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Abstract
In the past decade, more cancer researchers have begun to understand the
significance of cancer prevention, which has prompted a shift in the increasing
body of scientific literature. An area of fascination and great potential is the
human microbiome. Recent studies suggest that the gut microbiota has
significant roles in an individual’s ability to avoid cancer, with considerable focus
on the gut microbiome and colorectal cancer. That in mind, racial disparities with
regard to colorectal cancer treatment and prevention are generally understudied
despite higher incidence and mortality rates among Non-Hispanic Blacks
compared to other racial and ethnic groups in the United States. A
comprehension of ethnic differences with relation to colorectal cancer, dietary
habits and the microbiome is a meritorious area of investigation. This review
highlights literature that identifies and bridges the gap in understanding the role
of the human microbiome in racial disparities across colorectal cancer. Herein, we
explore the differences in the gut microbiota, common short chain fatty acids
produced in abundance by microbes, and their association with racial differences
in cancer acquisition.
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Core tip: In this paper, we summarize the literature in relation to the gut microbiome and
colorectal cancer. We provide unique perspectives and identify new areas of interest that
will progress the field with relation to colorectal cancer disparities. This is significant
because the comprehension of the microbiome is quickly becoming paramount for
personalized medicine and combating disease progression.
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INTRODUCTION
It is safe to classify cancer as the disease of the 21st century. Ongoing investigations
within the scientific community seek to identify novel approaches to remedy this
debilitating disease, and much progress has been made in recent decades. From the
discovery of immunologic drugs, to technological advancements in laser therapy, the
wide array of research being done to resolve the ever-complicated ailment known as
cancer continues to grow as researchers set  out  to find an effective treatment or
cure[1-6]. Both cancer and chemo prevention are areas that have grown considerably as
of late[7-10].The interest in these fields continues to thrive partially because of the high
cost of cancer remediation in addition to the numerous side effects associated with
chemotherapy drugs on the market[11-13]. In an effort to promote and conserve quality
of life, in particular for African American and low income individuals, efforts to alter
one’s environment and increase the avoidance of carcinogenesis is a much needed
area of investigation.

The  microbiome  is  important  in  human  health  and  disease,  and  while  the
microbiome is extremely complex, can change over time, and varies from person to
person, we can still gain pertinent information that will help treat and cure disease.
Researchers have undertaken the task of understanding the roles of the microbiome. It
is common knowledge that a vast majority of commensal microbes have symbiotic
relationships  with  their  host  organisms;  we  now  seek  to  understand  those
relationships and the information we can gain about disease. Several studies have
shown variance  in  microbial  abundance  and diversity  among healthy  and non-
healthy individuals[10,14]  (Figure  1).  According to  recent  investigations,  there  are
differences  and  trends  of  association  in  the  gut  microbiota  based  on  race  and
ethnicity, sex, geography, diet, and other such demographics[15-17].  As a result of a
study conducted by Chen et al[18], we now know that there are over 400 genes that can
be used to distinguish the specific microbiomes of Asian, European, and American
populations. Interestingly, Chen et al[19] at the Mayo Clinic in Rochester Minnesota
report significant associations in microbial β-diversity according to body mass index,
race, gender, and alcohol consumption. This study provides supporting evidence for
the influence of environmental factors that affect the microbiome.

With respect to cancer and the roles of the microbes indigenous to the human gut,
the need for further investigation and application is apparent. While we know there is
an association with the microbiota and human health, we do not fully understand the
significance of that association. It is believed that microbial transplantation could have
some benefit in cancer prevention and or remediation[20,21]. If this is the case, trials
need to be launched to assess this. We know that the consumption of certain foods can
result in epigenetic modulation of oncogenes and tumor suppressors[22-25]. We also
understand that metabolic processes are instrumental in the utilization of foods for
nutrient  absorption  and  energy  production[26,27].  The  question  that  arises  from
acknowledging the role microbes have in human health and disease becomes one of
understanding  how  much  of  the  metabolizing  of  nutrients  is  dependent  on
commensal  microbes,  and how these  microbes  drive epigenetic  processes  in  the
human organism. To begin unraveling these mysteries, we must first have a clear
understanding of the typical microbial profile of a diseased and healthy individual.
We (the scientific community) must also take on the daunting task of determining the
functionality of the by-products of the microbes identified through our efforts.

Understanding  the  complexities  of  the  microbiome  gives  rise  to  a  better
understanding  of  the  complexities  associated  with  the  individuality  of  disease
development and progression among different races and ethnicities. Diseases like
cancer  are  difficult  to  appropriately  address  in  part  due  to  differences  in
chemotherapy effectiveness and adherence. Non-Hispanic Whites (NHW) tend to
have overall better health outcomes when compared to Non-Hispanic Blacks (NHB)
and other racial  minorities in the United States[28-30].  A full  comprehension of the
differences among these groups at the microbiome level in concert with epigenetic
and genetic differences will help decrease the health disparity in these populations.
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Figure 1

Figure 1  Gut health and the influence of gut microbes: Microbial diversity is associated with better health
outcomes. A greater abundance of varied microbial species can be influenced by environmental and lifestyle factors.
This diversity can be associated with better health outcomes. The above graphic summarizes the relationship
between microbes human health.

