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Abstract

Introduction—Skeletal muscle tissue development and
regeneration relies on the proliferation, maturation and
fusion of muscle progenitor cells (myoblasts), which arise
transiently from muscle stem cells (satellite cells). Following
muscle damage, myoblasts proliferate and differentiate in
response to temporally-varying inflammatory cytokines,
growth factors, and extracellular matrix cues, which stim-
ulate a shared network of intracellular signaling pathways.
Here we present an integrated data-modeling approach to
elucidate synergies and antagonisms among proliferation
and differentiation signaling axes in myoblasts stimulated
by regeneration-associated ligands.
Methods—We treated mouse primary myoblasts in culture
with combinations of eight regeneration-associated growth
factors and cytokines in mixtures that induced additive,
synergistic, and antagonistic effects on myoblast prolifera-
tion and differentiation responses. For these combinatorial
stimuli, we measured the activation dynamics of seven
signal transduction pathways using multiplexed phospho-

protein assays and scored proliferation and differentiation
responses based on expression of myogenic commitment
factors to assemble a cue-signaling-response data com-
pendium. We interrogated the relationship between these
signals and responses by partial least-squares (PLS) regres-
sion modeling.
Results—Partial least-squares data-modeling accurately
predicted response outcomes in cross-validation on the
training compendium (cumulative R2 = 0.96). The PLS
model highlighted signaling axes that distinctly govern
myoblast proliferation (MEK–ERK, Stat3) and differenti-
ation (JNK) in response to these combinatorial cues, and
we confirmed these signal-response associations with
small molecule perturbations. Unexpectedly, we observed
that a negative feedback circuit involving the phosphatase

Benjamin D. Cosgrove is an Assistant Professor in the Meinig
School of Biomedical Engineering at Cornell University in Ithaca,
NY, where he directs the Laboratory of Regenerative Systems
Biology. His research group, which is currently supported by a NIH
R00 Pathway-to-Independence Award, develops and implements
systems biology and biomaterials engineering approaches to study
how cell–cell communication and intracellular signaling networks
regulate stem and progenitor cell function in skeletal muscle home-
ostasis and regeneration, and how these processes become dysfunc-
tional in aging and muscular dystrophies. Dr. Cosgrove earned a
Bachelor’s in Biomedical Engineering at the University of Minnesota
and a Ph.D. in Bioengineering at the Massachusetts Institute of
Technology. His Ph.D. thesis research, under the joint supervision of
Dr. Douglas Lauffenburger and Dr. Linda Griffith, which estab-
lished on experimental and computational systems biology tools to
elucidate signaling network mechanisms regulating liver hepatocyte
cell-fate decisions, was supported by a Whitaker Foundation Grad-
uate Research Fellowship and a Biomedical Engineering Society
Graduate Research Award. His postdoctoral research with Dr. He-
len Blau at Stanford University was supported by a Stanford

Molecular Imaging Scholars Fellowship and NIH K99 Pathway-to-
Independence Award and was recognized by the Cellular and
Molecular Bioengineering Special Interest Group of the Biomedical
Engineering Society with a Rising Star award in 2015.

This article is part of the 2017 CMBE Young Innovators special
issue.

Address correspondence to Benjamin D. Cosgrove, Meinig

School of Biomedical Engineering, Cornell University, Ithaca,

NY 14853, USA. Electronic mail: bdc68@cornell.edu

Cellular and Molecular Bioengineering, Vol. 10, No. 5, October 2017 (� 2017) pp. 433–450

DOI: 10.1007/s12195-017-0508-5

1865-5025/17/1000-0433/0 � 2017 Biomedical Engineering Society

433

http://orcid.org/0000-0001-7782-0726
http://orcid.org/0000-0001-6875-7841
http://orcid.org/0000-0003-3617-7302
http://orcid.org/0000-0002-1923-2675
http://orcid.org/0000-0002-6305-4554
http://orcid.org/0000-0003-2164-350X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12195-017-0508-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12195-017-0508-5&amp;domain=pdf


DUSP6/MKP-3 auto-regulates MEK–ERK signaling in
myoblasts.
Conclusion—This data-modeling approach identified con-
flicting signaling axes that underlie muscle progenitor cell
proliferation and differentiation.

Keywords—Cue-signal-response modeling, Cytokines,

Growth factors, Partial least-squares regression, Skeletal

muscle, Systems biology.

ABBREVIATIONS

AUC Area-under-the-curve
CSR Cue-signal-response
DUSP Dual specificity phosphatase
EGF Epidermal growth factor
FGF2 Fibroblast growth factor 2
IGF1 Insulin-like growth factor 1
IL-1a Interleukin-1a
IL-6 Interleukin-6
LIF Leukemia inhibitor factor
MHC Myosin heavy chain
OSM Oncostatin-M
PC Principal component
PLS Partial-least squares
TNF-a Tumor necrosis factor-a

INTRODUCTION

Postnatal skeletal muscle development and regen-
eration relies upon the coordinated activation, prolif-
eration, and differentiation of muscle stem and
progenitor cells.47 In adulthood, muscle stem cells
(MuSCs; also known as satellite cells) are retained in a
mitotically and metabolically quiescent state and are
marked by expression of the transcription factor
Pax7.7,28 In response to muscle damage, MuSCs
become activated and subsequently undergo multiple
rounds of self-renewing divisions that produce both
additional stem cells and committed MyoD+ myo-
genic progenitor cells (myoblasts). Myoblasts rapidly
proliferate and then differentiate into fusion-compe-
tent, Myogenin+ myocytes. Myocytes fuse into mature
Myosin heavy chain (MHC)-expressing myofiber cells,
which provide contractile, structural and metabolic
function to muscle tissue. Together, MyoD, Myogenin,
and MHC serve as a core myogenic cascade, with the
transcription factors MyoD and Myogenin expressed
successively, followed by MHC, to promote terminal
differentiation39 (Fig. S1).

Muscle stem and progenitor cell fates during repair
are governed by proliferation- and/or differentiation-
inducing ligands secreted by macrophages, myofibers,

and myofibroblasts within muscle tissue.47 For exam-
ple, M1-biased macrophages transiently increase
within 2 days post-injury and secrete the cytokines
interleukin-1a/b (IL-1a/b), IL-6, and tumor necrosis
factor-a (TNF-a) during a myoblast proliferative
phase; a second wave of M2-biased macrophages am-
plify 4–5 days post-injury and secrete IL-4 and insulin-
like growth factor (IGF1), which promote myoblast
commitment and differentiation.43 Other proliferation
and differentiation-inducing cytokines and growth
factors are secreted by local myofibroblasts, myofibers,
and even myogenic stem/progenitor cells them-
selves.41,47 Together, these cues present a series of time-
varying stimuli with overlapping synergistic and
antagonistic effects on myogenic fate regulation, ulti-
mately yielding pools of both committed myogenic
progenitors capable of myofiber fusion and quiescent
Pax7+ muscle stem cells.

