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Abstract

The T1-weighted and T2-weighted MRI contrasts of the infant brain evolve drastically during the 

first year of life. This poses significant challenges to inter- and intra-subject registration, which is 

key to subsequent statistical analyses. Existing registration methods that do not consider temporal 

contrast changes are ineffective for infant brain MRI data. To address this problem, we present in 

this paper a method for deformable registration of infant brain MRI. The key advantage of our 

method is threefold: (i) To deal with appearance changes, registration is performed based on 

segmented tissue maps instead of image intensity. Segmentation is performed by using an infant-

centric algorithm previously developed by our group. (ii) Registration is carried out with respect to 

both cortical surfaces and volumetric tissue maps, thus allowing precise alignment of both cortical 

and subcortical structures. (iii) A dynamic elasticity model is utilized to allow large non-linear 

deformation. Experimental results in comparison with well-established registration methods 

indicate that our method yields superior accuracy in both cortical and subcortical alignment.
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1. Introduction

The infant brain grows and develops at a rapid pace during the first two years of life, 

resulting in drastic structural changes (Gilmore et al., 2018; Li et al., 2018, 2015a; Lyall et 

al., 2015; Meng et al., 2014; Nie et al., 2014, 2012; Geng et al., 2017). For instance, the 

overall brain volume doubles to about 65% of the adult brain volume in the first year of life 

(Knickmeyer et al., 2008). During this time span, gray matter (GM) grows more rapidly 

(108% – 149%) than white matter (WM) (~11%) (Matsuzawa et al., 2001). Cortical 

thickness and surface area increase immensely from birth to one year of age. Understanding 

the longitudinal trajectory of early brain development is of critical importance for 

neuroscience and neuropsychology (Hazlett et al., 2017; Paterson et al., 2006).

To this end, a pivotal step for quantifying morphological changes is establishing anatomical 

correspondence using deformable registration (Shi et al., 2013; Li et al., 2014b; Nie et al., 

2013; Xue et al., 2006a). However, deformable registration of infant brain data is 

challenging owing to rapid brain structural changes in relation to development, with cortical 

and subcortical structures exhibiting different growth trajectories (Choe et al., 2013). Brain 

tissues exhibit dynamic appearance changes over the first year of life (Fig. 1). More 

specifically, WM appears dark in the neonatal T1-weighted image as most of the WM is not 

yet myelinated, resulting in a low GM-WM contrast. As myelination progresses with 

development, WM gains a brighter appearance (Xue et al., 2007).

Existing deformable registration methods (Tang et al., 2018; Yang et al., 2017; Chen et al., 

2017; Wu et al., 2016; Kim et al., 2015; Wang et al., 2015b; Avants et al., 2008; Wu et al., 

2006; Xue et al., 2006b) are designed for adult brain images and have limited applicability 

to infant brain images. The key limiting factor of these methods is their inability to deal with 

dramatic appearance changes. Only a few registration methods are developed specifically for 

infant brain images. In (Wu et al., 2015), growth trajectories learned from a longitudinal 

image training set are used to guide registration. In (Wei et al., 2017), auto-context random 

forest regression is employed to learn structural shape and appearance changes from 

longitudinal infant brain data.
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Accurate volumetric registration does not necessarily guarantee accurate alignment of 

cortical surfaces (Park et al., 2012; Hellier et al., 2003). Cortical surfaces are highly 

convoluted with complex shapes and their alignment is important for studying cortical 

growth in early brain development (Li et al., 2014a). Surface-based registration methods 

(Park et al., 2012; Yeo et al., 2010; Zou et al., 2007; Joshi et al., 2012; Acosta et al., 2010) 

typically rely on information drawn from surface geometry (e.g., gyral and sulcal lines, 

sulcal depth, curvature, etc.). Although these methods provide accurate cortical surface 

correspondence, alignment of subcortical structures is totally ignored.

