
Weakly Supervised Learning of Placental Ultrasound Images 
with Residual Networks

Huan Qi1, Sally Collins2, Alison Noble1

1Institute of Biomedical Engineering (IBME), University of Oxford

2Nuffield Department of Obstetrics & Gynaecology, University of Oxford

Abstract

Accurate classification and localization of anatomical structures in images is a precursor for 

fully automatic image-based diagnosis of placental abnormalities. For placental ultrasound 

images, typically acquired in clinical screening and risk assessment clinics, these structures 

can have quite indistinct boundaries and low contrast, and image-level interpretation is a 

challenging and time-consuming task even for experienced clinicians. In this paper, we propose 

an automatic classification model for anatomy recognition in placental ultrasound images. We 

employ deep residual networks to effectively learn discriminative features in an end-to-end 

fashion. Experimental results on a large placental ultra-sound image database (10,808 distinct 

2D image patches from 60 placental ultrasound volumes) demonstrate that the proposed network 

architecture design achieves a very high recognition accuracy (0.086 top-1 error rate) and provides 

good localization for complex anatomical structures around the placenta in a weakly supervised 

fashion. To our knowledge this is the first successful demonstration of multi-structure detection in 

placental ultrasound images.

1 Introduction

Ultrasonography is a low-cost, non-invasive and non-radiative technique used worldwide 

for clinical assessment of the human placenta. Expertise is required to both acquire 

placental ultrasound images and to perform clinical diagnosis from them. These images are 

particularly challenging for automated biomedical image analysis as the contrast between 

the textured areas of interest is often low.

Abnormally invasive placentation (AIP) is a general term that covers conditions where the 

human placenta adheres to the uterus in an invasive fashion. Various diagnostic criteria 

based on placental ultrasound imaging have been reported or suggested in the literature 

to characterise this condition [3]. The general approach is to first detect and localise 

anatomical structures such as the placenta itself, the utero-placental interface and the 

myometrium within grayscale ultrasound images (B-Mode). Vascular examination using 

Doppler ultrasound imaging can provide further evidence to support diagnosis (analysis of 

Doppler is beyond the scope of the current paper). However, interpretation of the criteria 

by sonographers is quite inclined to subjectivity [4]. Moreover, manual search for visual 

evidence among sequences of 2D or 3D placental ultrasound data is sometimes too time-

consuming to be considered in clinical workflow.
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The contributions in this paper are twofold. First, we propose a deep convolutional neural 

network (CNN) model for describing anatomical structures present in a 2D placental 

ultrasound image. This image-level model achieves accurate classification (0.086 top-1 

error rate) of the four multi-anatomical structure combinations typically observed in a 

2D placental image (as illustrated in Fig. 1), namely (1) placenta only (PL); (2) placenta 

and myometrium (PL+MY); (3) placenta and subcutaneous tissue (PL+ST); (4) placenta, 

myometrium and subcutaneous tissue (PL+MY+ST). Second, we show that the proposed 

model achieves good localization of anatomical structures (placenta, myometrium, sub-

cutaneous tissue) based on our multi-structure classification formulation. This is achieved 

by incorporating a global average pooling (GAP) layer before the fully-connected layer. 

Thus we demonstrate that image-level classification suffices for localization of anatomical 

structures in a weakly supervised fashion without any additional training.

2 Related Work

Weakly-supervised object localization:

CNN-based weakly-supervised object localization has been a popular research topic in 

computer vision in recent years and applications are starting to appear in the medical image 

analysis literature [10], though not to our knowledge for placental ultrasound image analysis. 

It relies only on image-level labels, rather than annotations in a fully-supervised setting (e.g. 

manually-annotated bounding box or dense pixel-level annotation), to learn from cluttered 

scenes with multiple objects. It is of great research interest to develop weakly-supervised 

localization models that perform comparably to its fully-supervised counterparts due to the 

fact that the former saves a considerable amount of time in annotation and is less prone to 

subjectivity. Recent work has further demonstrated that CNNs originally trained for image 

classification can be used to localize objects via analysis of representative features across 

layers [1, 11, 16, 13]. For instance, Simonya et al. proposed a visualization technique by 

computing the gradient of the class score with respect to the input image [13]. The resulting 

saliency map pinpoints the location of objects correlated with the class label. Oquad et 
al. proposed a method to transfer mid-level image representations and explicitly search for 

high-score regions [11]. Zhou et al. recently proposed class activation mapping (CAM) 

to localize regions with discriminative features in an end-to-end fashion [16]. In general, 

weakly-supervised localization relies only on image-level classification, which is a desirable 

property that makes object localization a preferable by-product of classification without 

additional training.