Here, we sought to dissect the cooperating contri-
butions of numerous regeneration-associated growth
factors and cytokines in regulating myoblast prolif-
eration and differentiation (Fig. S1). A key group of
myoblast survival and mitogenic factors include
fibroblast growth factor-2 (FGF2, also known as
basic FGF), epidermal growth factor (EGF), and in-
sulin-like growth factor (IGF1).29 FGF family ligands
are required for muscle maintenance and regenera-
tion.37 Notably, muscle stem/progenitor cells have
reduced responsiveness to FGF stimulation in aged
tissues, underscoring their critical role in muscle
maintenance.4 FGF ligands bind to FGF receptors-1/
4 in muscle cells,37 stimulate the MEK–ERK, p38,
PI3K–Akt, and Stat signaling pathways, and promote
myoblast proliferation and differentiation.37 ERK1/2
activation, in response to FGF2, is required for
myoblast proliferation but is dispensable for FGF-
induced expression of myogenic differentiation genes
and cell fusion.23 Moreover, FGF2 is secreted by
myogenic progenitors and can act as an autocrine
factor to self-regulate MEK–ERK signaling in muscle
cells.15 Likewise, IGF1, which is produced by resident
myofibroblasts, promotes myoblast proliferation and
differentiation,43 in part through the activation of
PI3K–Akt signaling and MyoD-regulation of myo-
genic genes,42 and contributes to muscle growth and
hypertrophy. Critically, EGF synergizes with insulin
ligands to promote myoblast proliferation,33 sug-
gesting that IGF1-induced Akt and EGF-induced
ERK signaling cooperatively regulate myoblast pro-
liferation.

A second group of potent myoblast regulatory li-
gands is the IL-6 family, which includes IL-6, onco-
statin M (OSM), and leukemia inhibitor factor (LIF).
IL-6 is a pleotropic cytokine that can promote muscle
stem cell activation, but also restricts myoblast pro-
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liferation while inducing myoblast differentiation.44

These cellular effects underlie the complex tissue-level
effects of IL-6 signaling, which has been associated
with both muscle wasting and hypertrophy.2,32 IL-6
binds to the IL-6R/gp-130 receptor complex and
stimulates the JAK–Stat and p38 pathways, which in-
duce MyoD expression and myogenic target genes.38,44

The dosing and persistence of IL-6–JAK–Stat3 path-
way perturbation can yield contradictory results; for
example, complete IL-6 ablation impairs muscle stem/
progenitor proliferation32 but partial Stat3 inhibition
promotes stem cell expansion in vivo.22 Similarly, OSM
and LIF, through binding to their cognate receptors
OSMR/gp130 and LIFR/gp130, respectively, activate
JAK–Stat, PI3K–Akt, and MEK–ERK signaling to
varying magnitudes.22 OSM and LIF restrict myoblast
differentiation in a MEK-dependent manner and
weakly promote proliferation.6 These context-depen-
dent myoblast responses to IL-6 family ligands suggest
that differential activation of secondary pathways may
explain ligand-specific outcomes.22

TNF-a and IL-1 cytokines promote myoblast dif-
ferentiation and restrict proliferation. TNF-a binds to
TNFR, recruits TRAF6, and stimulates p38, IKK–
NFjB, and JNK–cJun pathway activation.14 TNF-a
promotes myogenic differentiation through p38,
stimulating MyoD activation and epigenetic regula-
tion of myogenic gene programs.35 Inhibition of
p38 signaling enhances muscle stem/progenitor cell
expansion10 by both antagonizing Myogenin-depen-
dent commitment and promoting the proliferative
JNK pathway.14 TNF-a also induces myogenic cell
proliferation via JNK-induced expression of the cell
cycle promoter Cyclin-D1.14,34 IL-1a/b binds to
ILR1 to activate JNK–cJun and IKK–NFjB signal-
ing31 to promote muscle stem/progenitor cell prolif-
eration,16,46 upon co-stimulation with other cytokines
and chemokines. Therefore, these regeneration-asso-
ciated stimuli regulate numerous conflicting pathways
governing myoblast proliferation and differentiation
responses (Fig. S1).

Interpretation of conflicting signaling pathway reg-
ulators of cell fate can be aided by data-driven mod-
eling. A number of approaches have been developed to
model the relationships between signal transduction
networks and cell-type-specific responses.11,21 When
detailed molecular-level understanding of the signaling
cross-talk mechanisms is not available, data-driven
modeling approaches such as decision trees, fuzzy lo-
gic, and partial least-squares (PLS) regression can
suggest connections between signaling mediators and
cell response outcomes, and even accurately predict cell
responses to de novo signaling observations.8,9 Here,
we chose to develop a PLS regression-based data-

model of myoblast responses to diverse ligand stimuli,
given prior successes by PLS models in generating
confirmable identification in signaling network-cell fate
relationships across diverse cell types.8,9,17,20,21,25,27,30

We calibrated a well-performing PLS data-model from
temporally-dense, multi-pathway phosphoprotein sig-
naling data collected under an array of combinatorial
growth factor and cytokine conditions. This PLS
model generated accurate predictions of myoblast
responses in cross-validation-based calibration and
also on new test data. Importantly, the PLS model
reduced the myoblast signaling-response relationships
into a set of four principal component basis axes with
time-varying associations to distinct differentiation
and proliferation outcomes.

RESULTS

Combinatorial Growth Factor and Cytokine Stimuli
Induce Synergistic and Antagonistic Myoblast Response

Phenotypes

We established a myoblast differentiation scheme to
identify combinatorial ligand stimulations that result
in non-additive differentiation outcomes. We seeded
mouse primary myoblasts at high-confluency in dif-
ferentiation medium (DM) with 3% fetal bovine serum
(FBS) and stimulated the cells with combinations of
three multi-ligand mixtures, which each predominantly
reported to activate different signal transduction
pathways (Fig. S1). In contrast to most reports using
horse serum to induce myoblast differentiation, we
chose FBS to allow for co-treatment-induced changes
in both differentiation and proliferation. First, we
tested Fibroblast Growth Factor-2 (FGF2) + Epi-
dermal Growth Factor (EGF) + Insulin-like Growth
Factor (IGF1; together ‘‘FEI’’), which all activate the
PI3K–Akt–mTOR and MAPK (ERK, p38, JNK)
signaling pathways.4,15,23,37 Second, we tested Tumor
Necrosis Factor-a (TNF-a) + Interleukin-1a (IL-1a;
together ‘‘TI’’), which both activate the IKK–NFjB
and JNK pathways.14,16,31,46 Third, we tested Inter-
leukin-6 (IL-6) + Oncostatin-M (OSM) + Leukemia
Inhibitor Factor (LIF; together ‘‘IOL’’), all ligands in
IL-6 super-family which predominantly activate the
JAK–STAT pathway.2,46

We measured myoblast proliferative index at 72 h
post-stimulation and observed that IOL treatment
restricted proliferation, but FEI and TI did not have
an effect compared to control cultures (Figs. 1a and
1b). We evaluated two-way combinations of these
mixtures and compared the observed myoblast pro-
liferation to predictions based on a modified Bliss
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independence model5 to identify multi-factor treat-
ments that exhibited supra-additive synergy or sub-
additive antagonism. We observed FEI/TI to induce
supra-additive proliferation, indicating these treat-
ments may lead to a synergistic activation of prolif-
eration-regulating pathways. In contrast, we observed
TI/IOL to induce more proliferation than predicted
by the additive model, indicating that TI may act to
negate the proliferation-restricting effects of the IOL
mixture.