Combined surface and volumetric registration methods have emerged as a solution to the 

above limitations by concurrently aligning the cortical and subcortical structures. These 

methods not only work well for structural MRI, but have also shown efficacy in functional 

MRI (fMRI) registration (Gholipour et al., 2007) and improving alignment of fiber 

streamlines in diffusion MRI (dMRI) (Zöllei et al., 2010). This is typically achieved by 

reliably establishing correspondence across high-resolution structural MRI scans and then 

applying this to low-resolution fMRI or dMRI data. Surface-volume consistent infant brain 

atlases can also be constructed using combined surface and volume registration methods 

(Ahmad et al., 2019). While there are existing concurrent surface and volumetric registration 

methods (Postelnicu et al., 2009; Joshi et al., 2007), they are infeasible for infant brain 

images. The rapid appearance changes affect both segmentation and registration. For 

example, Fig. 2 indicates that the low contrast of T1-weighted MR brain image of 6-month-

old and 12-month-old infant confuses FreeSurfer (Dale et al., 1999) and BrainSuite1, 

resulting in tissue segmentation that cannot be used for surface reconstruction and 

registration.

In this paper, we introduce a surface-constrained volumetric registration method for infant 

brain MRI. The key steps involve (i) tissue segmentation using an infant-centric method 

developed by our group (Wang et al., 2015a); (ii) surface-based registration using cortical 

surfaces reconstructed based on the tissue segmentation outcome; and (iii) volumetric 

registration constrained by surface correspondences. We show that our method yields 

improvement in the alignment of cortical and subcortical structures over well-established 

registration methods.

The remainder of the paper is organized as follows. In Section 2, we present the dataset used 

in this study. In Section 3, we describe the proposed registration method. In Section 4, we 

show evaluation results for inter- and intra-subject registration. Finally, we conclude the 

paper in Section 5.

2. Materials

An infant brain MRI dataset consisting of images acquired for 19 healthy infant subjects 

(males: 14, females: 5) was used to validate the performance of the proposed method. T1- 

and T2-weighted MR images of each subject were scanned at 2 weeks, 3 months, 6 months 

and 12 months. The imaging parameters for T1-weighted MR images were TR = 1900 ms, 

1Available at http://brainsuite.org/processing/svreg/
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TE = 4.38 ms, flip angle = 7°, 144 sagittal slices and 1 mm isotropic voxel size. The imaging 

parameters for T2-weighted MR images were TR = 7380 ms, TE = 119 ms, flip angle = 

150°, 64 sagittal slices, and 1.25 × 1.25 × 1.95 mm3 voxel size.

3. Methods

We present a surface-constrained volumetric registration method with the goal of aligning a 

moving image Ii
M at time point i and template image I j

T at time point j. Due to significant 

appearance changes, registration cannot be performed directly on the intensity images. As an 

alternative, we register the tissue maps generated using our infant-centric segmentation 

method (Wang et al., 2015a). Therefore, Ii
M and I j

T are tissue maps instead of intensity 

images, making the registration process insensitive to contrast changes. Fig. 3 shows the 

complete pipeline of the proposed technique, consisting of (i) data preprocessing for 

obtaining tissue maps and cortical surfaces, and (ii) surface-constrained non-linear 

volumetric registration.

3.1. Pre-Processing Framework

The longitudinally acquired infant images were processed using the UNC infant cortical 

surface processing pipeline (Li et al., 2014a, 2013, 2015b, 2014c), which includes: (i) N3 

intensity inhomogeneity correction (Sled et al., 1998); (ii) skull stripping by a learning-

based method (Shi et al., 2012); (iii) cerebellum and brain stem removal by registration 

(Shen and Davatzikos, 2002); (iv) rigid alignment of all longitudinal images of the same 

subject and rigid alignment of T2-weighted images with the corresponding T1-weighted 

images; (v) longitudinally consistent tissue segmentation (CSF, GM and WM) using a 

learning-based multi-source integration framework (Wang et al., 2015a); (vi) masking and 

filling of non-cortical structures and separation of each brain into left and right hemispheres 

(Li et al., 2013, 2014b); (vii) construction of topologically correct and geometrically 

accurate inner (WM-GM interface) and outer (GM-CSF interface) cortical surfaces (Li et al., 

2014a, 2012).