3 Learning to Classify and Localize with Residual Units

Problem formulation:

Our approach is built on an observation that there are four local anatomical scenarios, which 

clinicians observe in routine placenta scans, namely PL, PL+MY, PL+ST, PL+MY+ST. 

Thus we have designed a CNN to distinguish between these classes. Further, since the 

placenta (PL) is shared in all classes it acts as a distractor for localization. To be 

discriminative, the other three categories are forced to activate their unique regions, which 
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can then be visualized by CAM as is described later. First, however, we describe the general 

CNN architecture we use.

Deep residual learning for placental ultrasound images:

Deep residual networks (Res-Net [7, 8]) have shown impressive representative ability and 

good convergence behaviours in recent large-scale natural image classification tasks (e.g. 

ImageNet ILSVRC 2015 [12]), yielding state-of-the-art performance. In a recent work [8], a 

simple and effective identity mapping structure was proposed to enable smooth information 

propagation through the entire network. In addition, large-scale data experiments reveal that 

the full pre-activation residual unit, as shown in the top-left corner of Fig. 2, consistently 

outperforms the original design by putting batch normalization [9] and rectified linear 

unit (ReLU) before convolution. This network design modification has been found to 

accelerate learning and improves global regularization. In general, a Res-Net typically 

contains a number of basic residual units. Each unit performs the following computation: 

xl + 1 = xl + ℱ xl, Wl , where xl refers to the input feature to the l-th residual unit and Wl is a 

set of weights and biases associated with the l-th residual unit. Here ℱ denotes the residual 

function which is learnt with respect to the input feature xl. Such a design allows a recursive 

derivation:

xL = xl + ∑
i = l

L − 1
ℱ xi, Wi

for any deeper unit L and any shallow unit l, which implies the smooth information 

propagation through the network.

We adopted the pre-activation residual unit in [8] and designed a series of multi-layer 

Res-Nets with various representative abilities. The table in Fig. 2 shows different network 

architectures. In general, the model contains four groups of residual modules, each of which 

further consists of ni stacked residual units for i = 1, 2, 3, 4. Here ni is an architecture 

hyper-parameter that controls the entire depth D of the Res-Net, where D = 2(n1 + n2 + n3) 

+ 2 denotes the number of convolutional layer. We follow the principle adopted in recent 

recognition and segmentation researches [14, 2, 7] to employ a small convolutional kernel 

of size 3 × 3 for all the convolutional layers in Res-Nets. At the beginning of the second, 

third and fourth residual modules, convolutional layers with stride 2 are used to downsample 

the feature map. Meanwhile, the convolution doubles the feature channel size (also by two), 

yielding the change of channel sizes: 16 → 32 → 64 → 128. It is followed by a global 

average pooling (GAP) layer and a fully-connected layer to generate the final prediction. 

To increase regularization, we use a dropout layer [15] with dropout probability of p = 

0.3, which demonstrates a good regularization performance across various architectures 

according to experiments. The use of GAP is described in the following subsection to 

boost discriminative localization. The Res-Nets are trained in an end-to-end fashion by 

stochastic gradient descent with a momentum of 0.9. We tested different combinations of 

hyper-parameter ni and report results in the following section.
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Global average pooling (GAP) for localization:

As shown in [16], the use of GAP encourages the network to identify the extent of 

the object, rather than pinpointing the object on a specific location as global max 

pooling (GMP) does [11]. It is intuitive that this global averaging operation should boost 

identification of a local discriminative region in order to reach a lower global loss, while 

a global maximum operation only influences the maximal value of a feature map. We take 

advantage of GAP to generate CAM [16]. Each class has its corresponding CAM which 

visualizes discriminative image regions used by the network to identify this specific class. 

As displayed in the bottom of Fig. 3, the CAM for class i is generated by computing a 

weighted sum of all feature maps from the rectified activation of the last convolutional layer. 

Here the weights refer to the corresponding weight vector Wi learnt in the fully-connected 

layer. A simple up-sampling would suffice to map the CAM heat-map (28 × 28) back to the 

input size (224 × 224).

