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Abstract

Introduction—Chronic obstructive pulmonary disease
(COPD) is the fourth leading cause of death in the United
States, with high associated costs. Most of the cost burden
results from acute exacerbations of COPD (AE-COPD),
events associated with heightened symptoms and mortality.
Cellular mechanisms underlying AE-COPD are poorly
understood, likely because they arise from dysregulation of
complex immune networks across multiple tissue compart-
ments.
Methods—To gain systems-level insight into cellular envi-
ronments relevant to exacerbation, we applied data-driven
modeling approaches to measurements of immune factors
(cytokines and flow cytometry) measured previously in two
different human tissue environments (sputum and peripheral
blood) during the stable and exacerbated state.
Results—Using partial least squares discriminant analysis,
we identified a unique signature of cytokines in serum that
differentiated stable and AE-COPD better than individual
measurements. Furthermore, we found that models integrat-
ing data across tissue compartments (serum and sputum)
trended towards being more accurate. The resulting para-
crine signature defining AE-COPD events combined eleva-
tions of proteins associated with cell adhesion (sVCAM-1,
sICAM-1) and increased levels of neutrophils and dendritic
cells in blood with elevated chemoattractants (IP-10 and
MCP-2) in sputum.
Conclusions—Our results supported a new hypothesis that
AE-COPD is driven by immune cell trafficking into the lung,
which requires expression of cell adhesion molecules and

raised levels of innate immune cells in blood, with parallel
upregulated expression of specific chemokines in pulmonary
tissue. Overall, this work serves as a proof-of-concept for
using data-driven modeling approaches to generate new
insights into cellular processes involved in complex pul-
monary diseases.

Keywords—Systems biology, Inflammation, Immune system,

Data-driven models, Pulmonary disease.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a
progressive and heterogeneous lung disease that is the
fourth leading cause of death in the United States,31

with yearly U.S. medical costs expected to increase to
nearly $50 billion in 2020.19 A large portion of these
costs is attributed to acute exacerbations of COPD
(AE-COPD), characterized by increased symptoms
(dyspnea, coughing, sputum production, and fatigue)
beyond day-to-day variation that requires treatment
with antibiotics or corticosteroids.49 Severe exacerba-
tions (that require hospitalization) have an in-hospital
all-cause mortality rate of 5–7%,29,48 and account for
most of the financial burden of COPD.53 Accordingly,
the prediction and treatment of AE-COPD events are
top priorities.

Nonetheless, pathogenic cellular mechanisms
underpinning AE-COPD are largely undefined. Local
tissue and systemic inflammatory pathways are hall-
marks of COPD, and are further increased during AE-
COPD. Most AE-COPD are also associated with evi-
dence of viral or bacterial infections or both,7,46,51 with
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upregulation of IL-8, TNF-a and reactive oxygen
species in cells and tissue environments.51 Some AE-
COPD are also highly eosinophilic.7 COPD patients
with persistent systemic inflammation have higher
mortality and exacerbation rates compared to non-in-
flamed patients.3 AE-COPD frequency is reduced by
several types of therapies, including inhaled corticos-
teroids (ICS), long-acting muscarinic antagonists,
scheduled azithromycin, and roflumilast.4,25,37,55 The
success of these treatments, which share
immunomodulatory effects, support acutely increased
inflammation as contributing to AE-COPD, though
fundamental mechanisms driving AE-COPD remain
elusive.

Despite identification of individual cell types and
cytokines that are differentially expressed between
stable and exacerbated COPD,9,52,54 no single factor
entirely accounts for AE-COPD, and therapies based
on single targets have been unsuccessful. In the past 25
years, only one new class of medicine has been ac-
cepted for COPD treatment.45 Plasma fibrinogen was
recently qualified by the Food and Drug Administra-
tion as a prognostic biomarker, but only for subject
enrichment in clinical trials of exacerbation and mor-
tality.40 Both serum C-reactive protein (CRP)11,28 and
IL-611,32 are upregulated in the secreted systemic
environment during AE-COPD, but CRP alone is
insufficiently sensitive as an AE-COPD biomarker,42

and IL-6 elevations are inconsistently associated with
exacerbations.30 New approaches to understanding
cellular mechanisms underpinning AE-COPD patho-
genesis are clearly required.

