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Abstract
Portal hypertension (PHT) in advanced chronic liver disease (ACLD) results from
increased intrahepatic resistance caused by pathologic changes of liver tissue
composition (structural component) and intrahepatic vasoconstriction (functional
component). PHT is an important driver of hepatic decompensation such as
development of ascites or variceal bleeding. Dysbiosis and an impaired intestinal
barrier in ACLD facilitate translocation of bacteria and pathogen-associated
molecular patterns (PAMPs) that promote disease progression via immune
system activation with subsequent induction of proinflammatory and
profibrogenic pathways. Congestive portal venous blood flow represents a
critical pathophysiological mechanism linking PHT to increased intestinal
permeability: The intestinal barrier function is affected by impaired
microcirculation, neoangiogenesis, and abnormal vascular and mucosal
permeability. The close bidirectional relationship between the gut and the liver
has been termed “gut-liver axis”. Treatment strategies targeting the gut-liver axis
by modulation of microbiota composition and function, intestinal barrier
integrity, as well as amelioration of liver fibrosis and PHT are supposed to exert
beneficial effects. The activation of the farnesoid X receptor in the liver and the
gut was associated with beneficial effects in animal experiments, however,
further studies regarding efficacy and safety of pharmacological FXR modulation
in patients with ACLD are needed. In this review, we summarize the clinical
impact of PHT on the course of liver disease, discuss the underlying
pathophysiological link of PHT to gut-liver axis signaling, and provide insight
into molecular mechanisms that may represent novel therapeutic targets.
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Core tip: In advanced chronic liver disease, portal hypertension (PHT) results from
increased intrahepatic resistance and leads to splanchnic vasodilation and patholocgical
neoangiogenesis. Gut dysbiosis, increased intestinal permeability, translocation of
bacteria and pathogen-associated molecular patterns promote liver disease progression
via immune system activation and subsequent induction of a proinflammatory state. The
close relationship between gut and liver and their bidirectional interaction has been
termed gut-liver axis. This review describes the impact of PHT on the gut-liver axis by
providing insight into pathophysiology and summarizing important clinical observations
and potential therapeutic strategies.

Citation: Simbrunner B, Mandorfer M, Trauner M, Reiberger T. Gut-liver axis signaling in
portal hypertension. World J Gastroenterol 2019; 25(39): 5897-5917
URL: https://www.wjgnet.com/1007-9327/full/v25/i39/5897.htm
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INTRODUCTION
Advanced chronic liver disease (ACLD)/cirrhosis represents a significant health
burden, accounting for considerable morbidity and mortality worldwide[1]. Cirrhosis
was found responsible for about 1.0 million deaths in 2010[2] and for 1.2 million deaths
in 2013[3], indicating an increasing trend over the years. Recent epidemiological data
from Europe displays heterogeneity regarding prevalence, etiology, and mortality
trends in different European countries and suggests that public health action and
prudent treatment strategies might exert considerable public health benefits[4].

The clinical course of ACLD can be divided in a compensated and decompensated
stage[5,6]. The compensated stage may last for several years[5], while the development of
typical  complications  of  cirrhosis,  i.e.,  most  commonly  ascites  but  also  variceal
hemorrhage or hepatic encephalopathy (i.e., acute decompensation, AD) defines the
progression to the decompensated stage. Furthermore, patients with ACLD are at risk
for developing organ failures, i.e., acute-on-chronic liver failure (ACLF), a syndrome
associated with a high risk of mortality[7-11].

The  development  of  portal  hypertension  (PHT)  holds  a  central  role  in  the
progression  of  liver  disease,  as  it  drives  hepatic  decompensation  and  other
complications of cirrhosis[5,12]. Based on a body of evidence propagating an impact of
gut microbiota, intestinal barrier integrity, and bacterial translocation (BT) on the
course of liver disease, the term “gut-liver axis” has arisen over the last few years,
subsuming the close relationship between the gut and the liver in different entities of
ACLD[13-15]. BT (migration from intestinal bacteria and/or their products beyond the
intestinal  barrier)  impacts  on the course of  disease in  cirrhosis  by promoting or
precipitating AD, ACLF, and finally, mortality. Hence, the gut-liver axis has gained
considerable scientific interest[5,16,17]. The aim of this review is to summarize current
knowledge on pathophysiological links between gut-liver axis signaling and PHT,
and to provide additional insights into the effects of established and investigational
therapeutic approaches. The search strategy and selection criteria of this study are
shown in Supplemental materials.

PORTAL HYPERTENSION AND IMMUNE SYSTEM
ACTIVATION

Portal hypertension and bacterial translocation are linked to clinical events
Characteristic histological features of cirrhosis include diffuse nodular regeneration
enclosed by fibrotic septa, leading to parenchymal loss-of-function and destruction of
liver structure caused by necroinflammation and fibrogenesis due to ACLD[18-20]. These
structural changes deteriorate the vascular (sinusoidal) architecture and promote
intrahepatic vasoconstriction which leads to an increase in intrahepatic resistance[20-22].
Along with progressive increases of  portal  blood flow, the elevated intrahepatic
resistance leads to the development of PHT[20,21].  The measurement of the hepatic
venous pressure gradient (HVPG) is the gold standard for assessing sinusoidal PHT
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with  an  HVPG ≥  10  mmHg defining  clinically  significant  PHT (CSPH)[20,23].  The
formation of portosystemic collaterals such as varices as well as clinical events that
define hepatic decompensation and hepatocellular carcinoma (HCC) development are
strongly associated with CSPH[20,23,24].

Importantly,  the  portal  vein  is  anatomically  linked  to  the  venous  blood flow
drained from splanchnic organs and the intestines. While subclinical PHT is primarily
due  to  increased  intrahepatic  resistance,  the  development  of  hyperdynamic
circulation  in  patients  with  CSPH[25,26]  further  deteriorates  PHT.  Hyperdynamic
circulation emerges from splanchnic vasodilation caused by an increased release of
vasodilating molecules and a decreased responsiveness to vasoconstrictors. However,
it  still  remains  unclear  at  which  stage  the  mucosal  barrier  is  affected  by  PHT.
Resulting  BT  is  believed  to  promote  liver  disease  progression  and  aggravate
splanchnic vasodilation[12].