For PL+MY, its CAM is expected to visualize the myometrium region (MY). For the 

same reason, PL+ST CAM would illustrate the region of subcutaneous tissue (ST) and 

PL+MY+ST would ideally highlight the joint region of myometrium and subcutaneous 

tissue. There are potentially many ways to formulate this classification problem. The 

most intuitive way is probably to build a multi-label learning model by training a group 

of one-verses-all binary classifiers to identify these anatomical structures respectively. 

However, this type of model suffers from over-fitting and generalization problems in our 

data experiments. One possible explanation is that there are strong correlations among these 

anatomical structures (e.g. myometrium is almost always co-localized with placenta), thus it 

may not be appropriate to model them separately. Moreover, the multi-label learning does 

not contribute to the generation of CAM due to the removal of softmax normalization. In 

this paper we formulate the problem with the intention to both achieve high classification 

accuracy and boost weakly supervised localization. As shown in Fig. 4, experimental results 

confirm the validity of our formulation. CAM demonstrates reasonable localization ability 

for the corresponding anatomical structures. More details will be discussed in the following 

sections. In this section, we present the two major parts of the proposed model for placental 

ultrasound image classification and anatomy localization. An overview of our pipeline is 

given in Fig. 3. We exploit residual units, GAP and CAM to classify ultrasound images and 

to localize corresponding anatomical structures.

4 Experiments

To evaluate our proposed method, we conducted data experiments on a placental ultrasound 

image dataset, which was collected as part of a large placenta clinical study. Classification 

performance of different CNN models are presented. Results of the weakly-supervised 

localization are also displayed. All the images used in this work are obtained from the 

sagittal plane, annotated by H.Q. under the guidance of S.C., who is a consultant obstetrician 

and subspecialist in maternal and fetal medicine of John Radcliffe Hospital in Oxford. This 

method is implemented in Torch 7 [6] on a 64-bit Ubuntu 15.04 machine with a NVIDIA 

graphics card.
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Dataset:

All placental ultrasound data (N = 60) used in this experiment were obtained as part of 

a large obstetrics research project [5]. Written informed consent was obtained with local 

research ethics approval. Static, transabdominal 3D gray-scale ultrasound volumes of the 

placental bed were obtained according to a predefined protocol with the participant in a 

semi-recumbent position and a full bladder using a 3D curved array abdominal transducer 

on a GE Voluson E8 machine. Each 3D volume was then sliced along the sagittal plane 

into 2D placental ultrasound images, as shown in Fig. 1(a). We then randomly cropped 224 

× 224 image patches from these sagittal planes and formed a training and testing dataset 

by annotating the patches into the four categories described in Sect. 3. In total, the dataset 

contains 10,808 placental image patches, which is then randomly divided into a training set 

(64%), a validation set (16%) and a test set (20%), as shown in Table 1. Here the validation 

set is used to tune CNN hyper-parameters such as the learning rate, weight decay and 

architecture parameters {ni}.

Evaluation metrics:

We used top-1 error rate to evaluate the classification performance of our proposed 

method. Experimental results are presented in Table 2. For reference, we also list the 

top-1 error rate for the validation set and the classification error for individual image 

categories during the test. It is worth noting that PL+MY presents the worst classification 

performance as expected. In placental ultrasound imaging, it is generally difficult to 

identify the myometrium for various reasons. First, it may not exist at all due to certain 

placental abnormality (such as AIP). Second, it appears but the texture or intensity is not 

sufficiently discriminative to be identified. Third, ultrasound signal dropout may hinder a 

clear visualization. We also present confusion matrices in the test stage for our best three 

models in Fig. 4. They all suffer from the same problem of identifying PL+MY.

Architecture hyper-parameter:

In Section 3, we introduced four architecture hyper-parameters n1, n2, n3, n4, corresponding 

to the number of stacked residual units in each residual module. By altering these hyper-

parameters, we can investigate how network depth casts impact on the generalization ability 

of our classification problem at different abstraction levels. As shown in Fig. 2, nine 

architectures were evaluated. Here A,B,C denotes variants for models of the same depth. 

Referring to classification performance in Table 2 we see that: (1) more residual units 

should be put in deeper modules that have larger channel sizes, as demonstrated by the 

better performance of 10-C and 26-A compared to their counterparts of the same depth; 

(2) the identity mapping structure of Res-Net indeed boosts the propagation of information, 

yielding better performance for deeper networks without causing degradation problems 

described in [7].