As COPD is a complex condition exhibiting evi-
dence of immunological involvement,13,14 it is plausible
that AE-COPD events result from disrupted networks
of immune cells and cytokine communication, rather
than from individual mediators. Data-driven modeling
approaches offer the opportunity to infer these sys-
tems-level relationships by identifying small signatures
of proteins or other cellular immune factors that co-
vary with each other and are associated with disease
state. These signatures can then be linked to mecha-
nisms or cell types involved in phenotypes or patho-
genic states, providing insight into specific disease
biology and potential targets for follow-up experi-
ments and therapeutic intervention. Partial least
squares discriminant analysis (PLSDA) is a useful tool
for highlighting covariance among variables that best
classify groups of interest, which could lead to the
identification of potential proteomic and cellular net-
works associated with AE-COPD. We have previously
illustrated that PLSDA is able to identify and aid in

visualizing biologically relevant proteomic and cellular
signatures that may give insight into inflammatory
pathways. We have used it to evaluate inflammatory
signatures in the female reproductive tract mucosa6

and the blood of interstitial pulmonary fibrosis (IPF)
patients,44 in both cases identifying new biomarkers
and generating novel insight into key cellular mecha-
nisms.

In this study we apply data-driven modeling
approaches to gain insight into the proteomic networks
and cellular mechanisms in blood and lung environ-
ments that underpin AE-COPD using a prospective
cohort study,22 which collected paired sputum and
peripheral blood samples from COPD subjects when
clinically stable and again before treatment for an AE-
COPD. We show that data-driven modeling
approaches are able to (1) identify cytokine networks
that may be better for classifying AE-COPD than
individual cytokines, (2) determine key relationships
between cytokines in different tissue compartments,
and (3) integrate information measured in different
assays to provide a more complete picture of patho-
genic processes involved in AE-COPD.

METHODS

Study Design, Ethics and Subject Populations

All samples and data in this analysis derived from a
published prospective observational trial (ClinicalTri-
als.gov NCT00281216),22 which followed subjects at
increased risk of AE-COPD for up to three years.
Patients were recruited at the VA Ann Arbor Health-
care System (VAAAHS) and the University of Michi-
gan Health System (UMHS). All parts of the study
adhered to the Declaration of Helsinki and obtained
approval of each site’s Institutional Review Board,
with all subjects giving written consent to the study
before any procedures occurred. At enrollment and
quarterly, participants underwent spirometry, pulmo-
nologist clinical evaluations, collection of peripheral
blood and spontaneously expectorated sputum, and a
post-visit questionnaire. An exacerbation of COPD
was said to occur if the subject reported an increase in
dyspnea, cough or sputum production, and if the study
physician ordered antibiotics or oral steroid for the
patient after a physical examination and chest radio-
graphs to rule out pneumonia. Only if a diagnosis of
AE-COPD was made were sputum and peripheral
blood samples collected at these unscheduled visits.
After all data and sample collection occurred, then
each subject began treatment for AE-COPD.
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Sample Collection, Processing, and Measurements

Peripheral blood was used for both leukocyte
immunophenotyping and to measure 40 analytes in
serum; after collection, it was stored at � 80 �C until
analysis. Spontaneously expectorated sputum was
immediately processed in a 9:1 mixture of distilled
water to Sputolysin� (EMD Millipore, Billercia, MA)
as described,22 and the resulting supernatant was
stored at � 80 �C until used to measure 36 analytes.
Serum and sputum samples were unfrozen and protein
concentrations were measured simultaneously either
using a Luminex 200 System� (Luminex Corporation,
Austin TX) or ELISA (GDF-15, IL-18, IL-23p19 and
IFN-b).22

Whole blood was stained with directly conjugated
monoclonal antibodies on the day of the visit as de-
scribed in the text and supplemental information of
Freeman et al.22 Cells were analyzed using a LSR II
flow cytometer (BD Bioscience, San Jose, CA) as
reported in McCubbrey et al.,39 using FACSDiva
software (BD Biosciences) data with automatic com-
pensation and FlowJo software (Tree Star, Ashland,
OR).

Data Processing and Systems Analysis

Samples with multiple missing measurements were
removed from analysis if missing values were recorded
for more than 25% of the proteins that were measured
in each assay (serum protein, sputum protein or blood
cell marker); proteins were then removed if more than
two measurements were missing for any one protein.
We identified and illustrated individual proteins that
were differentially expressed in stable and exacerbated
states using a volcano plot. First, a non-parametric,
two-sided, paired Wilcoxon signed rank test was used
to determine significance in the non-normalized pro-
teomic or cell marker expression during the stable and
exacerbation states, with significance being defined as p
< 0.05. Then, the relative fold change in protein or cell
marker level was calculated by dividing the average
concentration during exacerbation by the average
concentration during stability. Each protein or cell
marker was then plotted in one figure, with fold change
on the x-axis and the p value on the y-axis. Minor
differences between these results and the previously
published univariate results (Freeman et al.) can be
attributed to variation in which subset of patients were
included in each analysis.22