We then measured myoblast differentiation responses
also at 72 h post-stimulation. We assayed expression of
three myogenic commitment and differentiation genes,
MyoD1 (Myod1), Myogenin (Myog), and Myosin hea-
vy chain (Myh2) using a combination of RT-qPCR and
immunoblotting methods (Figs. 1c–1h). Across these
assays, we observed that FEI and IOL upregulated
and TI downregulated expression of differentiation
genes. In the mixture combination conditions, we
observed that FEI/IOL synergistically upregulated
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FIGURE 1. Synergism and antagonism in growth factor and cytokine-stimulated myoblast proliferation and differentiation. Pri-
mary mouse myoblasts were cultured in differentiation medium (DM) with 0.1% DMSO (control) and were stimulated with either
FGF2 + EGF + IGF1 (FEI), TNF-a + IL-1a (TI), IL-6 + OSM + LIF (IOL), or their two-way combinations for 72 h. (a, b) Proliferative
index was determined by nuclei counting from DAPI images. (a) Representative DAPI images. Scale bar, 200 lm. (c–e) RT-qPCR
analysis of myogenic differentiation genes Myod1, Myogenin, and Myh2 quantified relative to 36b4 (reference control). (f–h)
Immunoblots for MHC, Myogenin, and Hsp90 (as a loading control). Myogenin (g) and MHC (h) densitometry, normalized to Hsp90.
In (b–e, g–h), n = 3 replicates are plotted as log2 of mean fold change relative to control 6 SEM. For co-treatments, an additive
model used to identify synergy or antagonism using a modified Bliss independence model with p< 0.05 by Student’s t test between
control and other stimulations (*) or between observed stimulation combinations and the additive model (%).
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Myod1 expression. We also found that the FEI/TI and
TI/IOL combinations resulted in more downregulation
of Myod1, Myogenin, and Myh2 than expected by the
additive model, suggesting that TI’s differentiation-re-
stricting effects dominate over IOL and FEI’s differen-
tiation-inducing effects. Collectively, these observations
suggested that FEI, TI, and IOL induce varied myoblast
proliferation and differentiation responses and their
combinations unexpectedly lead to both supra-additive
synergies and antagonisms.

Signaling Network Data Compendium Highlights
Temporally Patterned Signaling Synergies

To refine how shared and distinct signaling pathways
govern the observed myoblast responses, we collected a
data-compendium comprised of the activation time-
courses of eight phosphoproteins from the pathways
predominantly activated (PI3K–Akt–mTOR–p70 S6K,
MEK–ERK, p38, IKK–NFjB, JNK–cJun, and JAK–
Stat3) by these eight ligands (Figs. S1 and 2a) from mid-
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FIGURE 2. Myoblast cue-signal-response data compendium identifies co-treatment synergies with variable dynamics. (a) A dense
time-course of multiple phosphoprotein signals was quantified through a mixture of multiplexed Luminex and immunoblotting
assays. Primary mouse myoblasts were cultured in differentiation medium (DM) with 0.1% DMSO (control) and were stimulated
with either FGF2 + EGF + IGF1 (FEI), TNF-a + IL-1a (TI), IL-6 + OSM + LIF (IOL), or their two-way combinations for 72 h. Phos-
phoprotein measurements were quantified at 0, 5 min, 15 min, 1, 4, and 24 h and differentiation responses were quantified at 72 h
post-stimulation; (b) Representative immunoblots for p-Stat3, p-Akt, and Gapdh (as a loading control); (c) Heatmap of signaling-
response data compendium. Left, Mean values (from n = 3 replicates) of p-Akt, p-p70 S6 kinase, p-MEK1, p-ERK1/2, p-p38 MAP
kinase, p-IjBa, and p-cJun Luminex time-courses and phospho-Stat3 and p-Akt immunoblots (15 min time-point only). Signaling
data were first normalized to b-tubulin (Luminex) or Gapdh (blots) levels, then were fold-change normalized to the t = 0 Control
sample and reported on a log2-scale (see Fig. S2 for full data set). Right, Mean values of proliferation and differentiation (Myod1,
Myog, Myh2 by RT-qPCR; Myog, MHC by quantitative immunoblot) responses (from Fig. 1) normalized to the Control sample and
reported on a log2-scale; (d) p-IjBa time-course for control, TI, FEI, and FEI + TI conditions demonstrating biphasic activation
peaks; (e) Phospho-ERK1/2 time-course for Control, IOL, FEI, and FEI + IOL conditions; (f) Phospho-p38 time-course for Control,
TI, IOL, and TI + IOL conditions; (g) p-cJun time-course for Control, TI, FEI, and FEI + TI conditions; (h) p-Akt at 24 h for Control, TI,
IOL, and TI + IOL conditions. In (d–h), n = 3 replicates are plotted as mean 6 SEM.

Data-Modeling Myoblast Cell Fate Antagonism 437



passage (p18) primary mouse myoblasts. We used rig-
orously validated (see Figs. S2 and S3) quantitative
Luminex multiplexed assays to measure seven phos-
phoproteins (Akt pSer473, p70 S6 K pThr389/pThr412,
MEK1 pSer222, ERK1/2 pThr185/pTyr187, p38 MAPK
pThr180/pTyr182, IjBa pSer32, and cJun pSer73) at six
time-points from 0 to 24 h post-stimulation (Figs. 2c
and 2d). We complemented these dense time-courses
with similarly validated quantitative immunoblots of
Akt pSer473 and Stat3 pTyr705 at t = 15 min post-
stimulation (Fig. 2b). We collected these data for eight
multi-ligand conditions, including all one- and two-way
combinations of FEI, TI, and IOL, for which we al-
ready collected 72 h myoblast cell response measure-
ments (Fig. 2c). We note that these conditions yielded
no significant differences in cellular apoptosis (Fig. S2j)
so we generally attribute the observed differences in cell
number to proliferative changes.

For some phosphoproteins, we observed transient
activation exclusive to specific single mixtures, such as
the induction of p-IjBa by TNF + IL-1a (TI; Fig. 2d).
TI-stimulated p-IjBa exhibited both ‘‘early’’ (<1 h)
and ‘‘late’’ (~1 h) activation peaks, in agreement with
well-observed oscillatory behavior of the IKK–NFjB
pathway.24 Furthermore, the p-IjBa oscillations were
not perturbed by either FEI or IOL co-treatment
(Figs. 2d and S3). Notably, we observed conditions with
‘‘early’’ additive synergy, such as p-ERK1/2 activation
by FEI/IOL (Fig. 2e). We observed cases with ‘‘early’’
supra-additive synergy, such as p-p38 activation by TI/
IOL (Fig. 2f). We observed cases with more delayed
(~1 h) synergy, such as p-cJun by FEI/TI (Fig. 2g). We
also observed examples of ‘‘late’’ antagonism at
t = 24 h, including p-p38 and p-Akt activation by TI/
IOL, in which the repressive effect of the IOL stimulus
dominates over the stimulatory effect of TI (Figs. 2f and
2h). These observations suggested that the synergies and
antagonisms in myoblast proliferation and differentia-
tion responses might be a function (f) of the underlying
combination of signaling combinations.

Calibration of a Partial Least-Squares Data-Model of
Myoblast Signaling-Response Compendium

Given the challenge in intuiting the biological con-
nections between signaling (‘‘X’’) and response (‘‘Y’’)
variables in the data-compendium, we reasoned that a
data-model might be more successful in identifying
these higher-order relationships. Partial least-squares
(PLS) regression is a data-modeling approach for
relating signaling dynamics to cell response phenotypes
made across a set of conditions.8,9,17,20,21,25,27,30 PLS is
flexible to data types and scales and, importantly,
requires no a priori model of the signaling mechanisms
and their net effects on cell phenotypes. Instead, PLS

data-modeling provides a reduced dimensionality set
of data variable weights and scores in a principal
component (PC) space to provide multivariate linear
regressions to quantitatively relate the observed sig-
naling dynamics to cell responses. Before training a
PLS model, we extracted non-linear signaling dynam-
ics from time-course data in the form of ‘‘area-under-
the-curve’’ integrals comprising the early (‘‘E’’, 0–1 h)
and late (‘‘L’’, 1–24 h) peaks and the full (‘‘F’’, 0–24 h)
time-course (Fig. 3a). Given that we observed both
induction and repression of myogenic gene expression
(Fig. 2c), we generated two sets of models, using either
linearly-scaled signaling and response data or loga-
rithmically-scaled data, which can account for up- and
down-regulated variables (Figs. 3c and 3d). After
extraction and scaling, all signaling and response
variables were unit-variance-transformed into Z-scores
to remove bias due to disparate data-range vari-
ances.1,17

We trained a set of PLS models on 58 transformed
phosphoprotein signaling metrics and six response
variables, arrayed over eight conditions into a cue-
signal-response (CSR) data compendium, based on the
SIMPLS regression algorithm using the PLSRE-
GRESS function in Matlab. We evaluated the quality
of each calibrated model using an R2 fitness metric8,17

calculated individually or cumulatively over all six
response variables (Figs. 3c–3g and S4a–S4c). For the
non-scaled data model (denoted as ‘‘Lin(X),Lin(Y)’’),
we observed that the cumulative model fitness pla-
teaued at 0.96 by four principal components (Fig. 3c).
The additive improvements in model performance
from successive PCs up to the fourth PC suggests that
four predominant axes of signaling-response covaria-
tion20 exist in the myogenic CSR data-compendium.