3.2. Registration Framework

The registration framework begins with cortical surface registration, followed by surface-

guided volumetric registration.

3.2.1. Cortical Surface Registration—The cortical surfaces (left/right, inner/outer) of 

the moving subject Si
M at time point i are registered to the corresponding cortical surfaces of 

the template S j
T at time point j, thus aligning cortical folds. In order to simplify cortical 

surface registration, spherical mapping is performed by inflating the inner cortical surface 

and mapping the outcome onto a sphere (Fig. 4) by minimizing the metric distortion 

between the original cortical surface and its spherical representation (Fischl et al., 1999). We 

first use Spherical Demons (Yeo et al., 2010) to align the spherical cortical surfaces in a 

pairwise manner. The registration is driven by two commonly used folding attributes, i.e., 

average convexity and mean curvature (Fischl et al., 1999). The vertex-to-vertex 
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correspondences established by spherical registration are then propagated to the inner and 

outer cortical surfaces by leveraging the one-to-one vertex mapping between the spherical 

representation and, the inner and outer cortical surfaces. Finally, based on the 

correspondences between cortical surfaces, we obtain the displacement ψ( y ) for each vertex 

y = (y1, y2, y3) of the template cortical surface with respect to the moving surface. This 

displacement field will be used to constrain subsequent volumetric registration, as detailed 

below.

3.2.2. Surface-Constrained Volumetric Registration—Cortical and subcortical 

structures can be consistently aligned by constraining the volumetric registration with the 

displacement obtained by cortical surface registration. The deformation is defined as 

𝒯( x ) = x + ϕ( x ), x ∈ Ω, where ϕ : Ω → ℝ3 is a displacement field defined on the brain 

region Ω ⊂ ℝ3 and x  denotes the 3D spatial coordinates. Here, our objective is to seek an 

optimal displacement such that ϕ( y ) = Ψ ( y ), for every vertex y  of S j
T. We use the dynamic 

elasticity model (DEM) (Ahmad and Khan, 2017) to represent the underlying large non-

linear displacement. DEM registration is formulated based on the principle of 

elastodynamics dealing with dynamic displacements. The image is modeled as an elastic 

body that is disturbed from its resting state by an abrupt external force. This disturbance 

takes the form of elastic waves propagating across the entire body. These elastic waves 

characterize the non-linear displacements, which can be recovered using the elastodynamics 

wave equation given as:

∂2ϕ( x )
∂t2

= α(∇2ϕ( x ) + ∇(∇ ⋅ ϕ( x ))) + β f V( x ),

(1)

where parameter α influences the smoothness of the displacement field and β controls the 

contribution of the volumetric force field f V( x ), which is computed as the gradient of the L2 

distance between Ii
M(𝒯( x )) and I j

T( x ), i.e.,

EV( x ) = 1
2∫Ω

Ii
M(𝒯( x )) − I j

T( x )
2

d x ,

(2)

given as
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f V( x ) = ∂EV( x )
∂𝒯 = − Ii

M(𝒯( x )) − I j
T( x )

∂Ii
M(𝒯( x ))

∂𝒯

(3)

Volumetric registration is steered by f V( x ), which is influenced by two terms as given in Eq. 

(3). The first term (within square brackets) defines the discrepancy between the template and 

the moving tissue map warped using the estimated deformation field. The second term is the 

gradient of the warped moving tissue map. Voxels associated with high gradient magnitudes 

are structural edges that drive the registration. The volumetric force field diminishes with the 

alignment of template and moving tissue maps. When the force is close to zero, the 

displacement field converges with no further significant changes.