PLSDA, which was performed using the Eigenvec-
tor PLS Toolbox in MATLAB, was used to identify
signatures of multivariate cytokine and cellular mark-
ers that differentiated stable and AE-COPD.34 Taking
a supervised approach, PLSDA assigns a loading to

each variable and selects a linear combination of all
variables (a latent variable) that best separates pre-
defined groups. A higher value of a protein loading on
a latent variable indicates the protein is of more
importance in differentiating the groups of interest.
Each sample is then scored based on its protein
expression and are visualized in the scores plot. The
loadings can then be used for hypothesis generation
based on how the subsets of the protein signature are
associated with each of the groups in the scores plot.
Each PLSDA model was cross-validated as a measure
of model accuracy. Cross-validation was performed by
iteratively excluding ~ 10% of the data for all models
based on serum proteins only, ~ 17% of the data from
the serum and sputum protein PLSDA model, and
~ 20% from the serum and sputum protein and blood
cell marker model, which in each case resulted in 3–4
samples being excluded. The excluded data was then
used to test the trained model. Care was taken when
designing the training and test sets to ensure that no
test set had more than one measurement from a unique
patient. All missing data points included in the PLSDA
models were filled in by the Eigenvector software’s
‘‘best guess.’’ All models were orthogonalized to enable
clear visualization of the results, and all data were
mean centered and variance scaled before being used to
create the model. Variable importance in projection
(VIP) scores were used to reduce model dimensionality
by determining the importance of each variable in
differentiating the groups of interest.57 Proteins with a
VIP score < 1 were removed from the model, and a
new PLSDA model was built then on the remaining
proteins or cellular factors.

In order to facilitate a more quantitative compar-
ison across PLSDA analyses, we calculated the cross-
validation accuracy associated with each training and
test set that was created during cross-validation. We
then statistically compared cross-validation accuracies
across the models based on different folds by using a
one-way ANOVA with Tukey’s post hoc test. A p value
of less than 0.05 was considered significant after
application of Tukey’s test.

We visualized the distinct proteomes associated with
stable and AE-COPD events through unsupervised
average linkage hierarchical clustering; Spearman’s
correlation coefficient was used as the distance metric.
Correlation heat maps were constructed based on the
Spearman rank correlation calculated between the
difference in cell marker and protein concentration
from the stable to the exacerbated state, where corre-
lation coefficients that had a p value of greater than
0.05 were set to be zero for the figure. When creating
hierarchical clusters or correlation heat maps, all
missing data points were imputed using the MATLAB
function knnimpute, with the pairwise distances
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between patients calculated based on the Spearman
rank correlation.

All PLSDA models, VIP scores, Wilcoxon signed
rank tests, hierarchical clusters, heat maps, and
Spearman correlation testing were created or calcu-
lated using MATLAB (MATLAB, Natick, MA);
PLSDA models and VIP scores were specifically gen-
erated using the PLS toolbox in MATLAB (Eigen-
vector, Manson, WA). ANOVA and Tukey’s tests
were performed using Prism version 7.00 (GraphPad
Software, San Diego, CA).

RESULTS

Patient Enrollment and Demographics

We analyzed data from 13 COPD subjects who
completed both the baseline visit and at least one AE-
COPD visit. They were a predominantly middle-aged
(mean age 67.9 years), male (9 of 11) group with ad-
vanced COPD (mean FEV1 33.4% predicted) com-
prised of both current and former smokers. Specifics of
their demographics, clinical characteristics and in
which data-driven models their data were used is
shown in Table 1. In summation, this study captured
18 total paired stable and AE-COPD events among the
13 subjects, with some subjects experiencing more than
one AE-COPD during the course of the study.

Evaluation of Individual Immune Factors Associated
with AE-COPD

We first identified individual cellular immune fac-
tors and receptors that differed significantly between
stable and AE-COPD, similar to our previously pub-
lished work.22 Out of 35 serum proteins (see Materials
and Methods), five were found to be significantly dif-
ferent (p < 0.05): interleukin 1 receptor 2 (IL-1R2;
fold change 1.35), soluble intercellular adhesive mole-
cule 1 (sICAM-1; fold change 1.33), soluble vascular
cellular adhesion molecule 1 (sVCAM-1; fold change
1.27), growth differentiation factor (GDF-15; fold
change 1.29) and interleukin 10 (IL-10; fold change
1.66) (Fig. 1a). From 30 proteins measured in sputum,
only CRP was significantly different between
stable and AE-COPD (fold change 5.56) (Fig. 1b).
Three of 26 cellular markers measured by flow
cytometry were differentially expressed: percent of
CD4+ cells (%CD4+; fold change 0.61), CD4+
CD62L cells (CD4_CD62L, fold change 1.03), and
CD4+ IL-18R cells (CD4_IL18; fold change 2.08)
(Fig. 1c). The expression of both CD62L and IL-18R
indicate activation of CD4+ T cells. While the signif-