RACE AND COLORECTAL CANCER IN THE UNITED STATES
Using incidence data from the Surveillance, Epidemiology and End Results Program,
cancer registries and National Center for Health Statistics, incidence rate of colorectal
cancer (CRC) was 49.2 per 100000 in NHB, higher than in NHW (40.2 per 100000) and
Asian/Pacific Islander (API,  32.2 per 100000).  Similarly,  mortality rates from the
disease using data from 2010 to 2014 were higher among NHB (20.5 per 100000)
compared to  NHW (14.6  per  100000)  and APIs  (10.3  per  100000).  Among adults
younger than 55 years, though mortality rates declined among blacks in the period
1970 (8.1 per 100000) to 2014 (to 6.1 per 100000), the rates were higher than for whites
(3.6/100000 in 1970 to 4.1/100000 in 2014)[31]. Several factors could explain higher CRC
rates in NHB. Blacks are usually diagnosed at more advanced stages of the disease
and hence have higher mortality rates[32].  Socioeconomic disparities account for a
significant  proportion of  the  difference  in  CRC incidence  between racial/ethnic
groups,  and these  socioeconomic  differences  have been attributed to  the  higher
prevalence  of  obesity,  unhealthy  diet  and  smoking[11,33].  Mortality  differentials
between racial groups can also be explained by inequalities in screening rates and
access[34], and healthcare access and follow up care following abnormal findings on
screening[35-37].

RACIAL DIFFERENCES IN DIET IN THE UNITED STATES
Several studies have reported a higher prevalence of unhealthy food intake among
NHB compared to other racial groups. Dunford et al[38] examined trends in energy
intake among United States adults aged 19 years and above from 1977 to 2012 using
multiple national survey data.  They found that NHB had a higher prevalence of
snacking energy intake and salty snacks in the period reviewed. Using the Healthy
Eating Index (HEI), Nowlin et al[39] analyzed NHANES data of United States adults
aged  20  years  and  older  between  2007  and  2012  and  showed  that  among  non-
diabetics, NHB had significantly lower HEI scores compared to NHW. The authors
also reported that the racial disparities were related to age, gender smoking status and
time spent in the United States.

Another approach to assessing dietary quality was employed by Rehm et al[40]. The
authors  computed  a  composite  variable  to  assess  overall  diet  quality  using  7
NHANES cycle from 1999 to 2012. They found that the estimated percentage of non-
Hispanic white adults with a poor diet significantly declined (53.9% to 42.8%), while
the corresponding figures were 64.7% to 57.7% among NHB and 66% to 58.9% among
Mexican American adults.  Furthermore,  for specific  food items,  total  vegetables,
whole grains, unprocessed red meat, and milk consumption remained higher over
time among non-Hispanic white adults compared to non-Hispanic black or Mexican
American adults.  Another  noteworthy study conducted by Wang et  al[41]  used a
composite index of dietary intake. The authors investigated trends in dietary quality
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among adults from 1999 to 2010 using the NHANES dataset and found only minimal
improvements in dietary quality over time among NHB. Additionally, in each survey
cycle, they found a significantly lower mean Alternate Healthy Eating Index-2010
among NHB compared to  Mexican Americans and NHW, though the difference
between NHW and NHB disappeared after adjusting for socioeconomic factors such
as  income  and  education.  The  authors  suggested  that  the  observed  differences
between NHW and NHB were likely explained by socioeconomic variables. Among
children and adolescents, using the NHANES data over a twenty-year period (1988 to
2008), Kant et al[42] found a greater increase in the number of eating occasions, the
amount of energy from all beverages and non-nutritive beverages in NHB compared
to other racial groups. Taken together, these studies indicate the poor dietary quality
of NHB compared to other racial groups, and that could explain part of the racial
disparities  in different  cancers,  especially those cancers where type of  diet  is  an
established risk factor.

THE INTERPLAY BETWEEN DIET, THE MICROBIOME, AND
CANCER
Cancer is an extremely complex and life altering disease which brings to rise the
urgency to unravel its complexities. Focus areas in the cancer research community
encompass a broad range of topics, and there has been a mass effort to minimize
cancer’s impact on quality of life and longevity. There are many approaches that can
be taken; however,  our interests lie in chemo adherence and prevention through
modifiable factors. Knowledge about the disease and its causation associated with
environmental  exposures  will  help  promote  awareness  and  aversion  to  certain
lifestyles that lead to mutations or epigenetic aberrancies, and cancer development.
Since epigenetics is a field that focuses on changes in gene expression with no change
in the underlying coding sequence[24], the regulation of epigenetic abnormalities is
thought to have strong potential in the reversing cancer. One such Food and Drug
Administration approved epigenetic therapy currently on the market treats cutaneous
T  cell  lymphoma.  Suberanilohydroxamic  acid  (SAHA),  known commercially  as
Vorinostat, is a well-documented histone deacetylase (HDAC) inhibitor[43].