Here, we incorporate the cortical surface constraint into Eq. (1) by defining a surface force 

field f S( y ), computed as the difference between the displacements estimated respectively 

from surface and volumetric registration:

f S( y ) = Ψ ( y ) − ϕ( y )

(4)

Accordingly, the elastodynamics wave equation is modified as

∂2ϕ( x )
∂t2

= α(∇2ϕ( x ) + ∇(∇ ⋅ ϕ( x ))) + β f V( x ) + γ f S( x ),

(5)

where the parameter γ controls the contribution of the surface force. The modified 

elastodynamics wave equation is governed by two forces i.e., volumetric and surface force 

fields. These force fields reflect the misalignment between a pair of tissue maps and the 

corresponding cortical surfaces. The magnitudes of these force fields are initially high but 

diminish with alignment, resulting in the convergence of the displacement field. The surface-

constrained dynamic elasticity model (SC-DEM) based registration algorithm is described 

below:

Step 1: Initialize the displacement fields for the first two iterations (i.e., t = 0 and t = 1) with 

zero:
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ϕ0( x ) = ϕ1( x ) = 0

Step 2: Estimate the displacement ϕt( y ) at vertices of the template cortical surface:

ϕt( x ) interpolation
ϕt( y )

Step 3: Deform Ii
M( x ) with the current estimated deformation 𝒯t( x ) and compute the 

volumetric force field f t
V( x ) using Eq. (3).

Step 4: Calculate the surface force field by extrapolating the difference between ψ( y ) and 

ϕ ( y )t  over the entire volumetric space:

f t
S( y ) extrapolation

f t
S( x )

Step 5: f t
V( x ) and f t

S( x ) are then combined and convolved with a Gaussian kernel of size 3 

× 3 × 3 and σ2 = 0.8 to obtain the combined force field as follows:

f t
C( x ) = G

σ2 ⊛ β f t
V( x ) + γ f t

S( x )

(6)

Step 6: If | f t
C | > Γ, where f t

C is the mean of f t
C( x ) and Γ is a threshold, then the 

displacement field for the next iteration is computed using

ϕt + 1( x ) = α(∇2ϕt( x ) + ∇(∇ ⋅ ϕt( x ))) + f t
C( x ) + 2ϕt( x ) − ϕt − 1( x )

(7)

Step 7: Compute surface displacement error Et
S( y ) as follows:

Et
S( y ) = Ψ (y1) − ϕt(y1))2 + Ψ (y2) − ϕt(y2))2 + Ψ (y3) − ϕt(y3))2
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Step 8: Increment β with step size Δβ. Repeat Steps 2 – 7 until either 

(Et
S( y )) > median(Et − 1

S ( y )) or ∣ f‒t
C ∣ < Γ. Proceed to the next level as soon as one of the 

conditions is met.

Step 9: At the next level, initialize ϕt( x ) with ϕt − 1( x ), decrement α and increment γ with 

step size Δα and Δγ, respectively.

Step 10: Loop over Steps 2 – 9 until the highest level is reached. Warp Ii
M with final 

estimated deformation to obtain aligned moving tissue map.

The optimal displacement is obtained by formulating image registration as a wave motion 

problem. The moving tissue map is deformed toward the template tissue map by the 

minimization of an energy functional given by tissue map dissimilarity and surface 

displacement error. If during minimization, the error gets worse (Step 8, 

median(Et
S( y )) > median(Et − 1

S ( y ))), then the change in parameter settings allows further 

minimization of the error. Thus, the proposed multi-level registration strategy avoids local 

minima and recovers residual displacements, improving the registration quality (Fig. 5). The 

second condition in Step 8 ( | f t
C | < Γ ) guarantees sufficient minimization of the error 

function, such that the algorithm converges. This condition also prevents estimation of 

excessive deformations that may cause the algorithm to oscillate near convergence. In 

practice, we observed that the algorithm converges to a reasonable solution within 20 

iterations with Γ = 1 × 10−5.

3.3. Implementation Details

Here, we describe the implementation details of SC-DEM. In Step 2, we use trilinear 

interpolation to estimate the value of displacement at surface vertices (non-grid points) from 

the displacement field of image voxels (grid points). In Step 4, the surface force field is 

extrapolated over the volumetric space using Delaunay triangulation to generate the mesh 

and then the mesh vertices are displaced by distance specified as the magnitude of surface 

force field. In order to determine the value of force field at a particular voxel, first the 

triangulation data structure is traversed to find the triangle that encloses the given voxel. 