icance levels indicated in the volcano plots are based
on average concentration data, the grouped scatter
plots in Supplemental Figures S1, S2 and S3 track
individual changes across the two COPD states in
specific patients. All immune factors were significantly
elevated during exacerbation with the exception of
%CD4+ cells. Overall, these results reflect observa-
tions made in the original study,22 in which only a
small number of proteins and individual blood cell
types and activation markers were significantly differ-
ent between stable and exacerbation. None of the
proteins or cell markers in the three volcano plots were
found to be significant after application of the Bon-
ferroni correction, and many of the fold changes
measured were small (close to 1).

In our data there were three patients who experi-
enced more than one exacerbation event. We explored
the effects of this by additionally analyzing the data
after averaging multiple stable and multiple exacerba-
tion measurements within the same patient. Overall,
we found that our results were similar, both in indi-
vidual significant proteins identified and in fold change
in the exacerbated state (Supplemental Figure S4).

PLSDA Identified a Signature of Serum Proteins
that Differentiated Stable and Exacerbated COPD

To obtain new insight into key systems-level rela-
tionships between networks of immune factors in
sputum and blood that associated with AE-COPD, we
next employed data-driven modeling approaches to
integrate matched stable and exacerbation data in both
blood and pulmonary immune environments from the
same COPD patients. We first examined serum protein
measurements alone with PLSDA.34 PLSDA is a use-
ful tool due to its ability to highlight covariance among
variables that best classify groups of interest, which
could lead to the identification of potential proteomic
networks associated with AE-COPD. Calibration
accuracy and k-fold cross-validation were used to as-
sess model accuracy (see Materials and Methods). To
focus on the cytokines that were best at differentiating
stable and AE-COPD, we used variable importance in
projection (VIP) scores57 as a feature selection tech-
nique. The value of using PLSDA with VIP feature
selection is the identification of small protein ‘‘signa-
tures’’ that differentiate groups of interest and are
potentially biologically meaningful, which helps with
generating new mechanistic hypotheses.

We found that a two-latent variable PLSDA model
based on the serum VIP-selected protein signature best
classified stable and exacerbation points with 81.25%
cross-validation accuracy and an 84.38% calibration
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accuracy (Fig. 2a). Latent variable 1 (LV1) differenti-
ated most stable visits (negative scores on LV1) from
AE-COPD (positive scores on LV1; Fig. 2b). Six of the
seven proteins were loaded positively on LV1, indi-
cating positive association with AE-COPD, while only
tissue inhibitor of metalloproteinases (TIMP-4) was
loaded negatively on LV1, indicating negative associ-
ation with AE-COPD. The six positively associated
proteins were IL-1R2, sVCAM-1, sICAM-1, matrix
metalloproteinase 9 (MMP-9), interferon gamma-in-
duced protein 10 (IP-10, the chemokine also known as
CXCL10), and IL-6.

We next compared the classification ability of this
signature to the classification ability of the top indi-
vidual factors identified in univariate analysis of these
data.22 The univariate model indicated that IL-10, IL-
15, GDF-15, sICAM-1, and sVCAM-1 were individual
factors that were significantly increased during exac-
erbation.22 For the purpose of comparing multivariate
with univariate results, we took each of the top sig-
nificant individual mediators from the previous anal-
ysis (sICAM-1, sVCAM-1, and IL-15) and assessed
their individual ability to classify stable and AE-
COPD. We then made a PLSDA model where we
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FIGURE 1. Individual proteins and cell populations measured in stable and exacerbation states. (a) Volcano plot illustrates serum
proteins that are both differentially expressed (x axis) and significantly different (y axis) between the stable and exacerbated state.
Significance was determined using non-normalized data (Supplemental Figures S1, S2 and S3), and points in red indicate
significantly different expression between the stable and exacerbated state via paired Wilcoxon signed rank test, with significance
being defined as p < 0.05. (b) Volcano plot highlighting significantly different sputum proteins across the stable and exacerbated
state. Significance was determined as described above (p < 0.05). (c) Volcano plot illustrating blood cell marker measurements that
were significantly different between stable and AE-COPD. Significance was determined as described above (p < 0.05).