FIGURE 3. Calibration of a partial least-squares regression
model linking signaling dynamics to myoblast responses. (a,
b) Signaling metrics were extracted from phosphoprotein
activation time-courses, including the mean values at each
time-point, the area-under-the-curve (AUC) for the early peak
(0–1 h), late peak (1–24 h) and full time-course, and were then
unit-variance-transformed to a Z-score prior to data-modeling;
(c–f) Partial least-squares (PLS) regression models were cal-
ibrated in cross-validation to the signaling-response data set
under a number of data-scaling approaches. The fitness of the
model to predict response outcomes based on signaling
metrics was evaluated for each response; (c) Model fitness for
increasing principal components (PC) used in the PLS
regression, using unscaled signaling (X) and response (Y)
data matrices in a six-response model; (d) Effects of data
scaling and number of response variables included on the
fitness of 4-PC models (e–g) Observed vs. predicted
responses for cell number (e), Myod1 expression by RT-qPCR
(f), and Myogenin expression by immunoblot (g; see also
Fig. S4a–S4c). Mean 6 SEM of n = 3 replicates is reported for
observations; (h–j) PLS model ‘‘score projections’’ for co-
treatment combinations (black; all other conditions in gray)
for PC1 and PC3, relative to the Control (C) condition. Additive
projections from two individual treatment conditions are
shown.

c
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We compared the fitness of PLS models calibrated to
unscaled (linear) and logarithmic-scaled data. In one-
response and six-response models, we found that the
‘‘Lin(X),Lin(Y)’’ model performed (R2 = 0.96) better
than any log-scaled versions (R2 = 0.88–0.94;

Fig. 3d). Though the one-response models generally
had better fitness to the observed response data as
expected with fewer regressed variables, the six-re-
sponse models performed well when the signaling data
was not log-scaled. For all further analysis, we focused
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on the six-response PLS model calibrated to the un-
scaled signaling-response data given its fitness in cali-
bration.

This unscaled 4-PC calibrated model achieved good
cross-validation predictive accuracy for both cell pro-
liferation index (R2 = 0.89), RT-qPCR gene expression
(e.g., Myod1, R2 = 1.00), and protein immunoblotting
measurements (e.g., Myogenin, R2 = 0.95) of myogenic
differentiation, even though the response data were
heavily biased towards differentiation measurements
(Figs. 3e–3g and S4a and S4b).

PLS Model Loadings and Scores Identify Basis Axes of
Cue-Signal-Response Co-variation

Possible connections between stimulation cues,
signaling metrics, and cell response outcomes in PLS
models can be identified by examining their co-vari-
ation in principal component space. We inspected
the signaling and response metric PLS model
loadings (w*ci) in each PC (Figs. S4d and S4e). We
observed that PC1 represented an anti-differentiation
axis due to the inclusion of highly-negative PC1
loadings of all five myogenic differentiation mea-
surements (Fig. S4d). We observed that PC2 contains
signaling metric co-variation that was not well-cor-
related with any particular response variable. We
observed that PC3 and PC4 are both pro-proliferative
axes, and that the proliferation response has negligi-
ble loadings in PC1 and PC2. We observed that few
signals provided strongly negative PC1 model load-
ings and, instead, found that strongly-positive, dif-
ferentiation-antagonizing PC1 loadings, suggesting
that specific phosphoprotein signals measured in the
CSR compendium do not strongly promote differ-
entiation (Fig. S4d). Instead, we conclude that dif-
ferentiation is largely a default state of low-serum
medium, which agrees with observations that myo-
genic specification is a result of signaling depriva-
tion.40 In contrast, we identified more signals with
either pro- or anti-proliferative correlations due to
their strongly-positive or -negative (respectively)
loadings in PC3 and PC4 (Fig. S4e).

We examined the model ‘‘scores’’, which represent
how the cues project into the PC axes of the calibrated
4-PC PLS model. Since PC1 represents the strongest
differentiation-associated axis and PC3 represents the
strongest proliferation-associated axis, we focused
model interpretations to these two PCs. We examined
how each two-way combination of the stimulation
mixtures independently and cooperatively projected
on PC1 and PC3 (Figs. 3h–3j). To assess non-additive
cooperativity, we generated an additive projection for
each two-way condition combination from their PC1/
PC3 score vectors. By comparing to these additive

projections, we noted that the FEI/TI combination
exhibited additive cooperativity, the FEI/IOL com-
bination exhibited antagonism, and the TI/IOL
combination exhibited supra-additive cooperativity,
within this shared signal-response principal compo-
nent space.

By examining the cell-response loadings in the PLS
model, we identified that PC1 and PC3 provide
orthogonal principal axes to delineate signaling
mediators that distinguish between myoblast differ-
entiation (PC1) vs. proliferation (PC3) (Fig. 4a). By
inspecting all signal metric loadings (Figs. 4a–4d and
S4f and S4g), we found that PC1 was dominated by
anti-differentiation (positive w*c1) p-IjBa and p-cJun
loadings throughout all time-points and pro-differ-
entiation (negative w*c1) p-p38 MAPK loadings from
later time-points (Fig. 4b). In contrast, we found that
PC3 was dominated by a strongly anti-proliferative
(negative w*c3) p-Stat3 15-min loading and pro-pro-
liferative (positive w*c3) late (4–24 h post-stimula-
tion) p-Akt, p-70 S6K, p-MEK1, and p-ERK1/2
loadings (Fig. 4c).

Interestingly, we observed that a number of phos-
phoprotein signaling metrics had loadings that varied
in their PC1 and PC3 contributions with respect to
their associated post-stimulation time (Fig. 4d, note
red arrows represent time axis). Notably, p-MEK1
and p-ERK1/2 metrics had negligible PC1 loadings
for all time-points and strongly positive PC3 loadings
at late time-points and for the full AUC metric,
suggesting MEK–ERK signaling contributing to cell
proliferation more so than differentiation. In contrast,
p-p38 and p-Akt metrics transition from strongly
positive in PC1 at very early time-point (5–15 min) to
strongly positive in PC3 at later time-points (4–24 h).
These time-varying loadings suggest that even indi-
vidual signaling pathways could have distinct tempo-
rally-encoded contributions to myoblast proliferation
and differentiation responses, as has previously been
demonstrated for TNF-a-induced colon epithelial cell
apoptosis models.20