Researchers have suspected that lifestyle factors contribute to human health and
disease for quite some time now. It was in 1964 that the surgeon general, Luther Terry
and  team,  published  the  report  that  smoking  had  a  direct  impact  on  cancer
development[44]. While this spurred changes in the regulations on tobacco, we believe
that this report, and reports like it, placed a higher importance on environmental
factors that lead to cancer. Takeshi Hirayama published one of the earlier documents
on the impact of nutrition on cancer in 1979. Hirayama placed emphasis on the idea
that lifestyle improvement (better diet, more exercise and smoking cessation) could be
an effective community cancer plan[45].  Since then, many developments have been
made with respect to cancer development and the environment over the decades.
Fast-forwarding to 2003, Margaret Mason published a review paper that focused on
the idea that diet could potentially modulate molecular signaling in cancer[8]; and to
date, several studies have provided further evidence of this[7,9,23,24,46].

We now know with certainty that the foods we consume can have a direct impact
on the state of human health and disease[39,47,48]. Several studies have begun to explore
how  these  foods  modulate  gene  expression  of  oncogenes  and  tumor
suppressors[7,24,25,43].  Two  recent  papers  detail  how  certain  natural  and  dietary
compounds promote cell death in breast cancer cell lines[7,25]. They demonstrate that
sulforaphane, an isothiocyanate abundantly in cruciferous vegetables, and withaferin
A a steroidal lactone from the Indian winter cherry, are efficient at downregulating
epigenetic enzymes that are typically over expressed in breast cancer[25]. Further, this
group also found that the prior-mentioned compounds increase the expression of
tumor suppressor gene p21 through transcriptional activation at the promoter region
through the up-regulation of a histone methylation marker associated with gene
activation[7].  With respect to the epigenetic impact of nutritive compounds, other
studies have found metabolic links among microbial organisms in the gut and choline
consumption. Choline is a vital nutrient that acts as a source for the methyl groups
needed for metabolic processes in humans. Apparently, choline utilizing bacteria can
compete with the host for this nutrient, thereby impacting global DNA methylation
patterns in mice[27]. In 2010, Moestue et al[49] noted that in breast cancer models, there
were elevated levels of choline metabolites, and more recently it was found that while
elevated choline metabolites were present in resistant breast cancers, chemotherapy
induced an even greater increase in these metabolites[50]. Further study may reveal
that choline-consuming bacteria like, Escherichia coli  536, are capable of altering
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epigenetic aberrancies (i.e., hyper/hypo-methylation and tumor-suppressor silencing
and oncogene activation respectively) that lead to cancer.

Interestingly,  other  studies  have  also  reported  anticancer  effects  at  the  gene
regulatory level with respect to immune responsiveness. Recently, Rubio-Patino et
al[51]  published a  study on the  effects  of  a  low-protein  diet  on inositol  requiring
enzyme 1α (IRE1α)-dependent anticancer immunosurvellience. IRE1α is partially
responsible for the activation of the endoribonuclease domain that catalyzes splicing
of X-box binding protein 1. In addition to this function, IRE1α RNAse activity has
roles in IRE1-dependent decay of mRNA, rRNA, and microRNAs which in turn can
lead  to  modulation  of  adaptive  immunity[52].  Mediterranean,  vegetable  based,
Japanese diets, and others all show promise at decreasing cancer risk and mortality[46] .
Soldati et al[46] detail in their 2018 paper, that diet affects cancer progression through
either systemic or local effects within the tumor microenvironment. Higher glucose
levels are known to have an impact on immune activity, which in turn destabilized
immune functionality. That being said, regulatory T cell function can be regulated by
the metabolism, and the metabolism is regulated by patterns of dietary intake and
physical activity[53].

The gut microbiome also has key roles in cancer risk reduction. In this modern era
of  research  and  medicine,  the  comprehension  of  the  microbiome has  expanded
considerably. Causal mechanisms for cancer have been identified in microbes[54]. Some
of these mechanisms are immunologic, and others appear to be epigenetic[55,56]. Iida et
al[57]  published  one  such  immunologic  study  that  details  the  influence  of  the
microbiome in  disease  progression in  2013.  They found that  antibiotics  actually
decreased the efficacy of the tested immunotherapy leading to the conclusion that
commensal bacteria have an effect on chemo adherence by modulating immunologic
factors in the tumor microenvironment. More recently, studies have indicated that
immune  checkpoint  inhibitors  are  regulated  by  gut  microbes[58],  with  crosstalk
occurring between intestinal epithelial and lymphatic cells. Interestingly, regulatory T
cells appear to be inducible by intestinal microbial organisms of the clostridium genus
which may suggest a therapeutic approach to immune response[59].