TABLE 1. Summary of demographic, smoking, spirometry and model inclusion information.

Age (yrs) Sex

FEV1

(% predicted) FEV1/FVC Pack-years

Smoking

status

# AE-COPD

during

study ICS use (Y/N) Use in modelsa

74 Female 51 0.5 50 Former 3 Yes Allb

77 Male 28 0.5 50 Former 1 Yes All

69 Male 14 0.34 98 Former 3 Yes Allc

59 Male 47 0.63 18 Former 1 Yes All

72 Male 36 0.55 39 Former 2 Yes All

58 Male 26 0.44 25 Former 1 Yes Serum

67 Male 52 0.61 108 Current 1 Yes All

66 Male 29 0.43 40 Current 1 No All

67 Male 20 0.46 84 Current 1 Yes Serum

72 Male 31 0.25 120 Current 1 Yes Serum

66 Female 33 0.35 104 Current 1 Yes Serum

67.9d 9/2 33.4 0.5 66.9 6/5 1.5 10/1

aExcept where indicated, shows if any paired stable and exacerbation measurement from that patient was used in a data-driven model. ‘‘All’’

indicates at least one stable or AE-COPD measurement from that patient was used in all three data-driven models, and ‘‘Serum’’ means at

least one paired stable and AE-COPD measurement from that patient was used only in the serum model.
bOnly an exacerbation measurement was used from this patient in the data-driven model based on serum, sputum and flow data.
cOnly a stable measurement was used from this patient in the data-driven model based on serum, sputum and flow data.
dData are presented as averages, except in the cases of gender (Male/Female), Smoking status (Former/Current) and ICS use (Yes/No).
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combined all five significant proteins previously iden-
tified through univariate analysis. We compared the
performance of these four analyses to our VIP-selected
PLSDA model described above, using the cross-vali-
dation accuracy and the calibration accuracy as com-
parison metrics. The cross-validation accuracy of the
VIP-selected PLSDA model trended towards being
higher than all analyses based on single significant
proteins, but was only significantly better than the
cross-validation based on IL-15 alone (p < 0.01, one-
way ANOVA with Tukey’s HSD) (Fig. 2c). The VIP-
selected PLSDA model did have the highest calibration
accuracy out of all five accuracies that were compared
(Fig. 2d). Overall, these figures serve to highlight the
use of co-varying features, or ‘‘signatures,’’ in differ-
entiating exacerbation events.

Insight into Cross-Tissue Compartment Cellular
Interactions Associated with AE-COPD

To gain deeper insight into relationships between
immune factors in lung and serum tissue compart-
ments involved in AE-COPD, we used PLSDA to
integrate data from serum and sputum measurements
in stable and exacerbated states. We first evaluated
proteins for which both paired sputum and serum re-
sults were available (n = 9 matched stable and AE
measurements), creating a PLSDA model based on 60
total analytes and employing VIP feature selection to
eliminate those not contributing to differentiation. A
one-latent variable PLSDA model separated exacer-
bation and stable measurements with a cross-valida-
tion and calibration accuracy of 88.89%, though a
two-latent variable PLSDA model scores plot is pre-
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FIGURE 2. VIP scores and PLSDA identified a signature of 7 serum proteins that differentiated stable from exacerbation
measurements in 16 paired stable and AE-COPD events experienced by 11 unique patients. (a) VIP scores identified a 7-protein
serum signature that differentiated stable (purple) and exacerbation (orange) events with 81.25% cross-validation accuracy and
84.38% calibration accuracy. Latent variable 1 (LV1) accounted for 25.00% of the variance in the data, and latent variable 2 (LV2)
accounted for 16.75% of the variance in the data. (b) The loadings plot shows how much each protein contributes to the signature,
with positive loadings associated with exacerbation events, and negative loadings comparatively reduced in exacerbation. (c)
Comparison of the differentiation between stable and exacerbated states based on individual factors vs. multivariate signatures.
The VIP signature identified by the PLSDA models trended towards higher cross-validation accuracy than individual factors that
were most significantly different. A one-way ANOVA determined that this signature was significantly better than IL-15 alone, with **
indicating a p value less than 0.01 after Tukey’s test for multiple comparisons. (d) Comparison of the calibration accuracies for
individual factors vs. the VIP signature identified by the PLSDA model.
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sented to facilitate interpretation of group clustering
(Fig. 3a). LV1 largely differentiated the stable state
(negative scores on LV1) from AE-COPD (Fig. 3b).
Fourteen of the 19 proteins were loaded positively on
LV1, indicating positive association with AE-COPD,
whereas five proteins were associated with
stable COPD. Of the fourteen proteins that were pos-
itively associated with exacerbation, many of the serum
proteins have been established as adhesion or
chemoattraction factors (sICAM-1,56 sVCAM-1,2 IP-
10,36 MCP-259), while most of the sputum proteins
were known inflammatory factors (IL-6,27 IL-1b,16