Then, the value at voxel is determined by the weighted sum of the values associated with the 

enclosing triangle vertices and the corresponding weights are pre-computed using 

barycentric coordinates.

In Eq. (6), the values of parameters β and γ are tweaked to balance the volumetric and 

surface force fields. Initially, the value of β is set to 1.1, which is iteratively incremented 

with Δβ = 0.012. γ is defined as a spatially varying parameter, i.e., its value is initialized 

with 2 × 10−4 for the voxels representing cortical region and zero for all other voxels. With 

this, the alignment of cortical region is driven by both volumetric and surface force fields, 

whereas the subcortical region is aligned under the influence of volumetric force field. In 

Step 9, γ is incremented for cortical voxels with Δγ = 2 × 10−4. These values were 

empirically chosen such that the two forces are of the same order.
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The regularization constant α in Eq. (7) is also defined as a spatially varying parameter, i.e., 

the voxels representing different tissue types have different values. We set the value in 

accordance with the mechanical properties of the tissues. According to (Budday et al., 

2015), WM is more rigid than GM due to the presence of myelinated axons in WM. Thus, in 

view of the elastic properties of WM and GM, WM voxels are assigned lower value than 

GM voxels as follows:

α =
0.16 if x ∈ WM
0.18 if x ∈ GM
0.22 otherwise .

(8)

The heterogeneous α ensures that the different brain tissues deform at the same rate and the 

estimated displacement field is smooth. Otherwise, the displacement field would be under-

regularized if α is kept small for all the tissues. On the other hand, a higher value would 

result in an over-regularized displacement field. At each level, the value of α is decremented 

for GM and WM voxels with a step size Δα = 0.006. This allows the recovery of residual 

local displacements. α is kept constant once it drops to 0.06. If we keep on decreasing α 
beyond 0.06, then the tissue map would undergo excessive displacement, resulting in an 

irregular displacement field. Lastly, Eq. (7) is solved using finite difference approximation.

The parameter setting is in general insensitive to the type of dataset used as we do not work 

directly with the intensity images but rather the tissue maps, provided tissue segmentation 

can be performed reliably.

4. Results and Discussion

4.1. Inter-Subject Registration

We registered the tissue maps of all subjects at 2 weeks, 3 months and 6 months to a 12 

month template tissue map. The tissue map of a 12-month subject with the minimum median 

dissimilarity with the tissue maps of all other 12-month subjects was selected as the template 

in order to reduce potential bias associated with template selection. All moving tissue maps, 

T1-weighted MR images and cortical surfaces were affinely registered to the template using 

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). We compared the performance 

of SC-DEM with state-of-the-art registration methods, including diffeomorphic Demons 

(Vercauteren et al., 2009), ANTs (Avants et al., 2008) and DEM (Ahmad and Khan, 2017). 

For all methods, registration was based on tissue maps instead of intensity images. We did 

not compare our method with existing surface-constrained registration methods because they 

give unsatisfactory segmentation results (Fig. 2), negatively affecting subsequent surface and 

volumetric registration. The cortical surfaces generated by BrainSuite using our tissue maps 

are inaccurate (see Fig. 6) and hence cannot be used for surface-constrained registration. No 

option was provided to use our own cortical surface for registration.

Ahmad et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1.1. Qualitative Evaluation—We qualitatively evaluated the registration performance 

using multiple criteria. First, we visually inspected the alignment of cortical surface 

reconstructed from the warped moving tissue map. Fig. 7 shows the warped inner cortical 

surface given by five different methods for registration from 2 weeks to 12 months (Fig. 