Maryann Kwa and co-authors published an article a couple years ago that suggests
the bacterial species housed in the human intestine regulate estrogen metabolism.
Interestingly,  gut  microbiota  may affect  the  risk  of  acquiring estrogen-receptor-
positive breast cancer due to certain microbes being capable of metabolizing estrogens
in what they coin as the estrobolome[60]. In addition to this unique perspective, other
leading minds have discovered that the bacterial organism Clostridium perfringens
enterotoxin has the ability to suppress claudin-4 (a regulator of proliferation and
cancer cell metastasis) protein expression, kill gastric cancer cells in-vitro, and inhibit
tumor growth in mice xenografts[61]. Other studies have suggested that microbes can
be used to biosynthesize nanoparticles designed to target and treat various forms of
cancer[62].  Considering the broader implications of  microbial  composition and its
utilization in cancer elimination, the field is subject to grow considerably.

Routine exercise and proper nutrition have proven to be effective in reducing the
risk of carcinogenic related fatality in cancer patients. Individuals who consume more
plant  matter  have  overall  better  health  outcomes  according  to  a  number  of
epidemiological  studies.  Clear  patterns  in  dietary  intake  and cancer  risk  can be
observed among different  cultures,  races,  and ethnicities,  which have led to  the
generation of hypotheses centered on the idea that racial and cultural differences are
involved in dietary habits. Researchers have found that there are several variables
apart from genetic factors that have been associated with increased cancer mortality in
minority populations, including socioeconomic status, and the availability of healthy
food options. That being said, it is important to recognize the significance these two
modifiable factors have in cancer prevention in relation to the microbiome. Monda et
al[26]  state  that  exercise is  capable of  enhancing the amount of  positive microbial
organisms  resulting  in  a  richer  diversity.  According  to  another  report,  harmful
changes with associated polychlorinated biphenyls, pollutants in air and water, are
decreased in the gut microbiome of exercising mice[63]. This provides a bit of insight on
lifestyle and environmental factors that regulate the abundance or lack of commensal
bacteria in host organisms and how they impact health. It would be interesting to
conduct an in depth study to determine if microbial diversity is regulated by diet and
if  microbial  abundances  attributable  to  certain  diets  are  in  turn  responsible  for
regulation of carcinogenic processes. One study discusses fermentable carbs, or non-
digestible  carbohydrates  that  undergo  fermentation  by  microbial  organisms  to
produce short chain fatty acids (SCFAs) that can be utilized by the host[64]. It would be
meritorious  to  observe  the  impact  of  SCFAs  produced  in  this  manner  in  cell
metabolism. We may yet find that fermentable carbohydrates are capable of reducing
the persistent activation of aerobic glycolysis in cancer.
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CANCER RISK AND PREVENTION AMONG RACES AND
THE INFLUENCE OF THE MICROBIOME
Several studies have indicated that microbial composition is strongly linked to dietary
intake and differences among racial and ethnic groups unassociated with diet. We
know that there are a number of events responsible for the progression of disease. As
research  progresses,  the  scientific  community  has  found there  to  be  trends  and
correlations with microbial composition, regulation of inflammatory processes, and
immune response with microbes playing a significant role; at the very least serving as
bio-indicators of some sort. It remains unknown as to whether or not these organisms
and their by-products aid in the direct regulation of epigenetic mechanisms that help
regulate the human organism’s biological processes; however, it is plausible. With
respect to African American susceptibility to cancer and a greater overall disease
mortality,  we may find a difference in the abundance of microbes in NHB when
compared to racial groups with better disease outcomes. Pilot studies conducted by
researchers  confirm differences  in  microbial  diversity  in  healthy individuals  by
race[18,65]. Alternatively, we may find that gut equilibrium conducive to individual
survival differs from person to person.

