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Background: The glucokinase regulatory
protein (GCKR) regulates the activity of the
glucokinase (GCK), which plays a key role
in glucose homeostasis. Genetic variants
in GCK have been associated with dia-
betes and gestational diabetes (GDM).
Due to the relationship between GCKRP
and GCK, polymorphisms in GCKR are
also candidates for genetic association
with GDM. The aim of this study was to
evaluate the association between the
GCKR rs780094 polymorphism and GDM
in a Brazilian population. Methods: 252
unrelated Euro-Brazilian pregnant women
were classified as control (healthy preg-
nant women, n = 125) and GDM (pregnant
women with GDM, n = 127) age-matched
groups. Clinical and anthropometric data

were obtained from all subjects. The
GCKR rs780094 polymorphism was geno-
typed using fluorescent probes (TaqMan�,
code C_2862873_10). Results: Both groups
were in Hardy–Weinberg equilibrium. The
GCKR rs780094 polymorphism was asso-
ciated with GDM in codominant and domi-
nant models (P = 0.022 and P = 0.010,
respectively). The minor allele (T) fre-
quency for the control group in the study
was 38.4% (95% CI: 32–44%), similar to
frequencies reported for other Caucasian
populations. Conclusion: Carriers of the
C allele of rs780094 were 1.41 (odds
ratio, 95% CI, 0.97–2.03) times more
likely to develop GDM. J. Clin. Lab. Anal.
31:e22035, 2017. © 2016 Wiley Periodicals,
Inc.
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INTRODUCTION

Gestational diabetes (GDM) is defined as glucose
intolerance diagnosed in the second or third trimester
of pregnancy where there was clearly no previous type
1 or type 2 diabetes (T2DM). GDM increases the risk
of adverse outcomes for pregnant mothers, fetuses,
and neonates (1). GDM and T2DM share pathophysi-
ological and genetic characteristics. Like T2DM,
GDM is a polygenic syndrome and several single
nucleotide polymorphisms (SNPs) are associated with
susceptibility or protection for both conditions (2–4).
Glucokinase (GCK, HK-IV, HK-D, or ATP:D-

hexose 6-phosphotransferase) is the key regulatory
enzyme in glucose metabolism and has dual functions:
(a) it catalyzes the phosphorylation of glucose in pan-
creatic beta cells and mammalian hepatocytes and (b)
it acts as a “sensor” of glucose, to regulate insulin

release by the pancreas (5–7). In hepatocytes, the
catalytic activity of GCK is regulated by a 68 kDa
protein, the Glucokinase Regulatory Protein (GCKRP)
or Glucokinase (hexokinase 4) Regulator (8). At basal
glucose concentrations, GCK binds to its inhibitory
protein, GCKRP, in the nuclei of hepatocytes. Ele-
vated concentrations of glucose cause the dissociation
of the GCK-GCKR complex in the liver promoting
translocation of GCK to the cytoplasm with conse-
quent increased hepatic glucose phosphorylation
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insulin release from the beta cells and glycogen synthe-
sis (9). After performing its function, GCK reverts to
the inactive GCKRP-bound form (8, 10).
GCKRP is primarily expressed in hepatocytes and is

encoded by the GCKR, which maps to chromosome
2p23 (11). Some variants in the GCK gene affect the
expression of GCKR and may contribute to abnormal
glucose concentrations (12, 13). Due to the involve-
ment of GCK in diabetes, and the relationship
between GCKRP and GCK, polymorphisms in GCKR
are also candidates for genetic association with
diabetes (14).
The rs780094 polymorphism in GCKR is strongly

associated with elevated triglyceride concentrations
(15, 16) and metabolic syndrome (17). In addition, the
T allele of rs780094 is associated with a decreased risk
of susceptibility to T2DM in certain populations
(15, 18, 19). These data reinforce the hypothesis that
this polymorphism increases the activity of GCK, lead-
ing to a reduction in glucose and increase in triglyc-
erides by stimulation of lipogenic genes of the
glycolytic pathway (20). Further, Japanese carriers
of the rs780094 TT genotype have lower glycated
hemoglobin (HbA1c) levels than those with other
genotypes (21).
In contrast, the C allele of GCKR rs780094 poly-

morphism is associated with an increased risk of
T2DM (22, 23). Moreover, the risk allele (C) of
rs780094 is associated with GDM in Caucasian popu-
lations, reinforcing the premise that T2DM and GDM
share genetic similarities (24, 25).
Based on the above evidence, the aim of this study

was to evaluate the association between the rs780094
polymorphism in GCKR and GDM in a Brazilian
population.

MATERIALS AND METHODS

Samples

A total of 252 unrelated Euro-Brazilian pregnant
women were included in the study. Healthy Euro-
Brazilian pregnant women were classified as controls
(n = 125) and pregnant women diagnosed with
GDM, according to 2015 criteria of the American
(26) and Brazilian (27) Diabetes Associations, as the
GDM group (n = 127). Subjects were recruited from
a Public Hospital in southern Brazil after written
informed consent and the groups were matched by
age. The Ethics Committee of the Federal University
of Parana approved the study and the work was car-
ried out in accordance with The Code of Ethics of
the World Medical Association (Declaration of
Helsinki).