7(a)), 3 months to 12 months (Fig. 7(b)), and 6 months to 12 months (Fig. 7(c)). As 

indicated by the zoomed-in views of the dashed boxes, SC-DEM achieves good alignment of 

the cortical surfaces with the tissue maps. Fig. 8(a – c) shows the surface distance (computed 

using Hausdorff metric) between the warped moving cortical surface and the template 

cortical surface for registration from 2 weeks, 3 months, and 6 months to 12 months, 

respectively. It can be seen that SC-DEM yields smaller surface error (Fig. 8(fifth column)) 

compared with FLIRT, diffeomorphic Demons, ANTs and DEM (Fig. 8(first column – 

fourth column)). Fig. 9 shows the inter-subject registration results for T1-weighted MR 

images. The first row shows the 12-month-old template image toward which the moving 

images at 2 weeks, 3 months and 6 months were deformed. The 2nd–6th rows show the 

registration results of FLIRT, diffeomorphic Demons, ANTs, DEM and SC-DEM, 

respectively. Fig. 9 highlights certain regions where SC-DEM yields better alignment than 

the other methods.

4.1.2. Quantitative Evaluation—Registration accuracy was evaluated quantitatively 

using Dice ratio, computed between the warped moving tissue map (V1) and the template 

tissue map (V2) as

D =
2 V1 ∩ V2
V1 + V2

(9)

We also computed the modified Hausdorff distance between the cortical surfaces of the 

warped moving and template images. Let 𝒮 and 𝒯 be the sets of vertices of the warped 

moving and template cortical surfaces, respectively. Using the Euclidean distance d (s, t) = ‖s 
− t‖, the modified Hausdorff distance (MHD) is given as

MHD = 1
2[d(𝒮, 𝒯) + d(𝒯, 𝒮)],

(10)

where,
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d(𝒮, 𝒯) = 1
𝒮 ∑

s ∈ 𝒮
d(s, 𝒯)

(11)

and

d(𝒯, 𝒮) = 1
𝒯 ∑

t ∈ 𝒯
d(t, 𝒮)

(12)

The distances d(𝒮, 𝒯) and d(𝒯, 𝒮) in Eq. (11) and Eq. (12) are defined as 

d(s, 𝒯) = mint ∈ 𝒯 ∥ s − t ∥ and d(t, 𝒮) = mins ∈ 𝒮 ∥ t − s ∥.

Fig. 11 shows the Dice ratio box plots for three tissue types at three time points using five 

different registration methods. It can be observed that SC-DEM achieves the highest Dice 

ratio with statistical significance (p < 0.01) for CSF, GM and WM at all time points. These 

results are summarized in Table 1. The percentages of improvement over FLIRT for 

registration from 2 weeks, 3 months, and 6 months to 12 months are 32.76%, 31.85% and 

30.33% by diffeomorphic Demons, 41.63%, 40.86% and 39.14% by ANTs, 43.52%, 40.99% 

and 39.16% by DEM and 53.44%, 53.56% and 50.99% by SC-DEM. In addition, we also 

computed the Dice ratios for 34 cortical ROIs (see Table 2). These ROIs were automatically 

labeled by first parcellating the cortical surface using FreeSurfer and then, assgining to each 

voxel in the GM cortical ribbon a label according to the nearest vertex of the cortical 

surface. The results, shown in Fig. 10, indicate that SC-DEM yields higher Dice ratios for 

the majority of the cortical ROIs with statistical significance (p < 0.01). We also show the 

box plots of MHDs computed between the template and warped moving inner and outer 

cortical surfaces in Fig. 12 for all the registration methods. Table 3 provides the 

corresponding statistical summary. These results show that SC-DEM achieves the lowest 

MHD (p < 0.01) for all the three time points.

4.2. Intra-Subject Registration

Intra-subject registration was performed by registering the tissue maps of all the subjects at 2 

weeks, 3 months, and 6 months to their respective 12-month tissue maps. All the tissue maps 

were affinely aligned to the 12-month tissue maps using FLIRT. Diffeomorphic Demons, 

ANTs and DEM were utilized for comparison.

4.2.1. Qualitative Evaluation—Fig. 13 shows that the intra-subject registration results 

were qualitatively evaluated by visualizing the inner cortical surface of the warped moving 

image overlaid on the template tissue map. The zoomed-in views show regions where SC-
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DEM gives clear improvement in structural alignment. Fig. 14(a – c) shows the surface 

distance (computed using Hausdorff metric) between the warped moving cortical surface at 

2 weeks, 3 months, and 6 months and the template cortical surface at 12 months. SC-DEM 

shows less surface alignment error when compared with other methods. We also present the 

T1-weighted moving images warped using all the five registration methods in Fig. 15. Due 

to the low contrast between GM and WM, visualizing improvement in cortical alignment is 

challenging. However, Fig. 15(a) shows that SC-DEM yields significant improvement in the 

alignment of the lateral ventricles.