The reduction of effectively circulating blood volume resulting from splanchnic
pooling induces a vicious circle via activation of compensatory measures, such as the
sympathetic nervous and renin-angiotensin-aldosteron systems. These mechanisms
aim to increase circulating blood volume to ensure adequate organ perfusion[12,27,28].
This state is characterized by an increment of heart rate and cardiac output as well as
decreased systemic vascular resistance[21,29]. In turn, portal venous inflow increases
and further exacerbates PHT[25].

Pathophysiological background on inflammation and bacterial translocation
The identification of Toll-like receptor (TLR) involvement in gut-liver-signaling has
provided important evidence for the link between inflammation and innate immunity
in  ACLD.  TLRs  are  mammalian  analogues  of  pattern-recognition  receptors  and
capable  of  recognizing  pathogens  or  pathogen-associated  molecular  patterns
(PAMPs)[30].  PAMPs  are  products  of  microbial  metabolism  that  are  specifically
produced by pathogens and not by the host[31]. The term comprises different molecule
types, such as lipids and nucleic acids[32]. Some TLRs recognize a diverse structural
spectrum of ligands. For example, TLR4 recognizes lipopolysaccharide (LPS), heat-
shock proteins,  fibronectin,  or  specific  virus envelope proteins[32].  In  addition to
PAMPs, TLRs also recognize danger-associated molecular patterns (DAMPs) that
originate from apoptotic cells[17].

TLRs are expressed in immune cells but also in epithelial cells and fibroblasts, and
different TLR subtypes are expressed in divers cellular compartments[32]. Recognition
of PAMPs by TLRs usually results in activation of an inflammatory pathway signaling
cascade that initiates upregulation of genes encoding for inflammatory cytokines,
chemokines  and  acute  phase  proteins[17,33].  While  in  principal,  this  response
mechanism  is  indispensable  for  protection  against  pathogens,  exaggerated  or
sustained activation may cause functional and morphological alterations (e.g.,  by
apoptotic  and  pro-fibrotic  pathways)  and  induce  a  compensatory  reduction  of
immune system activity upon chronic activation (e.g., via IL-10 or soluble cytokine
receptors),  thus,  promoting susceptibility to infections[33,34].  For example,  chronic
exposure to LPS can induce endotoxin tolerance by TLR4 dependent pathways, which
is characterized by dampened antigen presentation, reduction of proinflammatory
mediators and overexpression of anti-inflammatory signaling molecules[35].

Gut-liver crosstalk influences immune system homeostasis
The portal venous system transports nutrients and gut-derived signaling molecules as
well  as  pathogens  or  PAMPs/DAMPs  to  the  liver[36].  ACLD  is  associated  with
systemic proinflammatory changes that are clinically represented by elevated levels of
C-reactive protein, inflammatory cytokines and immune cell activation markers[37,38].
Different  hepatic  cells  interact  by  either  producing or  reacting  to  inflammatory
cytokines. The equilibrium of pro-inflammatory vs anti-inflammatory cytokines may
shift the course of disease towards progression or regeneration in patients with liver
disease[39].

Systemic inflammation in patients with ACLD as compared to healthy subjects is
considered  to  be  caused  by  translocation  of  pathogens  (or  derived  PAMPs and
DAMPs) into the portal and systemic circulation via an impaired intestinal barrier,
especially in the presence of intestinal dysbiosis[15]. The physiological slow blood flow
in liver sinusoids enables a close and thorough interaction of gut-derived molecules
with hepatic non-parenchymal and parenchymal cells, and importantly, with immune
cells[40].  Fenestrations within the sinusoidal endothelium between liver sinusoidal
endothelial  cells  (LSECs)  facilitate  extravasation  of  molecules  and migration  of
immune cells[40].  Induction of the inflammasome (i.e.,  mediators of inflammatory
response by upregulation of cytokines and caspases upon innate immune system
recognition of PAMPs and DAMPs) through these mechanisms are associated with
profibrotic and proinflammatory signaling cascades that putatively contribute to
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further aggravation of acute and chronic liver disease[41-43].
Hepatic immune cells “communicate” the presence of BT and liver injury to other

cell types by activation of inflammatory and profibrotic pathways[44]. For instance,
Kupffer  cells,  the  liver-specific  resident  macrophages  produce  cytokines  and
chemotactic molecules in response to liver injury. As a result, additional monocyte-
derived macrophages, but also natural killer and natural killer T cells are recruited to
the liver[45].  Recognition of LPS by TLR4 on these macrophages and Kupffer cells
results in activation of the NFκ-B-regulated inflammasome and increased Tumor
necrosis factor (TNF) -α synthesis[46]. In the continuous presence of injury, DAMPs
and/or  PAMPs,  these  cells  create  a  proinflammatory  environment  that  finally
facilitates hepatocyte injury and fibrosis via hepatic stellate cell activation, and even
promotes tumor development[44,45].

For  example,  alcohol  intake  is  associated  with  translocating  PAMPs  and
microbiome changes that induce inflammatory signaling pathways in the liver and
intestines[46-50]. Alcohol exposure also impacts on the expression profile of cytokines
produced by intestinal immune cells (such as TNF-α and IL-1β) that impact both on
liver disease and intestinal permeability[51,52].

Similarly, in non-alcoholic fatty liver disease (NAFLD), PAMPs reach the liver via
the  portal  venous  circulation  and  induce  tumor-necrosis-factor-dependent
inflammatory pathways in the liver[15,53]. Intestinal dysbiosis was found to be more
aggravated  in  NAFLD  patients  with  advanced  liver  fibrosis,  and  metagenomic
analysis  achieved high accuracy in  detecting advanced fibrosis  in  patients  with
NAFLD[54]. In another study, changes in microbiota composition were linked to the
development of hepatic encephalopathy[55].