TNFR-217). Similar to the serum-only model, this
signature suggests migration and activation of innate
immune cells in the serum during exacerbation, yet the
addition of sputum data to the model demonstrates the
corresponding importance of lung inflammation and
chemokine secretion. As classification accuracy of the
combined serum-sputum model was better than either
separately, these results highlight the importance of the
parallel relationship between chemokine secretion in
lung and innate immune cell activation in serum.

Integration of Data Across Experimental Assays Gives
Additional Insight into the Cellular and Proteomic

Mechanisms Associated with AE-COPD

We also used our systems approach to integrate
data across experimental assays by adding flow
cytometry measurements, which were performed only
on whole blood samples. We specifically explored
whether PLSDA might help us integrate measurements
made in different experimental assays. PLSDA and
two rounds of VIP selection identified a one-latent

variable model and a signature of 11 cell markers and
proteins that differentiated stable COPD from AE-
COPD with a cross-validation accuracy and a cali-
bration accuracy of 87.5%. Differentiation between
states (Fig. 4a) was driven by the loadings on LV1,
which separated most individuals by exacerbation
status (Fig. 4b). Nine of the cytokines and cell markers
were loaded positively on LV1, indicating positive
association with exacerbation, and two were loaded
negatively on LV1, indicating negative association with
exacerbation. Cellular factors associated with exacer-
bation in the integrated PLSDA model included CD86
expression by BDCA-3+ dendritic cells (DC) and the
percentage of CD15+ granulocytes (reported in the
original study to be neutrophils).22 In contrast, the
percent of CD4+ T-cells was found to be associated
with the stable measurements in this model.

We next compared the cross-validation accuracies
across all three of the VIP-selected models that con-
sisted of varying amounts of tissue compartment and
assay data. Although none of these three models were
significantly different from each other according to
Tukey’s post hoc test (one-way ANOVA), inclusion of
data from more tissues and assays in the model trended
toward a tighter and higher range of cross-validation
accuracies (Supplemental Figure S5).

To visualize the unbiased classification ability of this
signature, we also employed hierarchical clustering and
created a heat map (Supplemental Figure S6). We found
this clustering algorithm based on distance metrics was
not as useful for classification, with three stable and four
exacerbation samples misclassified out of sixteen total
samples (56.25% classification accuracy). As our data
contained measurements from three individuals with
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FIGURE 3. A one latent variable PLSDA model of VIP-selected proteins from the combined serum and sputum samples combined
resulted in clear differentiation between stable and exacerbation measurements across 9 paired stable and AE-COPD events
experienced by 7 unique patients. (a) PLSDA and VIP scores identified a signature of 19 proteins that differentiated the
stable (purple) from exacerbation (orange) states with 88.89% cross-validation and calibration accuracy. Latent variable 1
accounted for 21.73% of the variance in the data. The scores plot shown is based on a two latent variable model to enable better
visualization of group separation. (b) The loadings plot illustrates the protein contributions to the VIP-selected signature, with
positive loadings positively associated with the exacerbation measurements, and negative loadings comparatively reduced during
exacerbation.
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more than one exacerbation event, we also examined our
scores plot after labeling the points with the patient’s
exacerbation status and visit number. The resulting
scores plot (Supplemental Figure S7) indicates no clear
intra-patient clustering, though this study was not pow-
ered for a thorough statistical analysis in this direction.

We further explored potential relationships between
cell number and protein concentration across the
stable and exacerbated states in our identified signature
using Spearman rank correlation coefficients and a heat
map. Overall we found that MMP-9 in the serum was
positively correlated with CD4+ cells expressing the IL-
18 receptor, and TIMP-1 in the serum was positively
correlated with CD4+ cells expressing the CD122 acti-
vation marker. The BDCA3+ CD86+ and the %CD15
neutrophils were not correlated with the other proteins
in the signature, but were correlated with other mea-
sured proteins (Supplemental Figure S8). Overall, this
suggests that changes in cell number from the stable to
the exacerbated state may be related to simultaneous
increases in concentration of some inflammatory pro-
teins across the two states.

