. It has been 
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suggested previously that evolutionary modulation of TH signaling may have contributed to 

the diversification of cypriniform fishes (McMenamin et al., 2017; Shkil & Smirnov, 2015; 

Shkil et al., 2012, 2015). We conclude that evolutionary changes in TH signaling may be 

capable of inducing some adaptive changes in the development of fish feeding mechanics 

without causing severe disruptions to cranial morphogenesis that produce nonfunctional 

skulls.

4.1 | The importance of late developmental periods to fish evo-devo

The field of evo-devo is focused on understanding the connections between developmental 

processes and evolutionary change (Carroll, 2008). Phylogenetic analyses of comparative 

data have expanded tremendously in recent years and the evolutionary patterns traced by 

many lineages have been described in great detail (Freckleton, Harvey, & Pagel, 2002; 

Garland, Bennett, & Rezende, 2005; Mouquet et al., 2012). A particularly rich source of 

comparative information exists for the field of fish feeding biomechanics and we now know 

a great deal about the ecological, morphological, and functional evolution of many fish 

clades. Due to the use of multiple fish species as model organisms for developmental study 

(e.g., zebrafish, medaka, Mexican tetra, fugu, stickleback, multiple African rift-lake cichlids, 

etc.) it is possible to experimentally explore aspects of fish development that have played 

important roles in shaping evolutionary diversification. However, since most evolutionary 

studies of fish feeding have focused on adult specimens and since most fishes do not develop 

adult feeding biomechanics until late in their development, often after a pronounced 

metamorphosis, merging these two areas of investigation will require an increased focus on 

the later stages of skull morphogenesis.

Evo-devo studies of jaw protrusion provide an illustration of this point. Protrusile jaws 

constitute one of the most significant biomechanical innovations to arise in fish skulls 

(Motta, 1984; Wainwright & Longo, 2017; Wainwright et al., 2015), but we know of no 

species in which protrusion arises before the larva-to-juvenile transition. The fact that small 

fish larvae will experience much high water viscosities than larger adult forms (Hernandez, 

1995; Hernandez, 2000) may predispose many species to undergo developmental changes in 

feeding mechanics. We suggest that this may be particularly true for fishes that utilize jaw 

protrusion during adult feeding. Thyroid hormone signaling has pervasive effects on skeletal 

morphogenesis during late development (Okada, Tanaka, & Tagawa, 2003; Pascual & 

Aranda, 2013; Shkil et al., 2012), spikes in TH are associated with metamorphosis of larval 

fishes into juveniles (McMenamin & Parichy, 2013; Okada et al., 2003), and adult jaw 

protrusion abilities do not arise in TH− zebrafish (Table 1, Figure 4, and 5; S. McMenamin 

et al., 2017). The range of effects that TH has on bone remodeling (Bassett & Williams, 

2003; Gogakos et al., 2010; Harvey et al., 2002; Waung et al., 2012; Wojcicka et al., 2013) 

suggests that there are likely to be a number of mechanisms by which changes to TH 

signaling could alter the development of fish skulls and jaws. Our data support the assertion 

that a better understanding of how TH affects cranial remodeling has important relevance to 

the evo-devo of adaptive diversification in fish feeding.

Evolutionary changes to TH signaling may have contributed to the diversification of cyprinid 

fishes. Miniaturization has arisen multiple times in danionine minnows (e.g., the genera 