The  significance  of  gut-liver  crosstalk  is  further  emphasized  by  studies  that
demonstrate a connection between HCC development and tumor progression to
chronic hepatic inflammation caused by BT[56]. For example, TLR activation by LPS
promotes not only fibrosis but also hepatocarcinogenesis[57,58], while blockade of the
TLR4 signaling cascade reduces HCC formation[59,60]. Orci et al[61] recently investigated
the role of  TLR4-mediated pathways in HCC recurrence in mice that underwent
temporary clamping of portal vessels to induce ischemic liver injury. The resulting
obstruction of splanchnic blood flow resulted in increased BT and promotion of HCC
recurrence through TLR4 signaling pathways. Importantly, ischemic preconditioning,
intestinal decontamination and interference with TLR4 signaling impeded tumor
recurrence. In summary, these observations point towards the connection between
pathological changes in the intestines and ACLD.

FUNCTIONALITY OF THE INTESTINAL BARRIER AND THE
ROLE OF BILE ACID SIGNALING

Intestinal barrier: Physiological and pathophysiological aspects
The intestinal barrier is composed of multiple components in different layers of the
intestinal wall and functions as a highly specialized obstacle for translocation of gut-
derived pathogens while  allowing passage of  nutrients,  water,  electrolytes,  and
hormones. Whereas the hydrophobic nature of cell  membranes of epithelial  cells
prevents direct passage of most hydrophilic molecules, restriction of paracellular
passage and mechanical integrity of the epithelium is ensured by - from apical to
basal - tight junctions (TJ) (zonula occludens ZO), adherens junctions (AJ) (zonula
adherens), and desmosomes (macula adherens)[62].  The main purpose of TJ lies in
preventing paracellular translocation, while AJ and desmosomes primarily provide
intercellular connection, thus causing proximity between epithelial cells that is vital
for TJ formation[62]. In total, more than 50 proteins are involved in TJ formation. These
proteins are usually subdivided into groups such as claudins, zonula occludens (ZO)
proteins, and occludin.

Although claudin family members have similar properties, variation within certain
regions cause differences in TJ charge selectivity and thus size and permeability of
paracellular  pores[63-66].  The interaction of  TJ  proteins  is  highly dynamic and the
majority of proteins do not remain bound in a steady-state fashion and are rather
subjected  to  constant  exchange[67].  ZO-1  seems  to  be  necessary  for  the  binding
interaction between occludin and the cytoskeleton at the TJ site[68]. Moreover, the close
interaction between TJ  and AJ  proteins  is  further  supported by the  finding that
trafficking of ZO-1 from the cytosol to the cell membrane depends on catenins, which
are essential components of AJ[69].  In turn, cell adhesion by E-cadherin (i.e.,  an AJ
component) is influenced by interaction of alpha-catenin with ZO-1[70].

The intestinal epithelium is additionally protected by a mucous layer that provides
a physical barrier between bacteria and epithelial cells. The mucous layer mainly

WJG https://www.wjgnet.com October 21, 2019 Volume 25 Issue 39

Simbrunner B et al. Gut-liver axis signaling in PHT

5900



consists  of  mucins (glycoproteins)  produced by goblet  cells[71,72].  Additional  host
defense and protection of the epithelium is provided via secretion of antimicrobial
peptides by Paneth cells[73].

Importantly, bacteria that are entering the bloodstream are not only required to
migrate across the epithelial barrier but also the vascular barrier that also contains TJ
and AJ. The bacterium Salmonella typhimurium, for example, can penetrate the vascular
barrier by interfering with Wnt/β-catenin signaling that regulates AJ functionality via
E-cadherin/β-catenin[74,75]. Importantly, hepatitis B virus also interferes with Wnt/β-
catenin signaling[76].

Considering  the  knowledge  on  the  complex  systems  regulating  intestinal
permeability,  it  is  imperative  for  translational  research to  explore  alterations  of
mucosal barrier function in ACLD (Figure 1). In this regard, it was found that alcohol
exposure decreases expression levels of TJ proteins[77,78]. Certain detrimental effects of
alcohol on the intestinal  barrier can be attributed to its  metabolite acetaldehyde,
which dysregulates protein phosphatases and kinases that ensure TJ and AJ integrity
between  intestinal  epithelial  cells[79-83].  Additionally,  decreased  production  of
antimicrobial peptides by Paneth cells was found to be associated with BT in cirrhotic
animals[84]. The finding that the inflammation marker IL-6 increases TJ permeability
for small molecules via upregulation of the claudin-2 gene does not give a rationale
for BT caused by IL-6 but may suggest that a pro-inflammatory state during liver
disease also impacts on gut permeability[85]. In contrast, the inflammatory cytokines
interferon-γ  and  TNF-α  have  been  shown  to  increase  gut  permeability  by
downregulation of TJ proteins[86-89].

Some pharmacological agents that are currently tested for the treatment of liver
disease were shown to effect the expression profile of certain TJ proteins in the gut
epithelium[90,91],  which  gives  a  clinical  and  therapeutic  perspective  that  will  be
summarized in another chapter of this review.

Intestinal permeability is linked to portal hypertension
In  the  setting  of  PHT,  the  elevated  plasma volume and increased  intravascular
pressure  in  splanchnic  vessels  influence  not  only  vascular  but  also  intestinal
permeability[92]. Again, a potential pathophysiological mechanism that links PHT to
BT lies in the congestion of the blood flow in the portal vein back to intestinal mucosal
microcirculation.  Chronic  exposure  to  elevated  portal  pressure  impairs
microcirculation,  promotes  neoangiogenesis,  and  increases  permeability  in  the
splanchnic vasculature[12,93]. Ultimately, these vascular changes also affect intestinal
barrier function.