4.2.2. Quantitative Evaluation—Intra-subject registration result at 2 weeks, 3 months, 

and 6 months to 12 months were quantitatively evaluated using Dice ratio and modified 

Hausdorff distance. The box plots of Dice ratio for CSF, GM and WM achieved by all five 

registration methods at different time points are presented in Fig. 16. As evident from these 

box plots, SC-DEM achieves the highest Dice ratio for all tissue types. The statistical 

summary of whole-brain Dice ratio is presented in Table 4. The overall percentages of 

improvement over FLIRT registration from 2 weeks, 3 months, and 6 months to 12 months 

are 37.39%, 27.95% and 11.64% by diffeomorphic Demons, 43.45%, 31.34% and 12.26% 

by ANTs, 41.72%, 30.56% and 13.36% by DEM and 49.43%, 35.42% and 16.20% by SC-

DEM. The Dice ratios for the 34 cortical ROIs, shown in Fig. 17, confirm the superiority of 

SC-DEM. The MHD box plots for inner and outer cortical surfaces are shown in Fig. 18, 

with a summary in Table 5. The results again demonstrate the superiority of SC-DEM.

4.3. Computational Time

All experiments were conducted on a machine with 3.8 GHz Intel Core i5 and 32 GB RAM. 

To register a pair of images, SC-DEM took around 1.5 hours, whereas diffeomorphic 

Demons, ANTs and DEM took around 3-, 20- and 5-minutes, respectively. Although SC-

DEM is computationally more expensive, it significantly improves structural alignment.

4.4. Deformation Field Analysis

We also analyzed the smoothness of the deformation fields. Fig. 19 shows that SC-DEM 

results in bending energy that is lower than ANTs and DEM. Diffeomorphic Demons gives 

the lowest bending energy, but performs worst in terms of registration accuracy. The 

Jacobian maps of the deformation fields for SC-DEM, shown in Fig. 20, indicate that it 

preserves topology without tearing or shearing artifacts.

4.5. Parameter Sensitivity

In order to evaluate the sensitivity of the proposed method to the parameters, we changed the 

parameters setting and performed both inter- and intra-subject registration experiments. 

More specifically, we doubled the value of volumetric force field parameter β to 2.1 and 

halved the value of surface force field parameter γ to 1 × 10−4 in order to balance the two 

force fields. γ was incremented with Δγ = 1 × 10−4 and the regularization parameter α was 

decreased with a step size of Δα = 0.004. The rest of the parameters were kept the same as 

described in Section 3.3. The results in terms of Dice ratio and modified Hausdorff distance 

are presented in Fig. 21, where P1 denotes old parameters setting and P2 denotes new 

setting. The paired t-test indicates that there is no statistically significant difference (p > 
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0.01) between the Dice ratios (as well as MHDs) of two parameters settings. This validates 

that our method is insensitive to the change in parameters. We show in Table 6 the range of 

parameters that can be used to obtain comparable registration performance.

5. Conclusion

In this paper, we presented an infant brain MRI registration framework for consistently 

aligning the cortical folding patterns and subcortical structures. First, the cortical surfaces 

are registered to obtain accurate surface correspondence. Then, the estimated surface 

correspondence is used to constrain the volumetric registration based on a dynamic elasticity 

model, resulting in the alignment of both brain volume and cortical folds. Despite limited in 

the number of subjects, evaluation was conducted rigorously for inter- and intra-subject 

registration from 2 weeks, 3 months, and 6 months to 12 months, involving over a hundred 

registration experiments. The results demonstrate that the proposed method yields superior 

performance in both volumetric and surface registration.
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Highlights

• Infant brain image registration is performed using segmented tissue maps 

instead of intensity images to deal with dynamic appearance and structural 

changes.