Galindo et al. Page 11

Evol Dev. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Danionella, Fangfangia, Microdevario, Paedocypris, and Sundadanio) and it has been 

speculated that developmental truncation (i.e., paedomorphosis) has contributed to the 

divergence of these species from their ancestral forms (Britz, Conway, & Ruber, 2009; Britz 

et al., 2014; Britz, Kottelat, & Tan, 2011; Ruber, Kottelat, Tan, Ng, & Britz, 2007). We 

observed that loss of TH production retarded zebrafish growth (Figure 3) and arrested 

premaxillary shape development at an early stage so that adult TH− specimens did not 

develop adult jaw protrusion abilities (Table 1, Figures 4 and 5). McMenamin et al. (2017) 

demonstrated that adult TH− zebrafish retained feeding mechanics similar to those of both 

larval euthyroid zebrafish and adult specimens from the highly paedomorphic danionine 

genus Danionella (Britz et al., 2009). Shkil et al. have provided evidence consistent with the 

hypothesis that changes in TH production and/or tissue responsiveness to TH has 

contributed to heterochronic evolution during the adaptive divergence of cyprinid fishes 

outside of the danionine lineage (Shkil & Smirnov, 2015; Shkil et al., 2012, 2015). Taken 

together, these findings suggest that evolutionary changes in TH signaling may have shaped 

aspects of cypriniform diversification, especially during the repeated evolution of miniature 

species that exhibit heterochronic development in which they retain aspects of larval feeding 

mechanics as adults.

5 | CONCLUSIONS

TH signaling induced development of an adult premaxillary shape and adult feeding 

kinematics in metamorphosing zebrafish. Hypothyroidism inhibited the development of jaw 

protrusion by severely reducing the development of premaxillary ascending arm length. 

Normal ontogenetic changes in zebrafish premaxillary shape represent developmental 

variation that could underlie evolutionary changes in jaw protrusion ability. The pronounced 

effects of thyroid hormone on the development of the functional morphology of the skull 

during the juvenile to adult transition suggest that changes in TH or pathways affected by 

TH may have contributed to adaptive diversification of fish feeding biomechanics.
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FIGURE 1. 
Landmarks and semilandmarks used in analyses of movement and shape. (a) Landmarks 

used in kinematic analyses with an image of the premaxillary bone of the upper 

jawsuperimposed its correct anatomical position in a fully protruded upper jaw. Arrow 

indicates the ascending arm of the premaxilla. Landmarks: (A) Anterior tip of the upper jaw; 

(B) corner of the mouth; (C) anterior tip of the lower jaw; (D) anterior tip of the hyoid; (E) 

ventral‐most point of the orbit; and (F) vertex of the angle used to measure head rotation 

during cranial elevation (the dorsal surface of the head anterior to this point rotated upward 
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during cranial elevation when feeding, while the dorsal surface of the trunk posterior to this 

point did not). (b) Anatomical landmarks and semilandmarks used in shape analyses of all 

specimens at all ages sampled shown on a larval zebrafish. Landmarks: (1) anterior tip of the 

premaxilla in the upper jaw; (2) anterior tip of the dentary bone in the lower jaw; (3) 

junction of the parasphenoid with the anterior wall of the orbit; (4) junction of the 

parasphenoid with the posterior wall of the orbit; and (5) lower jaw joint (articularquadrate 

joint). Black circles indicate semi‐landmarks evenly spaced between LM 1 and 2 to capture 

overall head shape. (c) Anatomical landmarks and semi‐landmarks used in shape analyses of 

all specimens at all ages sampled shown on an adult zebrafish (LM are the same as those in 

panel b). LM, landmark
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FIGURE 2. 
Representative cleared and stained specimens of postmetamorphic specimens from all 

treatment groups. Blue coloration indicates cartilage stained by alcian blue. Red indicates 

bone stained by alizarin red. Arrows represent the anterio-dorsal and posterio-dorsal edges 

of the ascending arm of the premaxillary bone. Arrowheads indicate the posterio-ventral tip 

of the dentigerous arm of the premaxilla (scale bars = 1 mm). TH− specimens exhibited 

delayed cranial ossification. In many of our TH− specimens the calvarium (skull vault) was 

not fully ossified by 100 dpf. Both the overall size of the premaxilla and the length of its 

ascending arm relative to the length of its dentigerous arm were reduced in TH− fish. TH+ 