An experimental  study comparing two rat  models  of  PHT,  partial  portal  vein
ligation (PPVL) and common bile duct ligation (BDL), demonstrated that angiogenesis
in the splanchnic vessels is increased in both models[94]. Similarly, vascular endothelial
growth factor and endothelial nitric oxide synthase were elevated in PPVL and BDL
rats. Conversely, microvascular leakage of macromolecules was only observed in the
BDL model, indicating that liver damage and/or cholestasis further aggravate the
disrupted homeostasis of neovascularization and vessel integrity[94].

In an exploratory human study, patients with PHT had increased dilatation of
intercellular spaces in the jejunum as compared to healthy controls[95],  as well  as
increased spaces between duodenal enterocytes and shortening and decreased density
of  microvilli[96].  Furthermore,  patients  with PHT had increased vessel  diameters
within the jejunal  and duodenal  mucosa,  edema within the subepithelial  lamina
propria, as well as a decline of villous/crypt ratio[97]. However, these and other studies
in  humans  are  often  limited  by  small  sample  sizes  and  insufficient  patient
characterization of by means of etiology, HVPG, and liver disease stage. Still, there are
several  studies  in  patients  with  portal  hypertensive  gastropathy  that  indicate
increased gastrointestinal permeability[93,98-100].

The finding that soluble CD163 (sCD163) correlates with the HVPG has provided a
biomarker-derived  link  between  the  immune  system and PHT[101].  For  example,
together with serum fibrosis  markers,  sCD163 can predict  CSPH with very high
accuracy[102]. The protein CD163 functions as a hemoglobin-haptoglobin scavenger
receptor and represents activation of Kupffer cells and macrophages as it is released
into the circulatory blood system upon TLR activation[103,104]. sCD163 levels were found
to  be  significantly  higher  in  the  hepatic  vein  as  compared  to  the  portal  vein,
supporting that liver-resident immune cells are indeed a significant source of elevated
sCD163 serum concentrations[105].

Interestingly, patients receiving transjugular intrahepatic portosystemic shunting
(TIPS) to reduce portal pressure had a post-interventional decline of LPS-binding
protein (LBP), whereas sCD163 concentrations remained unchanged[105].  Similarly,
markers of inflammation decline after TIPS implantation but remain independent
predictors of death, raising the question whether systemic inflammation and the role
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Figure 1

Figure 1  Farnesoid X receptor-fibroblast growth factor 19 signaling between gut and liver regulates bile acid homeostasis and impacts on mucosal barrier
function. Bacterial translocation triggers fibrosis and hepatic inflammation via activation of hepatic stellate cells and liver-resident macrophages. Fibroblast growth
factor (FGF) 19 binds to FGF receptor 4 on hepatocytes which subsequently suppresses the expression of CYP7A1. FGF19 is upregulated postprandially and
influences farnesoid X receptor-dependent metabolic pathways involved in gluconeogenesis, protein synthesis, insulin sensitivity and lipid profile. Kupffer cells and
monocyte-derived macrophages produce cytokines and chemotactic molecules in response to liver injury. Recognition of lipopolysaccharide by Toll-like receptor 4 on
macrophages and Kupffer cells results in activation of the NFκ-B-regulated inflammasome and increases tumor necrosis factor-α synthesis. In the continuous
presence of injury, pathogen-associated molecular patterns and/or danger-associated molecular patterns, these cells create a proinflammatory environment that finally
cause hepatocyte injury and fibrosis via hepatic stellate cell stimulation that results in production of collagen and α-smooth muscle actin. FXR: Farnesoid X receptor;
RXRα: Retinoid X receptor; BSEP: Bile salt export pump; FGF: Fibroblast growth factor; FGFR4: Fibroblast growth factor receptor 4; LPS: Lipopolysaccharide; α-SMA:
α smooth muscle actin; TNF: Tumor necrosis factor; IL: Interleukin; HSC: Hepatic stellate cell; LSEC: Liver sinusoidal endothelial cell; TLR: Toll-like receptor; PAMPs:
Pathogen-associated molecular patterns; α-SMA: α-smooth muscle actin.

of BT remain important factors in the course of disease in some patients, even when
the severity of PHT is successfully reduced by established treatment strategies[106,107]. In
addition,  this  observation  reveals  the  uncertainty  which  factors  contributing  to
progression or  regression of  disease  remain or  become relevant  after  etiological
treatment of liver disease. Recent findings in animal models of cirrhosis indicate that
extrahepatic  vascular  changes  (such  as  angiogenesis,  shunting  and  increased
splanchnic blood flow) persist and may represent an important cause of impaired
regression of PHT[108,109]. Based on the findings of this study, it may also be speculated
that  structural  changes  disturbing  the  gut  barrier  function  persist,  despite  a
substantial  reduction  in  intrahepatic  resistance/portal  pressure  by  etiological
treatments or TIPS. In the study of Holland-Fischer et al[105], however, LBP levels of
patients almost normalized after receiving TIPS.

Bile acids: Communicators between liver and gut in health and disease
The microbiome composition is considered to impact on the intestinal barrier integrity
during liver disease and unfavorable shifts towards pathogenic bacteria have been
found  in  both  experimental  and  clinical  studies,  as  extensively  reviewed  by
others[13,15,54].

In an animal model of primary sclerosing cholangitis (PSC), Klebsiella pneumoniae
induced pore formation in the epithelial layer, as well as priming of T-cells in the liver
that lead to aggravation of hepatobiliary damage. In this study, the synergistic effect
of  multiple  pathobionts  was  also  suggested,  which  seems  to  be  the  most  likely
scenario in human disease[110]. In turn, the microbiota composition depends on the
level and hydrophilicity of intestinal bile acids that likely represent another important
link between liver disease and gut barrier integrity[111]. Multidrug resistance protein 2
knockout mice (i.e.,  an animal  model  for  PSC) underwent significant  changes in
microbiota and serum BA composition. Interestingly, microbiota transfer to wild type
mice  led  to  liver  injury  which  was  associated  with  activation  of  the  NLRP3
inflammasome in both liver and intestines[112].