Findley et al[14] published a comprehensive review in 2016 that noted the importance
of not assuming race and ethnicity to be causal factors in microbial diversity. We
recognize that there are numerous cultural differences that could potentially lead to
the differences reported in the studies conducted to date. It remains that NHB and
persons of low SES have a number of stressors and lifestyle factors that could directly
influence the microbiome[66]. Despite these cautions (avoiding assumptions), one 2015
study shows, that Western diet consumed by individuals of African lineage can be
damaging  and  creates  an  environment  less  capable  of  seamlessly  carrying  out
biological  processes (i.e.,  cellular division and differentiation)[67].  With respect to
choline, introduced in the previous section, O’Keefe et al[67] found that Africans on
their original diet had a lower level of choline in their fecal water as compared to
NHB on the Western diet suggesting the greater microbial diversity reported in the
African’s profile results in a greater metabolism of choline. In addition, epigenetic
control of the expression or lack of expression of certain genes that are vital in the
regulation of tumor suppression and oncogenesis is thought to be linked the gut flora.
Histone modifying enzymes are sensitive to microbial metabolites, and they have
been shown to mediate phenotype through programing gene expression thereby
regulating  cellular  functionality[68].  This  leads  to  the  belief  that  NHB  cancer
susceptibility can somehow be linked to gut microbial composition, their metabolites,
and their influence on the epigenetic regulation of processes that control oncogenes
and tumor suppressors.  Another paper that  begins to establish the link between
health disparities and the gut microbiome details key differences in the abundance or
lack of certain SCFAs in the stool of African Americans, Caucasians and Asians[69].

We recognize the weakness in some of these studies stems from the fact that these
data are self-reported questionnaires, which limit the accuracy of the similarities/
differences of diet and environment. However, it is intriguing that preliminary results
show significant  differences  in  NHB SCFA production,  fecal  pH,  and microbial
patterns  compared  with  other  races[69].  It  can  also  be  noted  that  there  is  a  clear
difference  in  the  microbial  profiles  of  healthy  and  non-healthy  individuals[70].
Interestingly, patients appear to be more susceptible to mortality from a disease when
they have lower microbial diversity[71]. Since efficiency of certain immunotherapies for
cancer  treatment  is  thought  to  be  influenced  by  the  gut  flora[56],  it  is  becoming
increasingly apparent how significant the interaction between the microbiome and
cancer prevention and therapy is.

SHORT CHAIN FATTY ACIDS
There are a number by-products and metabolites resultant from the consumption of
food  products.  The  abundance  and variety  of  these  by-products,  much  like  the
abundance and variety of certain microbes,  is  determined by environmental and
lifestyle factors (i.e., diet and exercise). The main products absorbed as a result of
digestion are long chain fatty acids, simple sugars like glucose, and monoacylglycerol,
a class of glycerides[72].  In addition to these products are SCFAs, which are major
nutrients resultant of bacterial fermentation. We briefly touched base on these fatty
acids in the previous sections. The most studied SCFAs that have shown anti-cancer
potential are acetate (much of which may be primarily derived from diet), butyrate
and  propionate,  with  acetate  being  the  most  abundant  SCFA  in  the  colon  and
propionate and butyrate being found at very low amounts in diseased individuals[73].
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Interestingly,  Krautkramer et  al[74]  conducted a study that demonstrated how the
Western diet in mice limits SCFA production of microbes and negatively impacts the
host’s chromatin.  They further display SCFA supplementation to be sufficient in
mimicking epigenetic phenotypes resultant of gut microbiota, thereby demonstrating
the importance of these microbial metabolites in host homeostasis[74]. Here on we will
discuss the significance of these metabolites in their regulation of common cancers.

Acetate
Acetate is a SCFA found in abundance in the human colon. Over the years, this fatty
acid has been reported to impact tumor cells as nutrient[75,76]  and as an inducer of
apoptosis[77-81].  Despite  the  contradictory  reports,  there  is  considerable  evidence
supporting  acetate’s  importance  in  human  physiological  processes.  Acetate  is
mandatory for histone acetylation[82,83], an epigenetic mechanism known for its roles
regulating chromatin accessibility. Most notably, acetate is partially responsible for
the appropriate binding of transcription factors for the activation of tumor suppressor
genes. Conversely, inappropriate histone acetylation can allow for the activation of
oncogenes. This subsection will delve into the roles of acetate in common cancers that
affect the United Sates.

Colon cancer/CRC is one of the Western world’s most common cancers in men and
women with combined total of approximately 140250 new cases per year according to
the American Cancer Society.  There has been a considerable amount of  research
conducted over the years suggesting the significant roles of the microbiome in this
particular cancer. Since acetate has been reported to be found in abundance in the
colon and to be used in cancer cell metabolism, the regulation of this particular SCFA
is of extreme intrigue within the scientific community. A number of studies have
sought to determine the effect of acetate on CRC cells in-vitro.  One in particular
shows  that  this  SCFA  inhibits  cell  growth,  decreases  cell  viability  and  induces
apoptosis in two CRC cell lines[80]. Alternatively, in brain cancer, acetate competes
with glucose for the generation of TCA cycle intermediates despite glucose being
more abundant[84,85]. An interesting review from 2014 highlights the importance of
acetate in fueling cancer cells[86]. Interestingly, this does not appear to be the case in
CRC[77,80,87]. One paper that attempts to unravel the role of acetate in CRC cell death
demonstrates the ability for this SCFA to increase the expression of MCT1 and MCT4,
two  plasma  membrane  lactate  transporters  and  CD147,  a  multipurpose
transmembrane protein associated with inflammation and tumor invasion[87].  The
comprehension of the mechanisms involved in acetate’s ability to influence CRC
shows much therapeutic potential and promise for further scientific investigation.

