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51 years in of Chikungunya clinical vaccine development: A historical perspective
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ABSTRACT
Chikungunya fever (CHIKF) is a mosquito-borne disease caused by Chikungunya virus (CHIKV). This virus
is considered a priority pathogen to the UK government, the US National Institute of Allergy and
Infectious Diseases (NIAID) and the US military personnel, due to the potential of CHIKV to cause
major outbreaks. Nearly all CHIKV infections are symptomatic, often incapacitating and patients experi-
ence severe joint pain and inflammation that can last for more than one year with 0.4–0.5% fatality rates.
Mother-to-child transmission has also been described. Despite this re-emerging disease has been
documented in more than 100 countries in Europe, Oceania, Africa, Asia, the Caribbean, South and
North America, no licensed vaccine is yet available to prevent CHIKF. Nevertheless, various develop-
ments have entered phase I and II trials and are now viable options to fight this incapacitating disease.
This review focuses on the development of CHIKV vaccines that have reached the stage of clinical trials
since the late 1960s up until 2018.
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Introduction

Chikungunya Virus (CHIKV) is an arthropod-borne virus
(arbovirus) transmitted to humans by the Aedes aegypti and
A. albopictus mosquitoes. It is a member of the alphavirus
genus, part of the Togaviridae family. The alphavirus genus
comprises 29 species classified into seven antigenic com-
plexes that include Eastern equine encephalitis (EEE),
Western equine encephalitis (WEE), Venezuelan equine
encephalitis (VEE), Barmah Forest (BF), Middelburg
(MID), Ndumu (NDU) and Semliki Forest (SF), with
CHIKV being a member of the latter complex.1

Alphaviruses have a wide geographic distribution.
Infection in humans leads to two major clinical outcomes,
(A) arthralgia and arthritis caused by Old World alpha-
viruses such as CHIKV, O’Nyong Nyong and SF viruses
and (B) encephalitis, caused by the New World alphaviruses
such as VEE and WEE viruses.2 Vaccines against alphavirus
infections have been under development for several years
and while major progress has been made for CHIKV
prompting its assessment in clinical trials, most alphavirus
vaccines remain in pre-clinical stage in mouse and macaque
models. Nevertheless, CHIKV vaccines form a robust pipe-
line with promising developments from pre-clinical to
phase I and II clinical trials, which have been thoroughly
reviewed before.3,4 A summary of the past and current
developments shows that while most vaccine candidates
are in early mouse and macaque pre-clinical phases,
a good number are transitioning through phase I and II
trials with promising results (Figure 1).

Chikungunya virus (CHIKV) is one of the simplest enveloped
viruses. It is a small and spherical virus of an approximate size of
60–70 nm.1,5 The genomic organisation consists of a

single-stranded positive-sense RNA of approximately 11.8 kb in
size that resembles the eukaryotic mRNA due to the presence of
5ʹ cap structures and a 3ʹ poly (A) tail.1 The genome size varies
geographically among lineages, being longest in the Asian strains
(11,777–11,999 nucleotides or nt), followed by West
African (11,843–11,881 nt) and East/Central/South African
(11,557–11,789).6 The genome is organised into two open read-
ing frames, one of approximately 7.4 Kb in size encoding 4 non-
structural proteins (nsP1, nsP2, nsP3 and nsP4) and one of 3.7
Kb encoding the structural proteins of the virus, including
Capsid (C), peptide E3, envelope glycoprotein E2, peptide 6K/
TF and envelope protein E1.1,3

Sequencing of the complete CHIKV genome has revealed
the existence of four lineages: (1) West African (Waf); (2)
East/Central/South African (ECSA); (3) Asian and (4)
Indian Ocean Lineage (IOL).6 Whole genome sequencing
has proven to be key to support identifying the IOL, since
only three lineages had been identified using partial
sequencing of the E1 gene in earlier studies that reported
three lineages, thus underlying the inadequacy of the
E gene to resolve the phylogenetic history of the CHIKV.6

These studies have been useful to trace the existence of
a CHIKV ancestor within the last 500 years with indication
of a divergence between the ECSA and Asian lineages
occurring in the last 150 years.6 Phylogenetic studies indi-
cate that the major Chikungunya Fever (CHIKF) outbreak
in the Americas was caused by an Asian genotype, with the
exception of Brazil where both ECSA and Asian lineages
co-circulate, the latter has formed an Asian/American line-
age defined by two amino acid substitutions in the E2
envelope glycoprotein and the 6K peptide region (E2
V368A and 6K L20M), which is evolving at a mean rate
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of 5 × 104 substitutions per site per year and is similar to
that previously calculated for the Asian genotype.7