BAs  both  exert  direct  effects  on  bacterial  dysbiosis  and  adhesion  through
interaction  with  microbial  membrane  lipids  and proteins  that  cause  changes  in
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membrane  integrity,  leakage,  and  cell  death[113-119].  BAs  undergo  enterohepatic
circulation, which is characterized by secretion, reabsorption and recycling of primary
and secondary BAs[15]. Primary BAs are produced from cholesterol in hepatocytes and
are secreted into the bile duct. Most BAs (about 95%) are reabsorbed in the terminal
ileum via  active transport mechanisms, transported back to the liver in the portal
venous system and recycled by hepatocytes[120]. Conversely, a small percentage of BAs
is metabolized by intestinal bacteria. These so-called secondary BAs are passively
absorbed into the systemic circulation[15,121].

In  physiological  conditions  (“neutral”  pathway),  cholesterol  7α-hydroxylase
(CYP7A1) is  the most  important  rate-limiting enzyme for  primary BA synthesis.
Alternative pathways (“acidic” pathways) to synthesize BAs, including mitochondrial
sterol  27 hydroxylase (CYP27A1) and sterol  12α-hydroxylase (CYP8B1),  are only
responsible  for  a  minority  of  BA  synthesis  in  healthy  humans.  However,  this
equilibrium shifts towards the acidic pathways in patients with liver disease[122,123].
Importantly, these bile acids have slightly different chemical properties. The resulting
differences of bile acid composition in liver disease were linked to intestinal barrier
dysfunction and permeability[122,124,125]. Additionally, LPS was found to significantly
suppress  the  expression  of  CYP7A1  in  the  liver.  These  findings  suggest  that
dysregulated BA homeostasis participates in a vicious circle towards an impaired gut
barrier function[126].

Farnesoid X receptor activation affects intestinal barrier integrity
BAs also exert direct effects on gut barrier integrity through activation of the nuclear
bile acid receptor (farnesoid X receptor, FXR) in the intestinal epithelium[111,127]. FXR
belongs to the group of non-steroidal nuclear receptors and acts as a transcription
factor through binding to hormone response elements upon activation. Similar to
other receptors in this family, DNA binding requires heterodimer formation with
retinoic  acid receptor α (RXRα)[128].  FXR is  expressed both in liver  and gut,  with
highest expression levels located in the ileum[129]. More precisely, FXR is located in the
epithelium, while there is little or no expression in layers beneath, such as lamina
propria and tunica muscularis[127]. Decreased intestinal BA availability in cholestatic
animal  models  is  associated  with  increased  BT  and  endotoxemia.  Conversely,
concomitant oral administration of BAs has beneficial effects on BT[130,131]. Importantly,
FXR activation leads to upregulation of genes associated with intestinal protection,
gut  barrier  integrity,  and  amelioration  of  dysbiosis [127].  Administration  of
pharmacological  FXR  agonists  was  found  to  ameliorate  the  microbiota  profile,
increase antimicrobial peptides and expression of tight junction proteins, and finally,
reduce BT[91].

In  mice,  FXR  activation  in  enterocytes  located  in  the  ileum  upregulates  the
expression of  fibroblast  growth factor  (FGF)  15,  the  murine  analogue of  human
FGF19, via binding to response elements for the FGF15/19 gene[132,133]. Importantly,
binding to the FGF19 gene response element relies on heterodimer formation with
RXRα[134]. FGF15/19 is subsequently secreted into the portal venous blood system and
functions as a hormone of gut-liver signaling[132,133]. FGF19 binds to FGF receptor 4
located on hepatocytes and reduces BA synthesis by suppressing the expression of
CYP7A1[134].

Interestingly, short-term suppression of CYP7A1 is rather dependent on intestinal
than hepatic FXR activation[135]. This pathway seems to be independent from FXR-
induced expression of small heterodimer partner 1 that also suppresses CYP7A1 via
liver receptor homolog 1[136], suggesting two major mechanisms of FXR-dependent BA
feedback  that  are  independent  from  each  other [134].  Furthermore,  FGF19  is
postprandially upregulated and influences FXR-dependent pathways involved in
gluconeogenesis, protein synthesis, insulin sensitivity, and lipid metabolism[133,134,137].
Recent findings indicate that FGF19-induced phosphorylation of FXR is critical for
heterodimerization  with  RXRα,  migration  to  the  nucleus,  and  DNA binding–  a
mechanism that is impaired in patients with primary biliary cholangitis (PBC)[138]. This
is in accordance with the finding that FGF19 is upregulated in PBC patients and
correlates with disease severity[139]. Along with the effects of FXR activation on the
expression  of  proteins  involved  in  the  formation  of  the  intestinal  barrier,  these
findings indicate clinical relevance of FXR-FGF19 feedback mechanisms.

Addressing the “chicken vs egg” dilemma
The data on BT and its impact on hepatic and systemic inflammation vs splanchnic
neoangiogenesis  and  vasodilation  caused  by  PHT  reveals  the  “chicken  vs  egg”
dilemma  concerning  the  gut-liver  axis  concept:  It  currently  remains  elusive  if
microbiota changes and BT are primarily caused by PHT or if the presence of PHT
and its severity are rather a result of BT. It seems likely that there exists bidirectional
influence, however, clinical studies usually fail to separate whether BT is the main

WJG https://www.wjgnet.com October 21, 2019 Volume 25 Issue 39

Simbrunner B et al. Gut-liver axis signaling in PHT

5903



cause  for  disease  progression  or  is  in  turn  the  result  of  liver  injury  and  PHT.
However,  studies on genetic  variants  that  facilitate BT might provide important
insights  in  this  conundrum.  Impact  of  genetic  polymorphisms  that  impact  on
signaling pathways involved in intestinal  barrier or BT do not leave us with the
question “cause or consequence of disease progression” since this particular genetic
condition is inherently present in affected patients.