Butyrate
A highly sighted review article published in 2011 by Berni Canani et al[22] highlights
the numerous roles of butyrate (microbiome dependent) in modulating human health
and disease. They detail how this particular SCFA has “potent regulatory effects on
gene expression”. Butyrate has been shown to regulate inflammation by inhibiting
NFkB[88], it can improve memory function in Alzheimer’s disease mouse models[89],
and it has been shown to negatively impact cancer cell progression across a number of
tumor  types[23,90-93].  Butyrate  also  has  significant  roles  in  providing  energy  for
colonocytes  so that  they may multiply and divide appropriately and avoid self-
digestion. Interestingly, it accounts for approximately 70% of total colon cell energy
utilization[94],  but  only  comprises  about  15%  of  the  SCFA  found  in  the  colonic
lumen[22]. There is considerable evidence in support of higher levels of butyrate being
associated with better health outcomes, lower pH, and diets rich in fiber. Though
butyrate has been shown to promote the growth and proliferation of colon cells, it is
capable of inducing apoptosis in mutated cancer cells[91,92,95].  This SCFA has been
studied quite a bit as an anticancer agent. A quick search of butyrate and cancer on
PubMed will produce thousands of results with relevant material.

Several studies have shown butyrate to be an anti-cancerous agent resultant of
bacterial fermentation of non-digestible carbohydrates[96]. Microbial organisms take up
fibers that the host organism cannot digest in the colon and produce butyrate as one
of three primary SCFAs. In 2017, Li et al[97] published an interesting study on butyrate
in CRC cell  lines. They report that this SCFA is capable of decreasing cancer cell
migratory ability by inhibiting Akt/ERK signaling with dependency on HDAC3[97]. It
is our opinion that the study could have been strengthened had the investigators
chose to observe the effects of butyrate on HDAC3 gene and protein expression. There
is quite a bit of evidence in support of butyrate’s ability to inhibit HDAC activity
across  a  number  of  cancer  types[98-100].  A  team  recently  published  an  article
demonstrating butyrate’s ability to act synergistically with the toxic chemo drug
irinotecan[90].

The mechanisms by which butyrate has been demonstrated to promote CRC cell
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senescence are varied. A number of reports reveal a complex network of oncogenes
and tumor suppressors that have been modulated by this fatty acid. One study found
that neuropilin-1, a receptor for vascular endothelial growth factor and a key player in
apoptotic signaling, is down regulated by butyrate[101]. Other studies show butyrate to
regulate CRC cell apoptosis through its impact on the pro-apoptotic pathway by up-
regulating BAK and activating caspase-3[92]. There have been a number of studies that
attribute  butyrate’s  apoptotic  ability  to  its  regulation  of  epigenetic  genes  and
microRNAs.  In  2015,  Hu  et  al[102]  found  that  miRNA-92a,  known  for  its  role  in
promoting cancer cell proliferation, was inhibited by butyrate. It can be inferred that
the inhibition of this oncogenic miRNA is in part due to butyrate’s HDAC inhibitory
abilities as they show similar results when comparing to the HDACi SAHA[102]. The
fact  that  a  naturally occurring compound can have such a beneficial  impact  is  a
significant discovery. Findings like these help usher in new discoveries that help
improve the quality of life in cancer patients.

Propionate
Propionate is an important SCFA produced from the dicarboxylic acid pathway or the
acrylate pathway and a substrate for hepatic gluconeogenesis[103]. It appears to play a
key role in cholesterol metabolism principally as an inhibitory agent and potentially
has a cholesterol lowering function[47,104]. Propionate is also known for its antifungal
and antibacterial  effects,  anti-inflammatory  and anti-carcinogenic  properties[105].
Although butyrate has been consistently shown to be the most potent of the SCFA,
propionate also demonstrated anticancer activity in many studies[9,106]. In addition,
propionate enhances the anti-proliferative function of butyrate due to its inhibition of
cell growth[107]. Concerning histone acetylation, Kiefer et al[108] showed that butyrate
and propionate, but not acetate significantly enhanced histone acetylation in colon
cancer cells after 24 h incubation. Furthermore, the additive effects of butyrate and
propionate when combined in a mixture also amplified histone acetylation[108].

There is compelling evidence of the importance of SCFA including propionate in
the cancer prevention and the potential of these chemicals in treatment. A study by
Emenaker et al[106] treated fresh surgical colon cancer cells with SCFA and found all
SCFA inhibited primary invasive human colon cancer invasion and significantly
altered protein expression levels  of  established cancer genes:  p53,  Bax,  Bcl2 and
PCNA. Giardina et al[109]  using HT-29 CRC cell  lines showed that propionate and
butyrate, but not acetate, could alter the metabolism of reactive oxygen species and
increase cellular peroxide generation. This ability to produce peroxide enables the
induction of apoptosis in CRC cell lines.