History of CHIKV vaccines

Formalin-inactivated vaccines (FIV)

The history of CHIKV vaccines started with a formalin-
inactivated approach in the late 60s (Figure 2) at the Walter
Reed Army Institute of Research (WRAIR) in Washington
D. C., when V.R Harrison, L.N. Binn and R. Randall did
seminal work by assessing the immune responses elicited in
mice and rhesus macaques by a formalin-inactivated CHIKV
vaccine.8 The virus used to develop the vaccine was the
African CHIKV strain 168, isolated from Southern
Tanganyika (nowadays Tanzania) between 1952–1953.9 The
experimental vaccines were prepared using chik-embryo (CE),
suckling-mouse-brain (SMB) and green monkey kidney cells
(GMKC). Poor immunogenicity was induced by the CE pre-
paration, which contrasted with good immune responses
induced by the SMB and GMKC preparations. The latter
was selected for further development as vaccine from SMB
products pose the risk of inducing encephalitis in man, thus
limiting its applications. The ability of the CHIKV 168 vaccine
to elicit homologous protection in mice prompted researchers
to assess heterologous protection in rhesus macaques using
various CHIKV strains: the African CHIKV strain 168; the
CHIKV strain E.103 isolated from a pool of 78 Ae. Africanus
mosquitoes at the Zika forest on June 12, 1956
by M. C. Williams;10 the Asian strain BAH-306 isolated
from Thai patients11 and the Indian CHIKV strain C-266
isolated from Calcutta by K.V. Shah.12 Vaccination of eight
rhesus macaques consisted of three doses of 1 ml each of
GMKC-prepared CHIKV strain 168 (harvested after 72 h of

infection with 105 SMICLD50) administered subcutaneously
on day 0, 7 and 21. Homologous (strain 168) and heterolo-
gous challenges (strains E.103, BAH-306, C-266, mentioned
above) were done 30 days after vaccination. Results yielded
complete absence of viremia upon either, homologous or
heterologous challenge in all vaccinated monkeys. This was
the first demonstration of the homologous and heterologous
protective efficacy by a formalin-inactivated CHIKV vaccine
in pre-clinical models using mice and rhesus macaques.8

First CHIKV clinical trial
Four years later in 1971 at the WRAIR, V. R. Harrison,
K. H. Eckels, P. J. Bartelloni and C. Hampton described the
preparation of a formalin-inactivated CHIKV vaccine and its
assessment in a phase I clinical trial (Figure 2).13 The vaccine
seed virus was initiated from Thai human samples from the
United States Army Medical Component SEATO in Bangkok,
Thailand (nowadays AFRIMS), provided by Dr. E. L. Buescher.
Four CHIKV isolates, designated 6348, 6461, 15561 and 23337
were grown in greenmonkey kidney tissue culture cells (GMKC)
for 10 passages to eliminate any potential hepatitis and other
adventitious viruses. Potency assays based on a mouse challenge
with the CHIKV 1688 resulted in the selection of the CHIKV
15562 isolate (Table 1). A phase I clinical trial to assess the
vaccine in sixteen young volunters of 21–25 years of age was
performed. Two groups of eight volunteers were administered
the vaccine subcutaneously (s.c.). Group I received two doses of
0.5 ml of vaccine at an interval of 28 days and group II received
two doses of 1 ml under the same protocol. Local and systemic
reactions were assessed for 12 days in a closed research ward.
Thereafter, volunteers were observed on an outpatient basis and
total absence of untoward reactions after the vaccination was
observed. Most subjects developed neutralising antibodies

Figure 1. Summary of past and current CHIKV vaccines assessed in early pre-clinical phase or late phase I and II clinical trials.
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Figure 2. Timeline displaying the development of CHIKV vaccines that have entered clinical trials.

Table 1. Characteristics of Chikungunya vaccines that have entered clinical trials.