DISCUSSION

Using systems analysis of paired data points from
cellular factors measured in blood and sputum in
exacerbated and stable COPD states, we identified a
signature that differentiated stable and AE-COPD with
> 87% cross-validation accuracy. This signature
trended towards being better than any previously
identified individual cellular factors for differentiating
stable and exacerbated COPD states, though more
measurements would be needed to determine statistical

significance. Biologically, the signature indicated that
parallel increases in inflammatory cytokines in sputum
environments, adhesion/chemoattractive cytokines in
serum environments, and greater numbers of BDCA-
3+ DC and an increased percent of CD15+ neu-
trophils in the blood were all associated with AE-
COPD. These results highlight the value of computa-
tional approaches when integrating measurements
across tissue compartments and from different experi-
mental assays, and motivate use of these approaches to
gain new perspective into cellular systems involved in
this prevalent, lethal, but understudied disorder.

One important strength of our approach is the ability
to define parsimonious cellular signatures by selecting
the most significant co-varying cellular immune factors.
This approach may be valuable as a means of defining
key cellular systems involved in disease progression, and
using these to efficiently choose end-points in clinical
trials and guide future experimental endeavors. This
approach is especially useful for integrating cellular
measurements made in multiple tissue compartments,
which is important given the central role of sputum
production in AE-COPD. Based on these findings, we
propose a model of key networks in AE-COPD (Fig. 5)
involving specific immune cell types, metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinases
(TIMPs), and chemokines. We discuss our findings in
that framework.

In terms of peripheral blood leukocyte participation
in AE-COPD, we extend the observation from uni-
variate analysis of these data22 that CD4+ T cells
decreased in blood during exacerbation, which is
compatible with trafficking to lung or regional lymph
nodes (or both), by showing the importance of the
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FIGURE 4. A one latent variable PLSDA model based on two rounds of VIP selection from serum and sputum proteins and blood
flow markers shows clear differentiation between stable and exacerbation events across 8 pairs of patient samples, which included
7 paired stable and AE-COPD events experienced by 6 unique patients and one stable and one exacerbation measurement that
were not patient matched. (a) PLSDA and two rounds of VIP analysis identified a signature of eleven factors that differentiated the
stable (purple) from the exacerbation (orange) events, with 87.5% calibration and cross-validation accuracy. Latent variable 1 (LV1)
accounted for 41.51% of the variance in the data. The scores plot shown is based on a two latent variable model to enable better
visualization of group separation. (b) The loadings plot highlights factor contributions to the VIP-selected signature, with positive
loadings positively associated with AE-COPD, and negative loadings comparatively reduced during an exacerbation event.
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simultaneous increase in blood of BDCA-3+ DC. We
have previously demonstrated the physical interaction
of this DC subset with CD4+ T cells in lung tissue
from COPD patients.21 BDCA-3+DC were previously
termed mDC2, but are now designated as cDC1;20 they
are the counterpart of murine CD103+ DC, which are
essential for cross-presentation of viral antigens to
CD8+ T cells. Our model suggests recruitment to the
lungs of cDC1, likely from the bone marrow, as a
crucial step driving lung inflammation during AE-
COPD. The other type of leukocyte in our signature,
neutrophils, has been shown by other studies to be
linked to AE-COPD,5 one of which related their
numbers to exacerbation severity.46

Key soluble factors in our signature agree with and
extend previous individual associations of inflamma-
tory mediators with AE-COPD. These not only include
the anticipated agreement with previous univariate
analysis of these data,22 but also several serum proteins
involved in adhesion and chemoattraction of inflam-
matory cells. Chief among these is the neutrophil
chemoattractant IP-10/CXCL10, also found to be
elevated in AE-COPD in two studies.7,28 Our signature
also included IL-6, a pro-inflammatory cytokine27 that
has been vigorously investigated as a possible bio-
marker for AE-COPD. Increased IL-6 in serum and
sputum during AE-COPD was reported by several
large studies using longitudinal design;7,8 this associa-
tion was questioned in a systematic review which,
however, included many studies of cross-sectional

design.12 Our results illustrate the superior power of
comparing paired results from the same subjects across
stable and exacerbated states. We also identified ele-
vations in levels of sICAM-1 and sVCAM-1, truncated
forms of transmembrane adhesion molecules that
interact with leukocyte integrins. sVCAM is chemo-
tactic for murine neutrophils in vitro.41 sICAM-1 is
expressed both by leukocytes and by activated
endothelial cells, and levels of sICAM-1 correlate to
endothelial cell ICAM expression in vitro.35 Each of
these proteins are elevated in stable COPD,18,26 though
to our knowledge, no study (other than our original
data) has linked it to AE-COPD in longitudinal data.
sICAM has been reported to be elevated in subjects
admitted for AE-COPD compared with healthy con-
trol subjects.23 Higher plasma sICAM-1 levels were
also independently associated with emphysema pro-
gression in the MESA Lung cohort, a general popu-
lation sample.1