For example, it was found that patients with a genetic variant of the nuclear dot
protein 52 kDa (NDP52; regulates TLR signaling pathways) gene[140] or TLR2 variants
had  an  increased  risk  for  spontaneous  bacterial  peritonitis  (SBP)[141].  Similarly,
Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) variants
were associated with an increased risk of developing SBP and mortality[142,143]. NOD2
recognizes intracellular peptidoglycan fragments of bacteria and induces formation of
autophagosomes  as  well  as  host-defense  mechanisms  such  as  cytokines  and
antimicrobial peptides[144]. Patients carrying NOD2 variants had increased markers of
intestinal permeability and inflammation[93,145]. Interestingly, Reichert et al[146] recently
showed that  NOD2 variants  as  well  as  CSPH are independently associated with
bacterial infections in compensated cirrhosis. In contrast, only CSPH - and not NOD2
variants  -  remained  an  independent  risk  factor  for  infection  in  decompensated
patients.

FXR polymorphisms in humans have been shown to either promote or protect
against hepatic decompensation. For example, the rs56163822 G/T polymorphism
was  significantly  more  prevalent  in  patients  developing  SBP[147].  This  specific
polymorphism  is  associated  with  decreased  translation  of  FXR  and  reduced
transcriptional activity of target genes[148,149]. In contrast, patients with the FXR-SNP
rs35724 minor allele (i.e., FXR gain of function mutation) were less likely to develop
ascites or liver-related death[150].

Interestingly, Sorribas et al[151] recently found that the gut-vascular and mucosal
epithelial barriers were profoundly impaired in cirrhotic mice (induced by BDL or
carbontetrachloride administration, CCl4) while this effect was not present, or at least
significantly less pronounced, in portal-hypertensive mice without cirrhosis (PPVL).
Importantly, it was observed that these barriers were regulated by FXR-dependent
mechanisms (Figure 2) and BT was reduced upon treatment with FXR agonists[151].

These  experimental  data  are  highly  relevant  for  the  “chicken  vs  egg”  debate
because they suggest that PHT itself has only a minor impact on barrier integrity,
while it also explicitly considers that the muco-epithelial and gut-vascular barrier are
different entities. Along with observations from genetic studies that suggest that BT
and inflammation do not only result from decompensation but rather are drivers of
(further) hepatic decompensation, efforts towards elucidating this conundrum have
the potential to identify therapeutic approaches in patients with cirrhosis and PHT.

THERAPEUTIC STRATEGIES TARGETING THE GUT-LIVER
AXIS
Importantly, the identification and targeting of potentially reversible causes of liver
injury and their elimination will always remain the main management priority in
patients with chronic liver disease. In ALD, the most common cause of cirrhosis in
Europe[4], alcohol abstinence improves PHT[152] and the prognosis of patients in both
early and advanced stages of cirrhosis[153,154]. Similarly, weight loss in NASH patients
was linked to fibrosis regression and NASH resolution[155], and elimination of hepatitis
C virus by direct antiviral agents results in reduction of PHT and HCC risk[156-159].

As depicted above, PHT impacts on the course of cirrhosis by promoting hepatic
decompensation  and  ACLF,  hemodynamic  dysregulation  as  well  as  intestinal
permeability and BT. In turn, PHT is aggravated by hyperdynamic circulation and
also proinflammatory and profibrotic stimuli caused by BT. This reciprocal influence
contributes to further aggravation of the disease and also promotes carcinogenesis,
which  has  been  shown  in  different  etiologies  of  liver  disease[14,17,41,160,161].  Thus,
evidence-based therapeutic options to positively influence or ideally break the vicious
circle of a dysregulated gut-liver axis in cirrhosis are urgently needed. Consequently,
therapeutic approaches that target PHT, intestinal permeability, and the microbiome
composition may be all viable future therapeutic options for improving prognosis and
risk of further disease aggravation. Importantly, some of these therapeutic approaches
are currently being investigated in clinical trials in humans[160].

Reduction of portal hypertension: Non-selective beta-blockers
According  to  current  treatment  guidelines,  NSBB are  used  for  pharmacological
reduction of PHT in patients with cirrhosis[1,162]. The treatment rationale of NSBB is
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Figure 2

Figure 2  An impaired mucosal epithelial barrier integrity facilitates bacterial translocation and is regulated by farnesoid X receptor-dependent
mechanisms. Increased systemic inflammation in cirrhotic patients as compared to healthy subjects is considered to be associated with intestinal dysbiosis leading to
translocation of pathogens- or derived pathogen-associated molecular patterns and danger-associated molecular patterns into the portal circulation, which is further
facilitated by an impaired intestinal barrier. Farnesoid X receptor (FXR) activation in ileum enhances the expression of fibroblast growth factor 15 (mice) or 19
(humans) via binding to response elements in the nucleus. FXR activation leads to upregulation of tight junction proteins and decrease of bacterial translocation. FXR:
Farnesoid X receptor; IgA: Immunoglobulin A; RXRα: Retinoid X receptor; FGF: Fibroblast growth factor; LPS: Lipopolysaccharide; TJ: Tight junction.

primarily based on beneficial effects towards prevention of decompensation such as
variceal  bleeding[21,163,164].  Additionally,  cirrhotic  patients  under  NSBB treatment
presenting with ACLF were found to have lower grades of liver failure as well as
better chances of short-term (but not long-term) survival as compared to patients not
receiving  NSBB  treatment,  which  was  accompanied  by  lower  white  blood  cell
counts[165].  Of  note,  in  this  study patients  were not  randomized to  receive NSBB
treatment and the decision process on treatment initiation or discontinuation was not
assessed[165]. Importantly, based on animal data indicating beneficial effects on BT[166] it
was found that markers of intestinal permeability and BT decreased upon NSBB
treatment  in  patients  with  cirrhosis[93].  This  effect  was  also  observed in  patients
without  significant  reduction  of  HVPG by  NSBB treatment  (“non-responders”),
suggesting that even hemodynamic non-responders may benefit from continuation of
NSBB treatment[93].