Vaccine Platform Lineage
CHIKV

Immunogen Adjuvant

Number of
Doses

(interval)
Vaccination

Route
Stage of

Development

CHIK Vaccine FIV
15562

Formalin-Inactivated
Virus
(FIV)

Asian
Strain
15,561

Whole
inactivated virus

No 2
(28 days)

Subcutaneous Phase I
Trial

CHIKV TSI-GSD-218 Live
Attenuated
Virus
(LAV)

Asian
Strain
15,561

Whole
attenuated virus

No 1 Subcutaneous Phase II
Trial

VRC-CHKVLP059-00-VP Virus-Like
Particle
(VLP)

West African (Waf)
Strain
37,997

Capsid
E3
E2
6K
E1

No 3
(0, 4,

20 weeks)

Intramuscular Phase II
Trial

MV-CHIK Measles
Viral Vectored Vaccine
(VVV)

Indian
Ocean
Lineage
(IOL)

Capsid
E3
E2
6K
E1

No 2
(28 days)

Intramuscular Phase II
Trial

ChAdOx1-Chik Chimpanzee
Adenoviral Vector
(ChAdOx1)

Consensus sequence from
multiple lineages

Capsid
E3
E2
6K
E1

No 1 Intramuscular Phase I
Trial
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on day 14 after the first vaccination and the second administra-
tion prompted the development of significant neutralising anti-
body titres with values of log10 neutralization indices of 2.7 for
either dose, thus concluding that two 0.5 ml vaccine doses
administered 28 days apart are sufficient to elicit good antibody
responses.13

CHIKV live-attenuated vaccines (LAV)

Production of formalin-inactivated CHIKV vaccines generates
cost and safety concerns due to the requirement of BSL-3
facilities and the associated risks posed by producing large
amounts of infectious CHIKV prior to being subjected to the
inactivation process.14 These concerns prompted the develop-
ment in the 1980s of a Live-attenuated CHIKV vaccine by
scientists at the U. S. Army Medical Research Institute of
Infectious Diseases (USAMRIID) in Maryland.15

Studies with the formalin-inactivated CHIKV 15561 generated
extensive knowledge on the vaccine production and assessment in
pre-clinical and clinical trials.13 Hence, the vaccine produced after
10 passages was subjected to an 11th passage in GMKC to be
subsequently transferred from WRAIR to USARMRIID to pro-
ceed to attenuation by culturing virus in human embryonic lung
MRC-5 cells. 347 plaques were subjected to 18 passages inMRC-5
cells. Clone 181 produced small, 2–3 mm homogeneous plaques
and the CHIK 181/clone 25 was finally chosen as the vaccine seed
for subsequent vaccine production. The selected clone provided
complete protective efficacy to weanling mice using an intracer-
ebral (i.c.) challenge with CHIKV. Following these results, rhesus
macaques were administered the vaccine subcutaneously and
challenged with CHIKV approximately 5 weeks after vaccination.
All vaccinated macaques had complete, sterile protection
(Table 1).15 Induction of neutralizing antibodies was evident and
peaked at day 14, with an average of PRNT80 titers of 165, 440 and
800 following vaccinations with doses of 3.5, 4.5 and 5.5 log10 pfu
of immunizing dose.

Following these results, the CHIK 181/clone 25 was manu-
factured at The Salk Institute-Government Services Division
(TSI-GSD) and an investigational new drug application was
filed by the U.S. Department of Defense with the FDA in
1986.14 The CHIKV TSI-GSD-218 vaccine entered clinical trials
at both, USAMRIID and the University of Maryland Center for
Vaccine development (Figure 2),16 showing safety and immu-
nogenicity in a phase I trial in 15 volunteers. The vaccine was
subsequently tested in a phase II, randomized, double blind,
placebo controlled in 59 healthy volunteers (35 men, 24
women) receiving a single s.c. vaccine dose of 0.5 ml of the
reconstituted vaccine, containing 105 pfu/dose. 14 volunteers
(12 men, 2 women) received placebo vaccine.17 Vaccination
resulted in 98% of volunteers developing neutralising antibodies
and importantly, 5 (8%) CHIKV vaccinees developed transient
arthralgias that were absent in the placebo group. The authors
noted that the incidence of arthralgia in vaccinees compared to
controls would have reached statistical significance in a study
with larger vaccine and control groups.17

Developing a CHIKV vaccine with the traditional meth-
odologies using inactivated or live-attenuated viruses present
some challenges, as mentioned earlier, due to the production
of large amounts of virus requiring the appropriate biosafety

levels to prevent accidents before achieving inactivation, or
induction of adverse events like arthralgia upon vaccination
with live-attenuated viruses. Therefore, the field of CHIKV
vaccine development presents opportunities for the develop-
ment of new sub-unit vaccines, Virus-Like Particles, replica-
tion-defficient viral vectors, DNA vaccines and proteins that
are considered safe options, albeit potentially less immuno-
genic thus requiring the use of adjuvants or the administra-
tion of multiple doses to enhance immunity against CHIKV.
Intermitent, but major outbreaks contributed to maintaining
the interests in the development of a CHIKV vaccine,
prompting efforts to assess new vaccine platforms.