fish exhibited hypertrophied lower jaws. TH, thyroid hormone
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FIGURE 3. 
Comparisons of anatomical growth among treatment groups. Mean sizes with standard error 

bars are given for all treatments at each age sampled. Key to symbols in panel (a). (a) All 

treatment groups exhibited similar increases in body length until 30 dpf, after which TH− 

fish exhibited lower growth rates. (b) All treatment groups exhibited similar increases in the 

relative length of the lower jaw until 15 dpf. After 15 dpf the lower jaws of TH+ fish grew 

much more quickly than those of the other treatment groups and then stabilized at a larger 

relative size. TH, thyroid hormone
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FIGURE 4. 
Comparisons of premaxillary morphology. (a) Principal component score plot derived from 

coordinate-based analyses of premaxilla shape in the following specimens: (1) 35, 65, and 

100 dpf AB zebrafish; (2) 100 dpf DMSO, TH−, and TH+ zebrafish; and (3) adults of nine 

additional species of danionin minnows. The difference in premaxillary shape between 

Devario maetaengensis and Danio erythromicron exemplify the shape diversity explained by 

PCI. PC1 is strongly associated with the length of the ascending arm relative to the length of 

the dentigerous arm. Numbers indicate the distributions of 5 specimens of AB zebrafish 
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from each of the three ages sampled (numbers correspond to dpf). The location of the 

Procrustes mean premaxillary shapes of TH+ and TH− specimens are indicated by their 

respective symbols. The location of the Procrustes mean premaxillary shape of DMSO 

specimens is indicated by “D”. The location of Procrustes mean shapes of the nine 

nonzebrafish premaxillae are indicated by an abbreviation of the scientific name of each 

species (see panel (d) for full species names), except for Danionella translucida, where the 

complete genus name is used. Images of premaxilla shapes of particular interest are inserted. 

The largest arrow denotes the developmental shape trajectory for AB premaxillae. (b) 

Landmarks used in shape analyses (black circles), deformation grid and vector plot that 

shows the shape variation associated with PC1. (c) Landmarks used in shape analyses (black 

circles), deformation grid and vector plot that shows the shape variation associated with 

PC2. (d) Phylogenetic relationships of the 10 species whose premaxillae were compared. 

The phylogeny depicted is taken from Tang et al. (2010). Arrows indicate branch positions 

that are swapped in the relationships reported by McCluskey and Postlethwait (2015), who 

did not examine Devario maetaengensis. DMSO, dimethyl sulfoxide; PC, principal 

component; TH, thyroid hormone
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FIGURE 5. 
Comparisons of cranial movements during feeding among the four TH treatment groups. In 

all cases time zero represents the time point when live prey (paramecia at 8 dpf and brine 

shrimp nauplii at 65 and 100 dpf) passed the tips of the upper and lower jaws as they were 

being engulfed. Units and standardizations are given in parentheses in each case. (a-h) Plots 

for gape angle (a,b), hyoid depression (c,d) and cranial elevation (e,f) for specimen of ages 8 

and 100 dpf, respectively (kinematic plots for these four variables at 15, 30, and 65 dpf are 
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presented in Figure S2). (g) Jaw protrusion at 65 dpf. (h) Jaw protrusion at 100 dpf. SL, 

standard length; TH, thyroid hormone

Galindo et al. Page 24

Evol Dev. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Galindo et al. Page 25