Targeting the microbiome and bacterial translocation: Antibiotics, probiotics and
the role of proton pump inhibitors
Current guidelines recommend continuous prophylaxis with antibiotics for patients
with cirrhosis either at particularly high risk of or after SBP[7]. Primary prophylaxis
with norfloxacin significantly reduces the incidence of infections, however, it is not
entirely clear by now which patients with ascites actually have survival benefits upon
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primary prophylaxis[167,168]. Patients with genetic variants that increase susceptibility
for developing infections may represent an interesting target population for antibiotic
prophylaxis.  The  currently  ongoing  INCA  trial  (EudraCT  2013-001626-26)  will
hopefully provide data on the efficacy of primary prophylaxis in patients with NOD2
risk variants[169].

Survival benefits and decreased risk of AD and ACLF were found upon antibiotic
treatment at the occurrence of variceal bleeding[7]. Currently, fluoroquinolones (such
as  norfloxacin  and  ciprofloxacin)  and  third  generation  cephalosporins  are
recommended first line antibiotic regimens to be used in acute variceal bleeding[7] in
order to prevent infections.

Moreover, the portal pressure-lowing effect of norfloxacin has been investigated. A
small randomized controlled trial (RCT) with a cross-over design assessed the effect
of 4-wk therapy with norfloxacin and did not result in significant reduction of portal
pressure.  However,  sample size was limited and considerable changes in HVPG
during placebo treatment were observed[170]. Another RCT investigating the effect of 4-
wk norfloxacin therapy on hemodynamics found that patients with cirrhosis had a
reduction of serum LPS and higher mean arterial pressure, while there was a trend
towards a reduction of cardiac output and HVPG. Although the trial was limited by a
small  sample  size,  these  observations  might  indicate  that  inducing  changes  in
microbiota  composition  influences  BT  and  positively  influences  hyperdynamic
circulation in patients with cirrhosis[171].

Moreover, non-absorbable antibiotics such as rifaximin are currently used for the
treatment  of  hepatic  encephalopathy.  However,  there  is  conflicting  data  on  the
efficacy towards BT, systemic inflammation and hemodynamics: Some studies present
significant beneficial effects on systemic inflammation and hemodynamics[172,173], while
another RCT found no or only small benefits by rifaximin treatment[174,175]. The results
of currently ongoing trials on rifaximin will hopefully provide further insight into
treatment  efficacy  and  the  role  of  treatment-induced  microbiome  changes  in
cirrhosis[176].

Probiotics, i.e., bacteria that modify microbiome composition and mucosal integrity
by suppression of pathogenic bacteria, are currently studied extensively. However,
there is conflicting data on the efficacy of probiotics,  which has been extensively
reviewed by Wiest et al[160]. The authors summarize that positive effects of probiotics
are greatly dependent on host genetic properties, individual diet and microbiome
composition.

Lastly, awareness towards prudent use of proton pump inhibitors (PPI) in patients
with cirrhosis should be encouraged: PPI intake has been repeatedly found to be
associated with increased risk of developing hepatic encephalopathy and infections,
such as SBP[177-179]. Interestingly, PPIs induce both significant change of the microbiome
composition  as  well  as  bacterial  metabolism  in  patients  with  compensated
cirrhosis[180]. Although the data may not prove causality between PPI intake and BT,
cautious prescription of PPIs in patients with cirrhosis is warranted.

Mediating gut-liver-crosstalk: FXR-directed therapies
BA-associated signaling in the gut and the liver plays a major role in the gut-liver axis.
Many  effects  are  mediated  via  binding  of  BA  to  the  nuclear  receptor  FXR[181].
Therefore, several pharmacological compounds targeting FXR have emerged in the
last years (Table 1).

Treatment with the FXR agonist obeticholic acid (OCA) upregulates expression of
tight junction proteins (e.g., ZO-1, occludin and claudin-1/2), antimicrobial molecules
(e.g., angiogenin-1 and alpha-5-defensin) and reduces BT and intestinal inflammation
in cirrhotic rats[90,91,127]. Similarly, activation of hepatic inflammatory pathways and
fibrogenesis were reduced in animals upon OCA treatment[182]. OCA has primarily
been tested in clinical trials including patients with PBC and NASH. The FLINT RCT
in non-cirrhotic NASH patients indicated that OCA improves histological features of
the  disease,  however,  pruritus  seems to  be  an inconvenient  side  effect  that  was
reported by approximately one fifth of patients[183]. Furthermore, unfavorable changes
in the lipid profile (increase of total and LDL cholesterol) were observed upon OCA
treatment[183].  In  two  RCTs  in  PBC  patients,  OCA  improved  serum  levels  of
transaminases  and bilirubin,  however,  side  effects  like  pruritus  were  also  more
frequent in the treatment groups as compared to placebo[184,185]. Another safety issue
towards treatment with FXR-activators was raised by an animal study indicating that
overexpression of FGF19 is associated with HCC[186]. Further study results of trials
investigating  OCA  treatment  in  NASH  (REGENERATE;  NCT02548351),  ALD
(TREAT;  NCT02039219),  and  PSC  (AESOP;  NCT02177136)  are  pending.  Recent
presentation  of  an  interim  analysis  of  the  REGENERATE  trial  revealed  dose-
dependent  positive  effects  of  OCA  on  liver  fibrosis,  steatohepatitis  and  serum
parameters associated with liver damage[187]. Importantly, short-term treatment with
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Table 1  Farnesoid X receptor-targeting therapies in liver disease: Experimental vs clinical evidence

Location Target Experimental evidence Clinical evidence

Liver Metabolism and inflammation OCA/NASH/mouse: Decreased
hepatocyte apoptosis and less
fibrosis; similar steatosis[194]

OCA/NASH/hamster: Higher LDL
and lower HDL[195]

OCA/NAFLD/rabbit: Decreased
steatosis, inflammation, insulin
resistance and improved lipid
profile[196]

OCA/NASH/NCT01265498:
Improved histological features; 20%
pruritus, impaired lipid profile[183]