Virus-like particles (vlps)

VLPs are produced by the expression of viral structural pro-
teins that self-assemble to produce structures similar to the
original virus but lacking the capacity to infect and replicate.
By mimicking the virus structure without the viral genomes,
they resemble ‘empty shells’.18

The Vaccine Research Center (VRC) at NIH’s National
Institute of Allergy and Infectious Diseases (NIAID) in
Bethesda, has developed a CHIKV VLP. The vaccine is com-
posed of the structural CHIKV proteins Capsid, E3, E2, 6K and
E1 sequences of the CHIKV strain 37,997 from a CHIKV Waf
lineage. The VLP vaccine has been tested in macaques (n = 6),
using intramuscular regimes consisting of 20 μg of VLPs in
1mL PBS at weeks 0, 4 and 24. Immune responses were evident
after a primary immunisation and increased after subsequent
boosts at 4 and 24 weeks. All the immunised macaques were
able to control viraemia and inflammation after a challenge
with 1010 PFU of CHIKV (strain LR2006 opy-1) doses through
the induction of neutralising antibodies.19

The VLP, known as VRC-CHKVLP059-00-VP was GMP
produced by transfection of VRC293 cells (suspension-
adapted, serum-free HEK293 cells) with plasmid DNA expres-
sing the CHIKV structural genes (Table 1). The VLP has been
assessed in the VRC 311 phase I clinical trial in a dose-escalation,
open label trial to evaluate safety, tolerability and immunogeni-
city of the CHIKV VLP in 25 adults of 18 to 50 years of age.20

The vaccine was administered intramuscularly (i.m.) to humans
at doses of 10 μg, 20 μg and 40 μg given at weeks 0, 4 and
20 weeks with no adjuvant included. The vaccine was well
tolerated and no serious adverse events were reported.
Antibody responses by ELISA were positive upon measurement
of an endpoint ELISA titer technique agains the CHIKV VLP
antigen strain 37,997, reaching an average of 4,457, 5,881 and
8,611 (after receiving 10, 20 and 40 μg of VLP, respectively) on
week 44 after receiving three vaccinations. Most participants
showed induction of neutralising antibodies after the first VLP
vaccination and all participants had neutralising antibodies
4 weeks after the second vaccination, reaching titers of 188,
236 and 346 elicited by 10, 20 and 40 μg of VLP, respectively.20

The VRC-CHKVLP059-00-VP has entered phase II trials in
2015 in a multicenter study to evaluate safety and immunogeni-
city using two vaccine doses in 400 healthy adults between 18 to
60 years of age in locations including Dominican Republic,
Guadeloupe, Haiti, Martinique and Puerto Rico ClinicalTrials.
gov (NCT02562482).
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Viral-vectored vaccines (VVV)

Measles viral vector

A member of the Morbillivirus genus within the family of
Paramixovirus, Measles virus (MV) has been developed as
a viral vectored vaccine for various diseases at the Institut
Pasteur in Paris in a seminal work lead by the group of
Frédéric Tangy.21–25

In 2013, Samantha Brandler et al. reported the develop-
ment of a recombinant Measles viral-vectored (MVV) vaccine
expressing the heterologous structural genes of CHIKV
(Figure 2).26 The cDNA CHIKV structural cassette encodes
the C-E3-E2-6K-E1 which in turn forms Virus-Like Particles
upon expression in cell culture.26 The CHIKV sequence cor-
responded to an Indian Ocean Lineage (IOL) isolate from
a patient sampled on 2 December 2005 in the Southern
locality of St. Louis, La Réunion (CHIKV strain 06–49,
GenBank accession no. AM258994).27