Weakly-supervised localization:

Here we show results of the weakly supervised localization of placental anatomical 

structures based on the learnt classification model (model 26-A). An input image was 

first classified into one of the four categories. After this, we generated its CAM for the 
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predicted category, which highlights the discriminative regions of this image. Some results 

are shown in Fig. 5 for each category, where we also provide softmax scores as well as 

segmentation masks for illustration. For example in the first triple set, the input image is 

correctly classified as PL with a score of 0.8673. CAM heat-map for PL highlights the 

approximate position of the placenta, as verified by the reference segmentation mask. We 

also present some counterexamples in the bottom of Fig. 5, which are either mis-classified 

(the correct class is labelled in bold font), mis-localized or both. Good weakly-supervised 

localization tends to be achieved based on an accurate classification.

Discussions:

In the CAM heat-maps of Fig. 5, we observe that the network appears to use texture 

as well as boundary information as discriminative features. For example, the PL CAM 

hot zone typically covers a partition of the placenta as well as the placenta-background 

boundaries. Similarly, the PL+MY CAM hot zone covers a part of the myometrium and 

the myometrium-placenta boundaries. The PL+ST CAM hot zone contains the subcutaneous 

tissue as well as the tissue-placenta interface. Finally, the PL+MY+ST CAM hot zone 
contains regions of both myometrium and subcutaneous tissue, as well as their interface. 

This is observed across the test set. Joint analysis of PL+MY+ST CAM and PL+MY CAM 

will be carried out in the future, which may provide some insight to help further refine 

weakly-supervised localization of the myometrium since they both contain a partition of the 

anatomical structure.

5 Conclusion

In this paper, we have formulated automatic placental ultrasound image structure detection 

and localization as a multi-structure classification problem. The proposed model is based 

on deep residual networks. Experimental results show good detection accuracy using our 

approach. Moreover, we demonstrate that reasonable localization of placental anatomical 

structures can be achieved, without explicit training to perform localization.
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Fig. 1. 
(a) a placental ultrasound image taken from the sagittal plane. (b) samples from four image 

categories cropped from sagittal planes, the bottom row shows the reference segmentation 

mask of the follow anatomical structures: placenta (PL), subcutaneous tissue (ST) and 

myometrium (MY). Please note that all segmentation masks that appear in this paper are 

used solely for illustration purpose rather than training models.
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Fig. 2. 
Proposed deep residual network architecture with different sizes of residual units, as listed in 

the table.
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Fig. 3. 
Proposed pipeline for placental ultrasound image detection and localization. Given an 

unseen image patch, the network can predict its label, which indicates the multi-anatomical 

structure combination within. By computing the class activation maps for each category, the 

network can provide reasonable localization on the detected anatomical structures.

Qi et al. Page 10

Med Image Underst Anal. Author manuscript; available in PMC 2019 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Confusion Matrices in the test stage for best three models.
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Fig. 5. 
Results of weakly supervised localization with reference segmentation mask of the follow 

anatomical structures: placenta (PL), subcutaneous tissue (ST) and myometrium (MY), all 

images are from the test set.
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Table 1.

Statistics of Placental Ultrasound Image Dataset

Training Val. Test Total

PL 2,764 711 835 4,310

PL+MY 1,064 283 342 1,689

PL+ST 1,834 422 590 2,846

PL+MY+ST 1,256 312 395 1,963

Total 6,918 1,728 2,162 10,808
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Table 2.

Classification Performance of Various Architectures

Network type Mean error (val., %) Mean error (test, %)
Class error (test, %)

PL PL+MY PL+ST PL+MY+ST

8 18.23 17.81 13.05 26.61 20.85 15.70

10-A 14.53 14.29 9.82 29.53 12.71 12.91

10-B 12.85 13.55 8.74 30.41 11.36 12.41

10-C 10.82 11.29 7.07 23.98 9.15 12.41

16 11.40 10.78 8.02 22.22 9.15 9.11

18 9.95 9.20 8.62 19.59 6.10 6.08

22 8.56 8.74 8.26 14.91 6.44 7.85

26 9.84 8.88 6.71 15.21 8.64 8.35

26-A 8.08 8.60 7.43 15.21 7.46 7.09
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