Confirming Model-Identified Signaling Regulation of
Myoblast Fate

We aimed to test the mechanistic roles of these
model-identified distinct signal-response associations
through a series of small molecule signaling inhibitor
studies. First, we examined MEK–ERK signaling,
which the model identified as having exclusively a
pro-proliferative effect, by treating FEI-stimulated
myoblasts with the MEK inhibitor PD0325901. We
observed that PD0325901 attenuated FEI-induced p-
ERK activation, as expected, and reduced cell num-
bers below the untreated control, as predicted
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(Figs. 5a and 5b). Moreover, though FEI weakly in-
duced Myh2 expression, PD0325901 had no effect on
myogenic differentiation, confirming the exclusive pro-
proliferative role of MEK–ERK signaling (Figs. 5c
and 5d). Second, we examined JNK signaling, which
the model identified as having exclusively an anti-dif-
ferentiation role, by treating TI-stimulated myoblasts
with the JNK inhibitor SP600125. We observed that
SP600125 treatment ameliorated TI-stimulated p-cJun
activation and enhanced TI-restricted myoblast dif-
ferentiation, as evidenced by elevated Myod1 and
Myh2 expression, as predicted (Figs. 5e–5g). TI with
or without SP600125 co-treatment had no effect on
myoblast proliferation, thus confirming the exclusive
anti-differentiation role of JNK signaling (Fig. 5h).
Third, we examined Stat3 signaling, which notably had
a strong anti-proliferative but negligible differentia-
tion association in the model, using the Stat3 inhibitor
5, 15-Diphenylporphyrin (5, 15-DPP). Co-treatment
with 5, 15-DPP abrogated the IOL-stimulated prolif-
erative decline, but did not affect differentiation,
confirming the exclusively anti-proliferative role of
IOL–Stat3 signaling (Figs. 5i–5k). These findings
provide evidence that the PLS model gives insight to
mechanistic connections between critical signaling
mediators and myogenic cell fate regulators, and that
orthogonal signaling-fate axes exist within the myo-
blast signaling network.

Verifying PLS Model Prediction on Kinase Inhibitor
Data Set

We tested the performance of the trained model in
predicting the myoblast responses when MEK, p38
and JNK were perturbed by targeted small molecule
kinase inhibition. We collected a second ‘‘test’’ CSR
data-compendium with eight treatments: control, FEI,
FEI with PD0325901 (a MEK inhibitor) or SB203580
pre-treatment (a p38a/b MAPK inhibitor), TI, TI with
PD0325901, SB203580 or SP600125 (a JNK inhibitor)
in mid-passage (p20) myoblasts (Fig. S5). In this sec-
ond CSR compendium, we observed that responses to
MEK and p38 inhibitor treatments unexpectedly en-
hanced and/or prolonged the activation of other
pathways (such as p-Akt and p-MEK, respectively)
that are not biochemically perturbed by these in-
hibitors. Therefore, we developed a modified version of
PLS model trained on the first CSR data set, which did
not include any p-MEK signaling metrics due to these
confounding effects. We tested the modified model’s
ability to predict the proliferation and differentiation
responses in the test set using the signaling data alone
(Fig. S5). The modified PLS model did not accurately
predict myoblast cell fate outcomes across this entire
test data set (cumulative R2 = -0.11) due to a few large
prediction inaccuracies associated with inhibitor con-
ditions. These observations suggest that the myoblast
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signaling network is sufficiently re-wired upon kinase
inhibitor treatments to break the linear logic encoded
in the PLS model.

Phosphatase-Mediated Pathway Crosstalk

This model fitness result suggested that perhaps these
chemical inhibitors exhibited off-target effects on other
pathways that were poorly accounted for in the model.
For example, SB203580 has been reported to have a
~100-fold-reduced IC50 for JNK, a kinase that phos-
phorylates cJun, relative to the IC50 for p38a/b.12 We
evaluated the signaling activation of multiple pathways
in the context of p38 inhibition and observed that a
number of untargeted pathways exhibited elevated sig-
naling activation in the presence of the p38 inhibitor

SB203580. In particular, p-MEK1 and p-ERK1/2 levels
were persistently elevated in the presence of SB203580
(Figs. 6a and 6b). This suggests that p38 inhibition may
have unintended consequences through signaling net-
work feedback mechanisms, such as through the
downregulation of p38-driven dual-specific phosphatase
(DUSP) expression,36 which could act to allow pro-
longed MEK–ERK pathway signaling. DUSP expres-
sion, in particular DUSP1 (MKP-1) and DUSP6
(MKP-3), has been shown to be regulated by ERK and
p38 signaling in myoblasts.3,45 We measured Dusp1 and
Dusp6 expression in FEI- and TI-treated myoblasts at
3 days post-stimulation (Figs. 6c and 6d). Though
Dusp1 expression was not significantly affected, we
found that Dusp6 expression was upregulated by TI
stimulation and could be abrogated by either MEK or
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p38 inhibition. Together, these findings suggest an au-
tonomous feedback circuit in which both p38 and ERK
signaling is necessary for inducing DUSP6 expression,
which may act to dephosphorylate MEK and ERK,
thus negatively regulating their activities (Fig. 6e).

DISCUSSION AND CONCLUSIONS

Through a data-modeling approach, we have con-
structed a predictive cue-signal-response model of
myoblast fate decisions pertinent to muscle regenera-
tion within muscle damage-associated cytokine and
growth factor microenvironments in vitro. Using a low-
serum mouse primary myoblast culture model, in
which myoblast proliferation and differentiation are
both induced over 3 days, we observed that combina-
tions of the growth factors FGF2, EGF, and IGF1
(FEI) and the cytokines TNF-a and IL-1a (TI) syner-
gistically induce cell proliferation, whereas the IL-6
family ligands IL-6, OSM, and LIF (IOL) together
antagonize both basal and FEI/TI-induced prolifera-
tion (Figs. 1a and 1b). Furthermore, FEI and IOL
induce, and TI restricts, myoblast differentiation as

reflected by MyoD1, Myogenin and MHC mRNA
and/or protein levels (Figs. 1c–1h). When combined
into higher-order mixtures, we observed sub-additive
FEI/IOL-induced differentiation and negatively syn-
ergistic differentiation effects when either FEI or IOL
was combined with TI. Together, these combinatorial
effects were not well-predicted by a modified Bliss
synergy model suggesting that higher-order pathway
synergies and antagonisms govern myoblast responses
to these diverse ligand cue mixtures.

To ascertain the important signaling pathway con-
tributors to these conflicting stimuli, we established a
cue-signal-response data compendium and used it to
calibrate multivariate PLS data-model (Figs. 2 and 3a–
3d). Given the balance of up- and down-regulation
observed in the CSR training data, we compared log-
and linearly-scaled data processing to examine whether
log-scale improved model performance. We found that
log-scaling the data diminished model fitness (cumu-
lative R2 = 0.87) relative to the unscaled data
(R2 = 0.96) (Fig. 3d). We note that this modeling
approach only utilized the mean values from all sig-
naling and response measurements and did not
explicitly take into consideration observed biological
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variations. Taking into consideration such variation
can enable more robust model calibration18 and may
improve future modeling implementations.

We found that a single PLS model was capable of
accurately relating the myoblast proliferation and dif-
ferentiation outcomes within four principal components
of data-regression loadings. By analyzing PLS loadings
associated with the signaling and response variables, we
identified a set of principal component axes that dis-
tinguish between myoblast differentiation and prolifer-
ation outcomes (Figs. 4a–4d and S4d–S4g). PC1
represented an anti-differentiation axis dominated by
IjB-a and cJun phosphoprotein signals. PC2 only
minimally distinguished between the response variables,
and more distinctly separated a subset of signaling
metrics (e.g., early and late MEK–ERK variables).
Notably, PC2 correctly ordered the myogenic differen-
tiation variables from least committed (MyoD1) to
most committed (MHC) in the positive PC2 direction.
PC3 and PC4 both represented pro-proliferative axes.
In examining the relative contributions of each PC to
the overall model fitness (Fig. 3c), we noted that PC1
and PC3 provided the largest incremental improve-
ments in cumulative R2, suggesting they are the most
informative PCs to response variable modeling. Given
this and their exclusive associations with the two sets of
response variables, we used PC1 and PC3 as differen-
tiation and proliferative axes, respectively, for analyzing
model loading variables.