Immune responses have been evaluated in genetically mod-
ified mice expressing the human MV receptor hCD46 and no
IFN-α/β receptor (CD46-IFNAR) to assess vaccine efficacy in
a mousemodel highly susceptible to CHIKV infection. Antibody
responses were assessed after a single or a double injection one
month apart with 103, 104 or 105 MV TCID50. A single immu-
nisation gave ELISA endpoint titres between of 1,350, 4,050 and
12,150 that increased after a boost to 2,700, 12,150 or 48,600 for
each respective MV dose. Neutralising antibodies were quanti-
fied using a plaque reduction neutralisation test (PRNT) to
calculate reduction of plaque number in at least 50% (PRNT50)
or 90% (PRNT90). PRNT50 titres after a single vaccination were
of 50, 150 and 450 for each increasing MV-CHIK priming dose
and 450, 1,350 and 4,050 after a boost with 103, 104 or 105 MV
TCID50. Cellular responses quantified by an ex vivo IFN-gamma
ELISPOT yielded responses of a mean of 150 sfu/106 splenocytes
after a single immunisation with a higher MV dose of 106
TCID50. Survival of mice after a challenge with 100 PFU of
CHIKV-06–49 showed protection of 83% of the mice vaccinated
with 103 TCID50, while complete protection was achieved with
prime/boost using the two highest doses or upon a single prime
with 105 TCID50, thus demonstrating the potential of the MV-
CHIK as a vaccine for CHIKV and other arboviruses26 and
prompting its assessment in a phase I trial that was reported
two years later.

TheMV-CHIKVwas assessed for safety and immunogenicity
in a phase I clinical trial (Table 1 and Figure 2),28 which enrolled
42 participants with 12 volunteers each group to receive a low
(1.5x104 TCID50), intermediate (7.5x104 TCID50) or high
(3.0x105 TCID50) dose of the vaccine and one control group
(n = 6) receiving Priorix (GSK MMR vaccine containing MV).
Seroconversion was 44%, 92% and 90% for the low, intermediate
and high dose group after a single immunisation and geometric
mean titres of PRNT50 neutralising antibodies were 10, 48 and 46
for the low, intermediate and high vaccine priming doses with
Priorix giving a control titre of 7. A homologous prime boost
with an interval of 28 days yielded GM antibody titres of 73, 150
and 433 that peaked at day 56 post boost. 100% seroconversion
required a vaccine boost. In general, the vaccine showed a good
safety profile with no serious adverse events recorded.28

A subsequent double-blind, randomised, placebo-
controlled and active-controlled phase 2 trial has recently
been completed. 263 participants were recruited to evaluate
safety and immunogenicity after vaccination with low (5xE4

TCID50) or high (5xE5 TCID50) doses in 0.3 ml of solution at
either, an interval of 28 (D0 and D28) or 168 (D28 and D196)
days between prime and boost. Presence of neutralizing anti-
bodies at day 56 was the primary endpoint and results showed
that a low vaccine dose induced a PRNT50 titer of 50.16 and
12.87 (short and long interval, respectively), while the high
dose induced titers of 174.80 and 33.64 (short and long inter-
val, respectively), with excellent safety and tolerability.29

Adenoviral vectors

Adenoviruses are members of the family Adenoviridae. One of
the genus belonging to this family, the Mastadenovirus have
mammals and vertebrates as natural hosts and it includes the
human adenoviruses. There are 51 human adenovirus serotypes
which are classified in six subgroups, from A to F. Chimpanzee
adenoviruses are considered part of subgroup E.30

Most people have been exposed to common human adeno-
virus from early childhood, generating immune responses that
can neutralise homologous serotypes. Neutralizing antibodies to
the human serotype AdHu5, for instance, vary from 34% in the
USA to 76% in Thailand and up to 89% in Nigeria.31 Thus,
vaccine efficiency using viral vectors derived from common
human serotypes can be negatively affected. Amongst approaches
to circumvent pre-existing immunity to human adenovirus are
the use of non-human adenoviruses.32,33 Similarity of chimpanzee
and human adenovirus has prompted the development of simian
adenoviral vectors which have become widely used. The first
report using a chimpanzee adenovirus as viral vectored vaccine
was made by the group lead by Hildegund Ertl at the Wistar
Institute in Philadelphia, USA, who demonstrated the induction
of immune responses to a rabies glycoprotein expressed by the
chimpanzee adenovirus serotype 68.34

Recently, a new ChAdOx1 viral vector was derived from
a chimpanzee adenovirus known Y25 that belongs to sub-
group E adenoviruses. This adenoviral vector was shown to
induce similar immunogenicity to other chimpanzee adeno-
viruses and low seroprevalence of pre-existing immunity in
populations from the UK and Gambia.35 ChAdOx1 was sub-
sequently engineered in Oxford to express the Chikungunya
structural proteins Capsid, E3, E2, 6K and E1 encoded by
a consensus sequence from various CHIKV lineages. The
ChAdOx1-Chik is able to induce high titres of neutralising
antibodies and high frequencies of CHIKV-specific T cells in
mouse pre-clinical models (manuscript in preparation).