There is evidence that the anti-carcinogenic effects of propionate could differ from
those of other SCFA. For example, Tedelind et al[105] compared the anti-inflammatory
properties of butyrate, propionate and acetate and found that propionate and butyrate
were equally effective in suppressing NF-KB reporter activity, immune related gene
expression and cytokine release in vitro. The authors concluded the SCFA could be
useful for treating inflammatory bowel disease. Another study using proteomic and
cellomic analysis methods[95] showed that propionate had different mechanisms of
action on cellular proteins compared to other SCFA such as butyrate and valerate.
Specifically, propionate had less pronounced effects on keratins and intermediate
filaments,  and  on  b-tubulin  isotypes  expression  and microtubules  compared  to
butyrate and acetate.  Concerning colitis  associated CRC, propionate as part  of  a
SCFAs  mix  prevented  development  of  tumors  and  attenuated  the  colonic
inflammation in a mouse model of colitis-associated CRC[110], and holds promise in the
management of colitis associated CRC.

RACIAL DIFFERENCES IN THE PROFILE OF GUT
MICROBIOTA AND SCFA
The bacterial composition of the gut and SCFA content has been shown to differ
between racial/ethnic groups. Hester et al[69] compared bacteria and SCFA in the stools
of a small pilot sample of 20 apparently healthy participants (five each were NHW,
NHB, Hispanics and American Indians). The authors found lower acetate, butyrate
and total SCFA content and a higher pH in NHB compared to the other racial groups.
In addition, levels of Firmicutes bacteria were higher in NHB compared to Whites and
Hispanics,  and  lower  levels  of  Lachnospiraceae,  known  to  be  involved  in  the
production of butyrate. Moreover, the ratio of Firmicutes compared to Bacteriodes, that
has been associated with obesity was also higher among blacks and could partly
explain the links between obesity and colon cancer.

Two recent studies have reported that Bacteroides  were more commonly found
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among NHB. Farhana et al[15] showed that Bacteroides were more abundant in colonic
effluents  of  AAs  compared  to  NHWs,  especially  Fusobacterium  nucleatuma  and
Enterobacter species, whereas Akkermansia muciniphilia and Bifidobacterium were higher
in  NHW.  The  authors  also  showed  that  AA  had  decreased  microbial  diversity
compared to NHW. Bacteroides  were also shown to be more common among AA
compared to NHW in a study of stress and microbiota among healthy individuals[66].
Higher stool counts of Bacteroides  were also found in NHB in an older study that
compared dietary habits and fecal microbiota of NHB and NHW[111]. In addition, NHB
reported lower dietary calcium, magnesium and Vitamins A, C, D, and E.

A recent study compared colonic biopsies of healthy mucosa of CRC cases and
tumor free controls and found a greater abundance of sulfidogenic bacteria among
NHB  compared  to  NHWs  among  cases  and  controls[65].  Additionally,  Bilophilia
wadsworthia (evidenced to be promoted by saturated fats from Western diets low in
fiber[112,113])  and  Pyramidobacter  spp  were  significantly  higher  among  AA  cases
compared to controls[65]. The study also showed a higher consumption of meat, fat and
protein intake among NHB. David et al[113] also report that diet has the ability to alter
the human gut microbiome. With regard to obesity, a known risk factor for various
types of cancer, microbiota of the gut were shown to be instrumental in the regulation
of  diet  induced  obesity  in  lymphotoxin  deficient  mice[112].  This  shows  that  this
particular  molecule  key  in  gut  immunity,  is  capable  of  modulating  commensal
responses enabling diet induced obesity, and we have a better understanding of the
pathways involved in microbiota induced weight gain[112].  Comparison of the gut
microbiota between populations with wide variations in dietary composition could
shed light on the potential mechanisms involved in the role of diet and gut microbiota
in carcinogenesis. A small study by Ou et al[114] studied the difference in gut microbiota
between  native  Africans  (NA)  and  NHB  and  showed  that  SFCA,  total  bacteria,
microbial genes encoding for methanogenesis and hydrogen sulphide production
were higher among NA while secondary bile acid was higher among NHB in fecal
samples.  The  findings  point  to  a  higher  saccharolytic  fermentation  and  lower
proteolytic fermentation among NA compared to NHB. Concerning specific bacteria,
Prevotella was more common in NA while Bacteriodes were more abundant in NHB.
The authors ascribed the observed differences in stool samples to NHB eating more
dietary meat and fat and less complex carbohydrate and fiber. The same authors also
showed in another study[115] comparing a small sample of high colon cancer risk in
NA, NHB and NHW, that the levels of experimentally carcinogenic secondary bile
acids  (lithocholic  and  deoxycholic  acids)  was  higher  among  NHB  and  NHW
compared to NA. A related study[116] also showed that NA harbored a more diverse
population of, methanogenic Archaea compared to NHB and NHW. The populations
of other hydrogenotropic bacteria such as sulphate reducing bacteria was also more
distinct among NA. Another study involving NA[117] examined total colonic evacuants
for SCFA, vitamins, nitrogen and minerals and found total SCFA and butyrate were
higher, but calcium, iron and zinc were lower among NA compared to NHB and
NHW, supporting the mediatory role of these chemicals in the effects of microbiota in
colon cancer development.