• Volumetric registration utilizes pre-established cortical surface 

correspondences, allowing consistent alignment of both cortical and 

subcortical structures.

• Dynamic elasticity transformation model is incorporated to recover large non-

linear deformations.

• Extensive inter- and intra-subject registration experiments demonstrate that 

proposed method achieved remarkably improved registration accuracy.

Ahmad et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Dynamic morphological and appearance changes in a typical infant brain from 2 weeks to 

12 months of age demonstrated using T1-weighted MR images.
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Fig. 2: 
Tissue segmentation of a typical 6-month-old (first row) and 12-month-old (second row). (a) 

T1-weighted MR brain image and segmentation results using (b) FreeSurfer and (c) 

BrainSuite.
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Fig. 3: 
Pipeline for surface-constrained volumetric registration.
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Fig. 4: 
Spherical mapping of the inner cortical surface.
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Fig. 5: 
Illustration of optimization procedure.
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Fig. 6: 
Inner and outer cortical surfaces generated by BrainSuite.
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Fig. 7: 
Inner cortical surface of the moving image warped using FLIRT (first row), diffeomorphic 

Demons (second row), ANTs (third row), DEM (fourth row) and SC-DEM (fifth row) 

overlaid on the template tissue map used in inter-subject registration.
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Fig. 8: 
Cortical surface distance between the template cortical surface and the moving cortical 

surface warped using FLIRT (first column), diffeomorphic Demons (second column), ANTs 

(third column), DEM (fourth column) and SC-DEM (fifth column) for inter-subject 

registration.
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Fig. 9: 
Moving T1-weighted image warped using FLIRT (second row), diffeomorphic Demons 

(third row), ANTs (fourth row), DEM (fifth row) and SC-DEM (sixth row), in comparison 

with the template image (first row) used in inter-subject registration.
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Fig. 10: 
Inter-subject registration results in terms of Dice ratio for cortical ROIs. The colored stars 

mark differences that are not statistically significant (p > 0.01) with reference to SC-DEM.
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Fig. 11: 
Inter-subject registration results in terms of Dice ratio for different tissue types (CSF, GM, 

WM).
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Fig. 12: 
Inter-subject registration results in terms of modified Hausdorff distance for inner and outer 

cortical surfaces.
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Fig. 13: 
Inner cortical surface of the moving image warped using FLIRT (first row), diffeomorphic 

Demons (second row), ANTs (third row), DEM (fourth row) and SC-DEM (fifth row) 

overlaid on the template tissue map for intra-subject registration.
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Fig. 14: 
Cortical surface distance between the template cortical surface and the moving cortical 

surface warped using FLIRT (first column), diffeomorphic Demons (second column), ANTs 

(third column), DEM (fourth column) and SC-DEM (fifth column) for intra-subject 

registration.
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Fig. 15: 
Moving image warped using FLIRT (second row), diffeomorphic Demons (third row), ANTs 

(fourth row), DEM (fifth row) and SC-DEM (sixth row), compared to the template image 

(first row) for intra-subject registration.
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Fig. 16: 
Intra-subject registration results in terms of Dice ratio for different tissue types (CSF, GM, 

WM).
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Fig. 17: 
Intra-subject registration results in terms of Dice ratio for cortical ROIs. The colored stars 

mark differences that are not statistically significant (p > 0.01) with reference to SC-DEM.
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Fig. 18: 
Intra-subject registration results in terms of modified Hausdorff distance for inner and outer 

cortical surfaces.
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Fig. 19: 
Bending energy of the deformation fields estimated using different registration methods.
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Fig. 20: 
Deformation Jacobian maps of SC-DEM for inter-subject (first row) and intra-subject 

(second row) registration.
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Fig. 21: 
Parameter sensitivity analysis in terms of Dice ratio and modified Hausdorff distance.
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Table 6:

Parameters range.

β γ αWM αGM αother

[0.10, 3.00] [0.0001, 0.003] [0.14, 0.18] [0.16, 0.20] [0.20, 0.25]
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