ChAdOx1-Chik has been developed under Good
Manufacturing Practices and has entered clinical trials in
2018 ClinicalTrials.gov (NCT03590392). This is a phase I,
open label, dose escalation clinical trial to assess safety and
immunogenicity in healthy volunteers between 18–50 years of
age. The vaccine will be administered intramuscularly at three
different doses: 5x109, 2.5 × 1010 and 5 × 1010 that have been
selected based on previous results using the ChAdOx1 viral
vector as a flu vaccine.36 ChAdOx1 Chik is a replication-
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deficient adenovirus that does not require adjuvants to induce
strong immune responses and it has been administered suc-
cessfully to more than 160 volunteers in various clinical trials
with no serious adverse events reported. Results of the
CHIK001 trial are expected in 2019.

A major consideration for vaccine approaches will be their
ability to provide protection against heterologous lineages.
Vaccines mentioned above have used sequences from different
isolates. Table 1 shows that some are based on Asian strains,
others on Waf, IOL or consensus sequences from all lineages.
CHIKV has the ability to evolve into novel variants within
a short period of time when entering a naive population as
evidenced recently in the Americas37. Nevertheless, CHIKV
still keeps a high percent in amino acid identity, ranging from
95–99.9% within the structural proteins, which implies a limited
diversity between CHIKV isolates. Despite the sequence and
virulence diversity in animal models, vaccines based on one
lineage (e.g. IOL) can provide long-lasting cross protection in
heterologous CHIKV challenges in mice and macaques despite
high virulence presented by some isolates in naive animals.38

These conclusions have been reinforced by studies evaluating the
neutralisation capacity of VLP-induced nAbs in clinical trial
samples when tested against 9 CHIKV strains that represent all
CHIKV genotypes.39 These results indicate that CHIKV varia-
bility may not affect cross- or heterologous protection when
developing vaccines based on different isolates or consensus
sequences.

Another important aim for vaccine developers will consist of
establishing a correlate of protection for CHIKV infection to
support a swift transition towards licensure. Experience indi-
cates that the lack of a reliable correlate of protection is a major
roadblock for developing and improving vaccines such as
tuberculosis40 that rely on expensive and complex phase IIb
and III trials to assess efficacy. This objective may be easier to
achieve for CHIKV, as evidence indicates that the presence of
IgG antibodies correlate with virus clearance.41 As CHIKV
outbreaks have an unpredictable nature with rapid and unex-
pected movements affecting large populations to then be fol-
lowed by years of relative infectious silence, efficacy trials will
face a major challenge in their design to evaluate vaccine
efficacy and scientists may have to find alternative and smarter
strategies. Epidemiology studies will be of major importance to
determine the interplay between viruses transmitted by the
same Aedes mosquito species to contribute not only to the
design of trials but also to vaccination strategies as CHIKV,
Zika and Dengue vaccines reach the stage of licensure.

In summary, 51 years have passed since the first report
of the development of a CHIKV vaccine. The unpredictable
epidemiology of CHIKV with sudden massive outbreaks
followed by years of relative silence, has played a major
role on the development of CHIKV vaccines, which seem
to gain or loose momentum depending on the emergence or
disappearence of outbreaks. Initial clinical developments
focused on Formalin-Inactivated Vaccines (FAV) during
the late 1960s and a Live-Attenuated Vaccines (LAV) in
the late 1980s. Despite promising results, efforts waned
due to the unpredictability of the CHIKV epidemiology,
difficulty to demonstrate protective efficacy in the field
and limited funding availability.14 A CHIKV epidemic in

La Réunion in 2006, maintained the interest and activities
on LAV and renewed the interest in the development of
new vaccine approaches, such as Virus-Like Particles (VLP)
and Measles Vectored Vaccines (MVV). A more recent
oubreak in the Americas starting in the Caribbean in 2013
and expanding to South, Central and North America, parti-
cularly in Mexico, contributed to the latest development
based on Chimpanzee Adenoviral vectored vaccines for
CHIKV that are the most recent vaccine platforms entering
CHIKV clinical trials.
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