We observed that some phosphoprotein signals (p-
Akt, p-p70 S6K, and p-p38) had time-varying contri-
butions to these basis axes of cell-fate regulation
(Fig. 4d), which suggests that individual pathways
contribute to both myoblast proliferative and differ-
entiation response. In contrast, we focused on signals
that predominantly yield model loadings associated
with either PC1 (IjB-a and cJun) or PC3 (Stat3, MEK,
and ERK), suggesting that they contribute exclusively
to one cell-fate outcome.

We confirmed these model-associated signaling-re-
sponse relationships through small molecule inhibitor
studies (Fig. 5) to demonstrate the mechanistic connec-
tions suggested by the model. Using the MEK inhibitor
PD0325901, we demonstrated that FEI-stimulated
MEK–ERK signaling promotes myoblast proliferation
but does not affect myogenic differentiation (Figs. 5a–
5d). This agrees with prior reports that FGF2, EGF, and
IGF1 act as myoblast mitogens,29,37 and notably con-
firms prior findings that ERK signaling is dispensable
for FGF-induced myogenic differentiation23 and sug-
gests that alternative pathways, such as PI3K–Akt–p70,
may play a stronger role in FEI-induced myogenic dif-
ferentiation, as has been reported for IGF1.33,42 Using
the JNK inhibitor SP600125, we demonstrated that TI-
stimulated JNK–cJun signaling restricts myoblast dif-

ferentiation but does not perturb proliferation (Figs. 5e–
5h). The JNK–cJun pathway has been previously asso-
ciated with both proliferation-inducing and -restricting
effects in horse serum-treated myoblasts.14,31 Our re-
sults, using a FBS starvation protocol, further suggest
that the contributions of JNK signaling are context-
specific in differentiating myoblasts. Further, our find-
ings agree with a recent report34 showing that JNK
activation antagonizes myogenic differentiation. Lastly,
using the Stat3 inhibitor 5, 15-DPP, we demonstrated
that IOL-stimulated Stat3 signaling restricts myoblast
proliferation but does not influence the expression of
commitment genes (Figs. 5i–5k). These observations
agree with reports that Stat3 signaling impairs muscle
stem cell proliferation in vivo.22,32 Thus, the ERK, JNK,
and Stat3 pathways all regulate distinct myoblast cell
fate outcomes with exclusivity.

In testing the PLS model on a second multi-pathway
CSR data set, we observed poor model performance due
to cross-pathway effects of inhibitor treatments, which
we reasoned were due to unexpected changes phos-
phatase activation. We showed that p38 and MEK–
ERK signaling together induce expression the phos-
phatase DUSP6 (MKP-3), which can dephosphorylate
MAP kinases such as JNK, p38, and ERK36 (Fig. 6e).
Though DUSP6 has previously been found to be in-
duced in myoblasts,3,45 our findings suggest that DUSP6
induction is dependent on p38 and ERK cooperation
and may auto-regulate the activation of these MAP ki-
nases, complicating the effects of targeted inhibitor
treatments of cytokine and growth factor stimulation.

Together, our model and experimental observations
suggest that, though individual pathways may confer
specific cell-fate responses within the context of in vitro
myoblast differentiation, the myoblast signaling net-
work is governed by both cooperative, synergistic, and
antagonistic pathways that enable cell-fate tuning in
response to higher-order cytokine stimulations. Future
investigations evaluating time-varying pathway inhi-
bition strategies may prove particularly useful for both
more thoroughly validating the PLS model and for
optimizing experimental control of myoblast cell-fate
outcomes in response to these combinatorial condi-
tions. Moreover, these network-level behaviors argue
for the use of an experimental data set that broadly
and densely measures key readouts across multiple
regulatory pathways for the purpose of model training
and testing, as performed here. The cue-signal-re-
sponse data compendium and PLS data-model pre-
sented here provide new insights into the muscle
myoblast signaling network-level synergies and antag-
onisms between a large diversity of muscle regenera-
tion-associated stimuli. In concert with other recent
mechanistic models focused on myogenic gene regula-
tory circuits,13 our findings argue that computational
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biology models are now poised to contribute to new
understanding and hypotheses related to how muscle
stem/progenitor cells regulate essential cell-fate deci-
sions at the systems level.

MATERIALS AND METHODS

Animals Care and Procedures

The Cornell University Institutional Animal Care and
Use Committee (IACUC) approved all animal protocols
and experiments were performed in compliance with the
institutional guidelines of Cornell University. Young
adult (4-month-old) C57BL/6 mice were purchased from
Jackson Laboratories (#0664, Bar Harbor,ME). Tibialis
anterior and gastrocnemius muscles were dissected and
subjected to collagenase (0.25%) and dispase (0.04 U
mL�1; Roche, Indianapolis, IN) digestion. Non-muscle
tissue was removed under a dissection microscope and
muscle fibers were dissociated. After 90 min of total
digestion, the remaining cell suspension was passed
through a nylon 70-lm filter (BD Biosciences, San Jose,
CA). Primary myoblasts (PMBs) were isolated as pre-
viously described.40

Primary Myoblast Culture

All tissue-culture-treated dishes and plates were
coated overnight with type I collagen (Sigma-Aldrich,
St. Louis, MO, #C8919, 1:100 dilution in 0.1 M acetic
acid) at sufficient volume to cover the entire surface
area, then washed once with 19 phosphate buffer sal-
ine prior to use. PMBs (up to passage number 20) were
expanded in 15-cm collagen-coated dishes at 5000–
15,000 cells cm�2 in 20 mL myogenic growth medium
(GM). GM is 43% Dulbecco’s Modified Eagle’s
Medium (Corning Cellgro, Corning, NY, #10-013),
40% Ham’s F-10 (Corning Cellgro, #10-070-CV), 15%
Fetal Bovine Serum (Corning Cellgro, #35-010-CV),
1% Penicillin–Streptomyocin (Corning Cellgro, #30-
002-CI), 1% L-glutamine (Corning Cellgro, #25-005),
and 2.5 ng mL�1 recombinant mouse bFGF (R&D
Systems, Minneapolis, MN, #3139-FB-025). Passage
18 and 20 myoblasts were used, respectively, for the
‘‘training’’ and ‘‘test’’ CSR data compendia.

Primary Myoblast Combinatorial Stimulation

PMBs (passage number 18-20) were seeded at
50,000 cells cm�2 in collagen-coated treated 12-well
plates in 1 mL growth media for 2 h, then switched to
1 mL differentiation media (DM: 50% Dulbecco’s
Modified Eagle’s Medium, 45% Ham’s F-10, 3% Fetal
Bovine Serum, 1% Penicillin–Streptomyocin, 1%
L-glutamine) with or without 0.1% DMSO for 3 h.

Cells were then stimulated with differentiation media
(mock control) or a recombinant mouse protein
cocktails consisting of mixtures of the following (final
concentrations): 5 ng mL�1 FGF2 (R&D Systems,
#3139-FB-025), 10 ng mL�1 EGF (R&D Systems,
#2028-EG-200), 10 ng mL�1 IGF1 (R&D Systems,
#791-MG-050); 10 ng mL�1 IL6 (R&D Systems, #406-
ML-005), 10 ng mL�1 OSM (R&D Systems, #495-
MO-025), 10 ng mL�1 LIF (R&D Systems, #8878-LF-
025); 10 ng mL�1 TNF-a (R&D Systems, #410-MT-
010), 10 ng mL�1 IL-1a (R&D Systems, #400-ML-
005). Each of the stimulation conditions (mock,
DMSO, FEI, IOL, TI, FEI/IOL, IOL/TI, FEI/TI) had
n = 3 biological replicates per assay per time point.