TA
B

L
E

 1

A
N

O
V

A
 a

nd
 T

uk
ey

’s
 H

SD
 r

es
ul

ts
 f

or
 c

om
pa

ri
so

ns
 o

f 
ki

ne
m

at
ic

 v
ar

ia
bl

es
 a

m
on

g 
tr

ea
tm

en
t g

ro
up

s 
fo

r 
ea

ch
 d

ev
el

op
m

en
ta

l s
ta

ge
 s

am
pl

ed

P
re

m
et

am
or

ph
ic

M
id

m
et

am
or

ph
ic

P
os

tm
et

am
or

ph
ic

8 
dp

f
15

 d
pf

30
 d

pf
65

 d
pf

10
0 

dp
f

G
ap

e 
an

gl
e

A
B

 >
 D

M
SO

A
B

 >
 T

H
−

T
H

+
 >

 D
M

SO
A

B
 >

 T
H

−
A

B
 >

 D
M

SO

A
B

 >
 T

H
−

A
B

 >
 T

H
+

T
H

+
 >

 T
H

−
D

M
SO

 >
 T

H
−

A
B

 >
 T

H
−

A
B

 >
 T

H
+

D
M

SO
 >

 T
H

−

T
H

+
 >

 A
B

H
yo

id
 d

ep
re

ss
io

n
A

B
 >

 T
H

−
A

B
 >

 T
H

−
A

B
 >

 D
M

SO
D

M
SO

 >
 A

B

A
B

 >
 T

H
+

A
B

 >
 T

H
−

A
N

O
V

A
D

M
SO

 >
 T

H
+

D
M

SO
 >

 T
H

−
T

H
+  

> 
D

M
SO

no
t s

ig
.

T
H

−
 >

 T
H

+

D
M

SO
 >

 T
H

+
T

H
+
 >

 T
H

−

C
ra

ni
al

 e
le

va
tio

n
D

M
SO

 >
 T

H
+

T
H

+
 >

 T
H

−
A

B
 >

 D
M

SO

A
N

O
V

A
A

B
 >

 T
H

−
A

N
O

V
A

no
t s

ig
.

T
H

+  
> 

D
M

SO
no

t s
ig

.

T
H

+
 >

 T
H

−

Ja
w

 p
ro

tr
us

io
n

A
B

 >
 T

H
−

A
B

 >
 T

H
−

N
A

N
A

N
A

D
M

SO
 >

 T
H

−
D

M
SO

 >
 T

H
−

T
H

+  
> 

T
H

−
T

H
+  

> 
T

H
−

N
ot

e:
 S

ig
ni

fi
ca

nt
 T

uk
ey

’s
 H

SD
 p

os
t-

ho
c 

co
m

pa
ri

so
ns

 a
re

 li
st

ed
 if

 th
e 

A
N

O
V

A
 r

es
ul

ts
 w

er
e 

si
gn

if
ic

an
t (
α 

=
 .0

5)
. B

ol
d/

sh
ad

ed
 c

om
pa

ri
so

ns
 h

ad
 p

 <
 .0

01
. T

he
 tr

ea
tm

en
t w

ith
 th

e 
hi

gh
er

 m
ax

im
um

 v
al

ue
 is

 
in

di
ca

te
d 

fo
r 

ea
ch

 c
om

pa
ri

so
n.

A
bb

re
vi

at
io

ns
: A

N
O

V
A

, a
na

ly
si

s 
of

 v
ar

ia
nc

e;
 D

M
SO

, d
im

et
hy

l s
ul

fo
xi

de
; d

pf
, d

ay
s 

po
st

fe
rt

ili
za

tio
n;

 H
SD

, h
on

es
tly

 s
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e;

 T
H

, t
hy

ro
id

 h
or

m
on

e.

Evol Dev. Author manuscript; available in PMC 2020 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Galindo et al. Page 26

TA
B

L
E

 2

Sh
ap

e 
di

sp
ar

ity
 c

om
pa

ri
so

ns
 f

or
 h

ea
d 

m
or

ph
ol

og
y

A
B

D
M

SO
T

H
−

A
B

FD
 =

 0
.0

06
22

04
6

N
A

D
M

SO
FD

 =
 0

.0
05

93
24

0
D

D
 =

 0
.0

00
28

8
N

A

U
B

C
I 

=
 0

.0
01

32
65

2

T
H

−
FD

 =
 0

.0
04

10
83

8
D

D
 =

 0
.0

02
11

2 
(A

B
)