OCA/PBC/NCT01473524: Improved
biochemical laboratory values;
frequent pruritus[184,185]

OCA/PSC/NCT02177136:
Completed; statistical results
pending; PEP: Change of ALP levels
as compared to BL

Fibrosis and portal hypertension PX20606/CCl4/rat: Reduced fibrosis,
PP, and sinusoidal remodeling[192]

OCA/TAA/rat: Reduced fibrosis, PP,
hepatic inflammation[182]

OCA/NASH/NCT02548351:
Recruiting; PEP: 1 stage of liver
fibrosis improvement; NASH
resolution OCA/PBC/NCT02308111:
Recruiting; PEP: Death, OLT; MELD
≥ 15; decompensation
NGM282/PSC/NCT02704364:
reduced fibrosis biomarkers[193]

OCA/ALD/PESTO: PEP: Lower
HVPG after 7 d of treatment by 15%
or more, or HVPG < 12 mmHg[188]

Gut Microbiome OCA/Healthy/mouse: Lower
endogenous BA levels; elevated
Firmicutes in small intestine[197]

Fexaramine/NAFLD/mouse:
Microbiome changes induce different
BA profile; GLP-1 signaling improves
insulin sensitivity[198]

OCA/Healthy/NCT01933503:
Reversible changes in gram-positive
bacterial strains[197]

Intestinal barrier OCA/BDL/rat: Upregulation of TJ
proteins, decrease of intestinal
inflammation and BT[90]

OCA/CCl4/rat: Upregulation of
antimicrobial peptides, TJ proteins;
reduced BT and liver fibrosis[91]

GW4064/BDL/mouse: Upregulation
of enteroprotective genes and
improvement of barrier function[127]

Fexaramine/ALD/mouse:
Improvement of intestinal barrier,
lipid metabolism and alcohol-
induced liver injury[190] OCA +
Fexaramine/PPVL + BDL +
CCl4/mouse: reduction of BT; OCA:
Improvement of muco-epithelial and
gut-vascular barrier; Fexaramine:
Improvement of muco-epithelial but
no effect on gut-vascular barrier[151]

No human data available

Metabolism/inflammation Fexaramine/NAFLD/mouse:
Amelioration of metabolic syndrome,
induction of FGF15, decreased
insulin resistance[189]

OCA/IBD/mouse: Decreased
intestinal inflammation and
permeability[191]

No human data available

OCA: Obeticholic acid; NASH: Non-alcoholic steatohepatitis; LDL: Low density lipoprotein; HDL: High density lipoprotein; NAFLD: Non-alcoholic fatty
liver disease; NCT: National clinical trial identifier; PEP: Primary efficacy endpoint; ALP: Alkaline phosphatase; BL: Baseline; CCl4: Carbon tetrachloride;
PP: Portal pressure; TAA: Thioacetamide; OLT: Orthotopic liver transplantation; MELD: Model for end-stage liver disease; ALD: Alcoholic liver disease;
HVPG: Hepatic venous pressure gradient; BA: Bile acid; GLP-1: Glucagon like peptide 1; TJ: Tight junction; BT: Bacterial translocation; BDL: Bile duct
ligation; FGF15: Fibroblast growth factor 15; IBD: Inflammatory bowel disease.

the steroidal FXR agonist OCA in cirrhotic patients with PHT (PESTO trial) has shown
promising results in regard to a significant reduction of HVPG[188].

Newly  emerging,  non-steroidal  FXR-agonists  might  be  associated  with  an
improved side effect profile as compared to OCA and showed promising results in
metabolic liver disease[160]. Treatment with the non-absorbable FXR agonist fexaramine
that only affects intestinal FXR has shown positive results towards steatosis and
glucose homeostasis in animals and may represent an elegant solution for intestinal
FXR targeting with a favorable side effect profile[189]. Fexaramine was also associated
with improvement of the intestinal barrier, lipid metabolism and alcohol-induced
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liver injury[190]. Experimental data in the field of inflammatory bowel disease shows a
decrease of proinflammatory cytokines by intestinal immune cells that are associated
with increased gut permeability upon FXR activation[191]. In cirrhotic animals, a non-
steroidal  FXR-agonist  reduced  PHT,  BT  and  vascular  remodeling[192].  The  non-
tumorigenic  FGF19  analogue  NGM282  was  associated  with  reduced  fibrosis
biomarkers in a phase II  trial in humans with PSC, indicating an amelioration of
fibrosis  which  may  also  be  accompanied  by  an  amelioration  of  PHT.  However,
histological and hemodynamic data were not obtained within this study[193].

Taken together, therapeutics that target FXR are likely to have beneficial effects on
the gut-liver axis in cirrhosis, provided that potential side effects will be successfully
minimized by recent efforts to find even more suitable compounds.

CONCLUSION
In ACLD, PHT results from increased intrahepatic resistance and leads to splanchnic
vasodilation  and  neovascularization  in  the  intestines.  Gut  dysbiosis,  increased
intestinal permeability, translocation of bacteria and PAMPs can further promote liver
disease progression, often mediated via immune system activation and a subsequent
induction of a proinflammatory state. The close relationship between gut and liver
and their bidirectional interaction during liver disease has been termed gut-liver axis.
Treatment strategies targeting the gut-liver axis via amelioration of PHT, microbiota
composition, and intestinal barrier integrity are supposed to exert beneficial effects.
However, further studies in humans will be needed to assess efficacy and safety of
different FXR agonists and other gut-liver axis-oriented therapies in different clinical
settings. In general, further insight into the pathophysiology involved in the “chicken
and the egg” dilemma may reveal important novel targets that inhibit liver disease
progression or promote disease regression after etiological  treatment.  While this
review aims to comprehensively summarize the current state of knowledge obtained
by experimental and clinical studies, it is designed as a narrative review. Thus, the
possibility  of  selection bias  and underreporting of  negative studies  represents  a
potential limitation of this review.
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