Quantitative Immunoblotting

Lysis. Stimulated cells were lysed for immunoblot-
ting at the following time points post-stimulation: 0,
15 min, 72 h. Cells were washed with cold 1 9 PBS
and lysed in 50 lL per well of cold NP-40-based lysis
buffer (50 mM b-glycerophosphate, 30 mM NaF,
10 mM NaPP, 50 mM Tris–HCl, 0.5% NP-40 substi-
tute, 150 mM NaCl, 1 mM benzamidine, 2 mM
EGTA, 400 lM sodium orthovanadate, 200 lM DTT,
2 mM PMSF, 1:200 dilution Phosphatase Inhibitor
Cocktail Set III) using minor modifications of previous
protocols.17,19 Lysate was scraped, collected, and cen-
trifuged at 4 �C for 10 min at 15,0009g. The lysis
supernatant was collected and protein concentration
was quantified using a Micro BCA Protein Assay Kit
(Thermo Scientific, #23,235) per manufacturer’s pro-
tocol. Electrophoresis. Electrophoresis gels (1.5 mm
thickness, 10% acryl/bisacrylamide, Tris–HCl,
Ammonium Persulfate, TEMED, SDS) were loaded
with 25 lg of sample in 25 lL 19 sample buffer
(20 mM Tris–HCl, Glycine, 10% SDS, 0.4% b-mer-
captoethanol) per lane or 1 lL of strep-tagged un-
stained protein standards (Bio-Rad, Hercules, CA,
#1610363) and run at 100-V for 2 h in Tris–HCl/Gly-
cine/SDS running buffer. Proteins were transferred to
a methanol-activated PVDF membrane overnight at
4 �C, 15-V in Tris–HCl/Glycine/Methanol transfer
buffer. Immunoblotting. Membranes were blocked in
5% powdered milk in Tris-buffered saline with Tween-
20 (TBST) with gentle rocking at room temperature for
1 h. Primary antibodies were diluted in 5% powdered
milk in TBST in the following combinations: anti-
Myosin heavy chain (223 kDa, MF 20 monoclonal
mouse, DSHB, 1:10 dilution of hybridoma super-
natant), anti-Myogenin (32/34 kDa, F5D monoclonal
mouse, DSHB, Iowa City, IA, 1:2 dilution of hy-
bridoma supernatant), and anti-Hsp90a/b (90 kDa,
polyclonal rabbit, Santa Cruz Biotechnology, Dallas,
TX, #sc-7947, 1:2500 dilution); p-Stat3 (Tyr705, 79/
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86 kDa, monoclonal rabbit, Cell Signaling Technol-
ogy, Danvers, MA, #9131S, 1:1000 dilution), p-Akt
(Ser473, 60 kDa, monoclonal rabbit, Cell Signaling
Technology, #4060S, 1:1000 dilution), and Gapdh
(37 kDa, monoclonal mouse, Thermo Fisher Scientific,
#AM4300, 1:2500 dilution). Blots were incubated with
primary antibody dilutions with gentle rocking at
room temperature for 1 h. Blots were then washed
with 1 9 TBST three times for 5 min per wash. Sec-
ondary antibodies were diluted in 1 9 TBST as fol-
lows: peroxidase-conjugated goat anti-rabbit (Jackson
ImmunoResearch Laboratories, #111-035-144 1:5000
dilution), peroxidase-conjugated goat anti-mouse
(Jackson ImmunoResearch Laboratories, West Grove,
PA, #115-035-146, 1:5000 dilution), StrepTactin-HRP
conjugate (Bio Rad, #1610380, 1:5000 dilution). Blots
were incubated with secondary antibody dilutions with
gentle rocking at room temperature for 30 min. Blots
were then washed with 1 9 TBST three times for
5 min per wash. Blots were incubated in ECL substrate
(Bio Rad, #1705062, 1:1 mix of luminol/HRP substrate
solutions) for 1 min and then imaged for 120 s using
the ChemiDoc imaging system (Bio Rad, #17001401).
Blots were analyzed using ImageLab software (Bio
Rad) for band intensity.

Cell Counting

Stimulated cells were fixed at 72 h post-stimulation.
Cells were washed twice with cold 1 9 PBS and fixed
for 15 min with 4% paraformaldehyde in 1 9 PBS.
Cells were washed twice with 1 9 PBS and then
blocked overnight at 4C with 10% donkey serum
(Genetex, Irvine, CA, #GTX73245) in 1 9 TBST.
Cells were then washed three times with 1 9 PBS.
Cells were incubated with DAPI (Sigma-Aldrich,
#32670-25MG-F, 1:2000 dilution) at room tempera-
ture in the dark for 15 min. Cells were washed twice
with 1 9 PBS and kept in 1 9 PBS for imaging.
Immunofluorescence images were acquired using a
Nikon Eclipse Ti-E Microscope (MVI, Avon, MA)
with Spectra X light engine (Lumencor, Beaverton,
OR) with a DAPI polychroic (Chroma #VCGR-SPX-
P01-PC, Bellows Falls, VT), a Nikon NAMC 109
Objective (#MRP60105) and an Andor Zyla 5.5
sCMOS Camera (Belfast, UK). Digital images were
captured and nuclear segmentation and automated
counting were performed using Nikon Elements soft-
ware. Images were composed using Illustrator software
(Adobe, San Jose, CA).

RT-qPCR

Stimulated cells were lysed with TRK/b-mercap-
toethanol lysis buffer (EZNA Total RNA Kit I, Omega

Biotek, #R6834-02) 72 h post-stimulation. Lysates
were passed through QiaShredder columns (Qiagen,
Germantown, MD, #79654) per manufacturer’s pro-
tocol, and then RNA was isolated using the EZNA
Total RNA Kit I (Omega BioTek, Norcross, GA) per
manufacturer’s protocol. cDNA was generated for
each sample using the High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific,
#4368814) per manufacturer’s protocol. Samples were
tested in technical duplicate using Power SYBR Green
PCR Master Mix (Thermo Fisher Scientific, #4367659)
per manufacturer’s protocol. Real-time PCR was per-
formed using a Viia7 Real Time PCR instrument and
software (Thermo Fisher). Samples were cycled at
95 �C for 10 min and then 40 cycles of 95 �C for 15 s
and 60 �C for 1 min. To quantify relative transcript

levels, the 2�DDCt method was used with the DM with
0.02% DMSO samples used as reference control. Pri-
mer sequences for Myod1, Myog, Myh2, Dusp1, Dus-
p6, Dusp10, and 36b4 (normalization gene) were
obtained from literature or using NIH Primer3. The
primer sets for Myod1, Myog, Myh2, and 36b4 are as
follows.