Our signature identified elevated serum MMP-9 as a
crucial feature of AE-COPD, in agreement with a
previous study.33 Also known as gelatinase B, MMP-9
is released by activated neutrophils.10 It has an unique
ability to induce self-perpetuating lung inflammation
by degrading extracellular matrix, thus liberating the
neutrophil chemoattractant tripeptide N-acetyl Pro-
line-Glycine-Proline.58 Along with IL-6, MMP-9 was
one of 34 serum analytes found to be highly repro-
ducible over a 6 week period of clinical stability in
COPD patients,50 further supporting our findings. Our
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FIGURE 5. A hypothesis of cross-tissue mechanisms of action in the lungs and blood of patients experiencing an AE-COPD.
Adhesion molecules aid in moving immune cells from the blood to the lung, which is further promoted by the presence of the
chemokine interferon gamma-induced protein 10 (IP-10) and monocyte chemoattractive protein 2 (MCP-2) in the sputum. sICAM:
soluble intercellular adhesion molecule. sVCAM: vascular cell adhesion molecule. IP: interferon gamma-induced protein. MCP:
monocyte chemoattractive protein. TIMP: tissue inhibitor of metalloproteinases. MMP: matrix metalloproteinase. R2: receptor 2.
ECM: extracellular matrix. CD: cluster of differentiation. BDCA: blood dendritic cell antigen.
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MMP-9 finding is interesting in light of the disparity
between the association with exacerbation of TIMP-1,
TIMP-2, and TIMP-3, which stoichiometrically inhibit
MMP activity,38,43 and TIMP-4, which associated with
the stable state in the VIP signature. Unlike the other
three TIMP family members, which act as soluble in-
hibitors, TIMP-3 is typically bound to matrix sulfated
glycosaminoglycans,38 suggesting that its presence in
the serum during AE-COPD might reflect matrix
degradation.

All of our models identified IL-1R2 as a crucial
serum factor increased during AE-COPD, in agree-
ment with two studies from the group in Maastricht of
patients admitted for AE-COPD.15,24 IL-1R2 (Gene
ID: 7850) is an early response gene47 whose product is
a decoy receptor that inhibits activity of its three li-
gands: IL-1a, IL-1b, and the type I IL-1 receptor.
Together with associations for TIMP1-3, our results
highlight the importance of counter-regulatory factors
during AE-COPD. Although all the subjects in the
original dataset were successfully treated as outpatients
with resolution, not all patients regain lung function
following AE-COPD; an intriguing possibility is that
those who do not recover entirely might exhibit rela-
tively deficient up-regulation of IL-1R2 and TIMPs
during AE-COPD.

There are several limitations to this analysis. Al-
though our original study22 recruited a larger group of
subjects, many sought treatment for AE-COPD
locally, rather than returning when acutely ill. Some
measurements had to be excluded from this analysis
due to missing data. Collectively, these factors reduced
our sample size, making it all the more noteworthy
that our approach identified AE-COPD cellular sig-
natures that could be used to gain biological insight.
However, the small sample size did limit our ability to
find signatures that could be used in diagnostic con-
texts. Even though our identified signature trended
towards being better than individual factors, it was
only statistically significant in one case. Furthermore,
additional unknown test data in different patient co-
horts would be needed to truly assess signature clas-
sification ability for diagnostic purposes. A second
limitation is the necessary dependence on proteins
measured in the original study, which used a ‘‘candi-
date gene’’ approach based in part on prior knowledge,
and not an unbiased screen of the entire proteome.
Because our original study involved flow cytometric
analysis of peripheral blood leukocytes collected in
part during AE-COPD, there is, to our knowledge, no
current exacerbation cohort available for validation
testing. However, to prevent model overfitting as much
as possible, we did employ internal cross-validation.

Results of this work support exciting future research
in several directions. First, if similar data from other
cohorts of paired stable and exacerbation measure-
ments were to become available, generated models
could be tested and validated. Data-driven approaches
such as these could be applied as a classification tool to
identify differences in exacerbation endotypes or in
AE-COPD events resulting from different upstream
causes (including viruses, bacteria, etc.), thus providing
insight into systems-level mechanisms of action that
could result in personalized treatment options. Unbi-
ased data-driven models applied to multiplex COPD
data from across tissue compartments may also prove
useful to characterize COPD endotypes.
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