D
D

 =
 0

.0
01

82
4 

(D
M

SO
)

U
B

C
I 

=
 0

.0
01

39
53

8
U

B
C

I 
=

 0
.0

01
34

55
6

N
A

T
H

+
FD

 =
 0

.0
07

80
77

2
D

D
 =

 0
.0

01
58

7
D

D
 =

 0
.0

01
87

5 
(T

H
+ )

D
D

 =
 0

.0
03

69
9 

(T
H

+ )

U
B

C
I 

=
 0

.0
01

82
21

5
U

B
C

I 
=

 0
.0

01
74

84
4

U
B

C
I 

=
 0

.0
01

88
89

4

A
bb

re
vi

at
io

ns
: D

D
, d

if
fe

re
nc

e 
in

 th
e 

di
sp

ar
iti

es
 o

f 
th

e 
tr

ea
tm

en
ts

 c
om

pa
re

d;
 F

D
, F

oo
te

 d
is

pa
ri

ty
; U

B
C

I,
 u

pp
er

 b
ou

nd
 o

f 
95

%
 C

I.
 D

is
pa

ri
tie

s 
w

er
e 

si
gn

if
ic

an
t w

he
n 

D
D

 >
 U

B
C

I.
 T

re
at

m
en

ts
 w

ith
 h

ig
he

r 
di

sp
ar

iti
es

 a
re

 in
di

ca
te

d 
w

he
n 

si
gn

if
ic

an
t (

bo
ld

/s
ha

de
d)

.

Evol Dev. Author manuscript; available in PMC 2020 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Galindo et al. Page 27

TABLE 3

Shape space orientation comparisons for head and premaxilla morphology

Angle
(degrees) 95% CI

PC1

 AB vs. DMSO 21.78 16.35–31.81

 AB vs. TH− 34.73 29.24–44.89

 AB vs. TH+ 23.71 19.65–31.17

 DMSO vs. TH− 18.26 15.50–30.77

 DMSO vs. TH+ 17.55 15.99–24.94

 TH− vs. TH+ 19.13 15.92–27.90

 AB pramaxilla development vs. Danionini premaxillae diversity 33.34 25.76–64.45

PC1-PC2

 AB vs. DMSO 61.51 50.06–85.52

 AB vs. TH− 88.02 46.32–94.51

 AB vs. TH+ 86.73 47.20–91.12

 DMSO vs. TH− 65.94 40.42–90.94

 DMSO vs. TH+ 74.15 42.80–91.19

 TH− vs. TH+ 29.86 34.57–89.13

 AB pramaxilla development vs. Danionini premaxillae diversity 52.15 38.73–84.78

PC1-PC3

 AB vs. DMSO 80.03 73.32–96.61

 AB vs. TH− 65.80 55.39–102.35

 AB vs. TH+ 59.58 53.65–86.61

 DMSO vs. TH− 84.21 67.73–102.18

 DMSO vs. TH+ 77.30 65.46–100.39

 AB pramaxilla development vs. Danionini premaxillae diversity 52.83 50.17–96.84

PC1-PC4

 AB vs. DMSO 101.83 84.63–116.01

 AB vs. TH− 93.18 71.75–109.74

 AB vs. TH+ 77.48 66.79–106.49

 DMSO vs. TH− 86.38 74.52–111.07

 DMSO vs. TH+ 97.36 77.98–117.97

 AB pramaxilla development vs. Danionini premaxillae diversity 79.00 74.07–109.85

Note: The observed angle between the shape spaces is given for each comparison. 95% confidence intervals (CIs) for this angle were calculated by 

bootstrapping the data from both groups (700 bootstraps). Significant differences in bold/shaded. The TH− and TH+ shape spaces were not 
significantly different for the first PC axis only. All other comparisons were not significantly different for PC1-PC4.
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