Quantitative Multiplex Phosphoprotein Assays by
Luminex

Stimulated cells were lysed for Luminex phospho-
protein assays at the following time points post-stim-
ulation: 0, 5, 15, 60 min, 4, 24 h. Cells were washed
with cold 1 9 PBS and lysed in 50 lL per well of cold
Milliplex Lysis Buffer (EMD Millipore, Billerica, MA,
#48-602MAG), with 2 mM PMSF and 1:200 dilution
Phosphatase Inhibitor Cocktail Set III (EMD Milli-
pore, #524627). Lysate was scraped, collected, and
centrifuged at 4 �C for 10 min at 15,000 9 g. Super-
natants were collected and protein concentrations were
quantified using a Micro BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, #23235) per

Gene Forward primer (5¢-3¢) Reverse primer (5¢-3¢)

Myod GCCGCCTGAGCAAAG

TGAATG

CAGCGGTCCAGGTGC

GTAGAAG

Myog TGTTTGTAAAGCTGCC

GTCTGA

CCTGCCTGTTCCC

GGTATC

Myh2 TTGTGGTGGACCCTA

AGGAG

TTCATGGGGAAGAC

TTGGTC

36b4 AACGGCAGCATTTAT

AACCC

CGATCTGCAGACAC

ACACTG

Dusp1 ACCATCTGCCTTGCTT

ACCTT

AGCACCTGGGACTC

AAACTG

Dusp6 TCGGGCTGCTGCTCA

AGAAAC

CGGTCAAGGTCA-

GACTCAATGTCC

Dusp10 ACATCGGCTACGTCA

TCAAC

CACTGGTGAGCTTC

CTCAAT
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manufacturer’s protocol. Milliplex MAPmate assays
(EMD Millipore) were used to quantify the following
phosphoproteins: p-Akt (Ser473, #46-677MAG), p-
cJun (Ser73, #46-622MAG), p-IjBa (Ser32, #46-
643MAG), p-ERK1/2 (Thr185/Tyr187, #46-602MAG),
p-p70 S6 K (Thr389/Thr412, #46-629MAG), p-MEK1
(Ser222, #46-670MAG), and p-p38 (Thr180/Tyr182, #46-
610MAG). Assays were performed in multiplex and
using the Milliplex MAPmate Cell Signaling Buffer &
Detection Kit per the manufacturer’s protocol with
3 lg of sample per well (see Fig. S2 for protein loading
optimization and validation), n = 1 technical replicate
and n = 3 biological replicates per time point. Back-
ground-subtracted fluorescence values for each phos-
phoprotein were normalized to the background-
subtracted fluorescence values for Milliplex MAPmate
b-tubulin (#46-713 MAG). Normalized values were
averaged across biological replicates, and then fold-
change normalized for each phosphoprotein to the
0 min time point.

Cue-Signal-Response Metric Extraction and Data
Scaling for Partial Least-Squares Modeling

‘Cue-signal-response’ (CSR) data containing phos-
phoprotein time-course (Luminex, t = 0–24 h; Im-
munoblots, t = 15 min), myogenic gene expression
(RT-qPCR, t = 72 h), myogenic protein expression
(Immunoblot, t = 72 h), and cell proliferative index
(Imaging, t = 72 h) data were compiled. Phospho-
protein data were fold-change normalized to untreated
samples (t = 0 min) for each phosphoprotein assay.
For each phosphoprotein time course, three time-de-
pendent signaling metrics were extracted: (i) integral
for 0–24 h post-stimulation (‘‘full AUC’’), (ii), integral
for 0–1 h post-stimulation (‘‘early AUC’’), and (iii)
integral for 1–24 h post-stimulation. These were added
to the five time points (5, 15, 60 min, 4, and 24 h) to
yield eight signaling metrics for each assayed phos-
phoprotein. Immunoblot phosphoprotein expression
data (p-Stat3 and p-Akt) were fold-change normalized
to loading control protein Gapdh and then fold-
change normalized to the DMSO condition at t = 0.
The eight Luminex signaling metrics per phosphopro-
tein and the two immunoblot phosphoprotein metrics
were fused into a signaling network data-matrix (X).
Gene expression data (Myod1, Myogenin, and Myh2)
were fold-change normalized to loading control gene
36b4 and then fold-change normalized to the DMSO
control condition at t = 72 h. Protein expression data
(Myogenin and MHC) were fold-change normalized to
loading control protein HSP90 and then fold-change
normalized to the DMSO control condition at
t = 72 h. Nuclei counts from DAPI images were
normalized to the DMSO control condition. These six

response metrics were then fused into a response data-
matrix (Y). To account for both up- and down-regu-
lation of cell signals and responses (see Figs. 1b–1h
and 2c), the X and Y data-matrix were tested with and
without log2-scaling before model-calibration. Matri-
ces X and Y were arrayed across all treatment condi-
tions for both model-calibration and testing (Fig. 2c).

Partial Least-Squares Modeling of Cue-Signal-
Response Data

The relationship between the X signaling data-matrix
and the Y response data-matrix was modeled using
partial least-squares (PLS) regression data-model-
ing.8,9,17,20,26 Briefly, we implemented PLS using the
SIMPLS algorithm using the PLSREGRESS function in
MATLAB (MathWorks, Natick, MA) following stan-
dard methods, with some modifications. Signaling and
response data were either left unscaled or log2-scaled
before transformation (Fig. 3d). Data matrices were
then unit-variance-transformed (see Fig. 3b). All models
were generated using four principal components under
standard optimization criteria (see Fig. 3c). Model cali-
bration was conducted using leave-one-out cross-vali-
dation, and model uncertainties were calculated by jack-
knifing. Model loadings were calculated using the mean-
centered regression coefficients w*ca from the a-th PLSR
principal-component. The information content of each
signaling metric was assessed by its variable importance
of projection (VIP) score, which captures the loss in
model fitness upon removal of the individual signaling
metric. The accuracy of model predictions was assessed
using a model fitness8,17 parameter (R2), calculated
according to the following formula:

R2 ¼ 1�
Pn

i¼1 observedi � predictedið Þ2

Pn
i¼1 predictedið Þ2�

Pn

i¼1
predictedið Þ2

n

0

B
@

1

C
A;

where n is the number of observations in the training
or test set for the response variable(s) of interest.

Statistical Testing

Cell response measurements were compared to the
DMSO control condition (Control) using Student’s t
test with a = 0.05. For statistical testing of synergy in
combination stimulation conditions (FEI/TI, FEI/
IOL, TI/IOL), each combined cell-response measure-
ment (Y) was calculate with a modified Bliss indepen-
dence5 model:

logYcalc1;2 ¼ logY1 þ logY2 � logY0;

where Ycalc 1,2 is the calculated fold-change value for
the combination Y response metric (i.e., FEI + TI cell
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#), Y1 and Y2 are the observed fold-change values for
the individual Y response metrics (i.e., FEI cell # and
TI cell #), and Y0 is the observed fold-change value for
the Control Y response metric (i.e., Control cell #).
Experimental measurement uncertainty was propa-
gated through the calculation. Y response metrics for
observed combination stimulation conditions (FEI/TI,
FEI/IOL, TI/IOL) were then compared to calculated Y
response metrics for combination stimulation condi-
tions (FEI + TI, FEI + IOL, TI + IOL) using Stu-
dent’s t test with a = 0.05.

Model Test Predictions

Primary myoblasts were seeded for stimulation as
described above, with one of the following inhibitors
added to the differentiation media prior to stimulation:
10 lM p38 inhibitor (p38i) SB203580 (Cayman Chem-
ical, Ann Arbor, MI, #13067); 50 lM Stat3 inhibitor
(Stat3i) 5, 15-diphenylporphyrin (Sigma-Aldrich,
#D4071); 50 nM MEK inhibitor (MEKi) PD0325901
(Selleckchem, Houston, TX, #S1036); or 5 lM JNK
inhibitor (JNKi) SP600125 (Selleckchem, #S1460).
Phosphoprotein assays, RT-qPCR, immunoblotting,
immunostaining, and data-normalization were carried
out in the same manner as described above for training
set conditions. X and Y matrices were assembled as
described above. Using a PLS model calibrated to
training CSR set (but with all MEK signaling metrics
removed, a predicted Y response data-matrix was cal-
culated from the X signaling data-matrix of ‘‘test’’ in-
hibitor signaling matrix. This predicted Y response
data-matrix was compared with the observed Y
response data-matrix to generate a model fitness
parameter (R2), calculated as described above.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/
s12195-017-0508-5) contains supplementary material,
which is available to authorized users.
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