NA  have  been  shown  to  have  a  propensity  for  methanogenic  rather  than
sulfidogenic disposal  of  hydrogen generated from microbial  fermentation in the
human colon. In a South African study, NA excreted more methane in their breath
compared to whites in the same country[118]. Furthermore, stool samples of European
ancestry populations exhibited more of sulfate reduction activity. The differences
observed in the bacterial composition of stool samples of NA and NHB is due to the
dietary difference with the Africans consuming more coarse grains and vegetables.

Apart from intestinal microbiome, some other studies have examined the role of the
oral microbiome in CRC risk using a multi-ethnic sample. For example, Li et al[16]

showed unique differences in the patterns of saliva microbiome between individuals
living in Alaska, Germany and Africa. In another study, Yang et al[17] using a nested
case control study showed that Treponema denticola  and Prevotella intermedia  were
associated with increased CRC risk among a sample made of predominantly EA and
AA. Even though this study showed similar associations in AA and EA, they were
more significant among AA, although AA were about three times more than EA in the
sample.  The  authors  however  alluded  to  the  fact  that  differences  in  the  oral
microbiome by race could explain the difference in association between the racial
groups.

DISCUSSION AND CONCLUSION
We have reviewed the differences between race/ethnic groups concerning dietary
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habits, how different diets affect the gut’s environment, and the potential role of these
differences  in  explaining  disparities  in  CRC incidence  in  the  United  States  and
between native African populations. Our review reveals that unique opportunities
exist in taking advantage of the racial differences in diet, other diet-related CRC risk
factors such as obesity and diabetes, gut microbiome, and the genetic architecture of
CRC  for  a  greater  understanding  of  the  complexity  of  CRC  etiology  and
carcinogenesis.  Much  of  the  literature  we  cite  includes  studies  that  show  that
environment, diet, and lifestyle can alter the microbiome and are associated with
cancer risk, but whether these co-associations are linked is still unknown.

Several studies revealed that there is a direct link between dietary intake and the
microbial profile of an individual, and this ultimately influences the risk of several
diseases including cancer. A study we mention earlier in this review corroborates the
link between dietary  intake and microbiota.  The authors  switched regular  diets
between South African blacks and AA during a two-week period. Food exchanges of
low  fat,  high  fiber  for  AA  and  high  fat  low  fiber  for  NA  resulted  in  increased
saccharolytic fermentation and suppressed secondary bile acid synthesis in AA[67].
Studies also consistently showed that AA consume less healthy diets and this could
explain the higher rates of CRC among this population. Foods from an unbalanced
diet deficient in fiber and high in meat, such as those consumed by AA, promotes
proteolytic rather than saccharolytic fermentation and this results in branched chain
SCFAs  such  as  isobutyrate,  isovaleric  and  2-methylbutyroic  acid.  Moreover,
proteolytic  products  including  nitrogenous  metabolites  such  as  hipurate  and
ammonia have been shown to increase inflammation and carcinogenesis[48].

Evidence from studies demonstrating direct links between dietary habits, the gut
microbiome and CRC risk indicates there is an urgent need for multiethnic studies of
gut microbiome and SCFA and CRC. Moreover, such studies need to incorporate
dietary intake, blood levels of nutrients and their metabolites, genes involved in the
metabolism of various diets, and epigenetic factors. In addition, greater insights into
colorectal etiology could be gained by exploring the large differences in diet, and
several other environmental factors between native African populations and African
Americans living in the United States. Recent estimates revealed greater than 10-fold
difference in incidence rates of CRC between the United States and most of sub-
Saharan  Africa[119,120].  Multipronged  approaches  (such  as  integrative  molecular
epidemiology) to study the associations between dietary habits, profile of the gut
microbiome and CRC across populations could provide great insights into the factors
responsible for the widely varying CRC incidence rates across populations. Finally,
most of the studies reviewed had small sample sizes that precluded adequate power
to investigate CRC subtypes. Large sample multiethnic cohorts will afford greater
understanding of CRC subtypes especially given the clear differences in the etiology,
prognosis and approaches to the management of these subtypes.
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