Clinical and laboratory data

Clinical and anthropometric data were obtained
from all subjects. Biochemical parameters were deter-
mined by routine laboratory methods (Abbott Diag-
nostics, Santa Clara, CA) in an automated system with
reagents, calibrators, and controls provided by the
manufacturer (Architect Ci8200; Abbott Diagnostics).
Concentrations of 1,5-anhydroglucitol were measured
enzymatically (GlycoMark, Inc., New York, NY). Gly-
cated hemoglobin was measured by immunoturbidime-
try (Architect; Abbott Diagnostics).

Genotyping

DNA was extracted from whole blood using a modi-
fied “salting out” method (28) and sample concentra-
tions were normalized to 20 ng/ll for subsequent
assays. Only samples with 280/260 nm absorbance
ratios between 1.8 and 2.0 (NanoDrop; ThermoScien-
tific, Waltham, MA) were used in this study. The
rs780094 polymorphism was genotyped using real-time
PCR with fluorescent probes (TaqMan�, code
C_2862873_10; Life Technologies/Applied Biosystems,
Foster City, CA). Genotyping experiments were car-
ried out using a 7500 FastTM Real-Time PCR System
(Life Technologies/Applied Biosystems). Reagents
(Master Mix�; and Genotyping Assay� SNPs) and
other real-time PCR materials were provided by the
manufacturer (Applied Biosystems). The reaction mix-
ture (6 ll final volume) contained 3.0 ll of Master
Mix (DNA polymerase, Mg2+, buffer, additives),
0.1 ll of SNP Genotyping Assay (40X), 1.9 ll ultra-
pure water, and 1.0 ll of genomic DNA (20 ng/ll).
The PCR conditions were as follows: one cycle of
1 min at 60°C (pre-PCR), one cycle of 10 min at 95°C,
45 cycles of 15 s at 95°C, followed by 60°C for 2 min,
and one final cycle of 30 s at 60°C (final extension).
Genotyping quality was ≥98%.

Statistical analyses

Normality was tested with the Kolmogorov–Smir-
nov test. Comparisons of normally distributed parame-
ters were performed using the Student’s t-test for
independent samples and the Mann–Whitney U test
was used for non-normally distributed variables. Cate-
gorical variables were compared using the Fisher’s
exact test (two tailed) or the chi-square test, as appro-
priate. Allele frequencies and Hardy–Weinberg (HW)
equilibrium were evaluated by Chi-square test (http://
ihg.gsf.de/cgi-bin/hw/hwa1.pl).
Data analysis was performed using Statistica for

Windows 10.0 software (StatSoft Inc., Tulsa, OK), and
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probabilities less than 5% (P < 0.05) were considered
significant for all analyses.

RESULTS

Anthropometric and laboratory data are presented
in Table 1. The control and GDM groups were
matched by age. GDM patients were significantly
heavier (higher body mass index), and more hyperten-
sive than healthy pregnant women. HbA1c in GDM
group (median 5.6%) indicated good glycemic control
for these patients. No information was available for
healthy controls since this biomarker is not in our rou-
tine for non-diabetics pregnant women.
The frequency of hypertension in GDM subjects

was significantly higher than that of the control group
(14.9% vs. 4.8%, respectively; P = 0.007).
The rs780094 polymorphism was in Hardy–Weinberg

equilibrium in both control and GDM groups
(P > 0.05). The genotype and allele frequencies of the
polymorphism are shown in Table 2.

DISCUSSION

In gestational diabetes, insulin resistance induces a
compensatory insulin release by the pancreas, which
can increase weight gain. The risk for GDM increases
with increase in the BMI of the pregnant woman (29).

Obese pregnant women are more likely to have larger
than expected infants and are also more likely to
undergo cesarean section (30). The frequency of hyper-
tension among women with GDM in our study
(14.9%) was also higher than that reported in the liter-
ature (5–10%) (31).
Subjects in the GDM group also had a high preva-

lence of diabetes in their family history (approximately
70%). Pregnant women with a family history of DM
are at increased risk of developing GDM and of giving
birth to macrosomic children (32).
Fasting glucose and HbA1c levels of the GDM group

were within the reference range, suggesting that these
patients showed good glycemic control. As a marker
for post-prandial hyperglycemia, 1,5-Anhydroglucitol
(1,5 AG) indicates the occurrence of hyperglycemic
excursions. During pregnancy, 1,5 AG levels decrease
significantly, probably due to increased glomerular fil-
tration, the glycosuria associated with pregnancy and
the dilution effect due to increased plasma volume that
occurs in pregnancy (33). In a previous study, our
group demonstrated that pregnant women with GDM
had lower 1,5 AG levels than healthy pregnant
women, with less variation during pregnancy (34).
Similarly, the GDM group in the present study showed
lower levels of 1,5 AG.
During pregnancy, changes in lipid metabolism

occur to ensure the supply of nutrients to the growing
fetus (35). Both groups had high concentrations of
total cholesterol and LDL-cholesterol, with no signifi-
cant difference between them (P > 0.05). Triglycerides
concentrations in the GDM group were approximately
two-fold those of the control group (P < 0.001). GDM
induces a state of dyslipidemia, consistent with insulin
resistance (36).
None of the subjects had clinical symptoms of kid-

ney disease or serum creatinine levels > 1.4 mg/dL.

TABLE 1. Anthropometric and Laboratory Characteristics of

the Study Groups

Characteristics

Controls

(n = 125)

GDM

(n = 127) P

Age, years 30.6 � 4.7 31.9 � 6.4 0.070

Body mass index, kg/m2 26.9 � 5.0 32.7 � 6.3 <0.001
Hypertension, % 4.8 14.9 0.007

a

Family history of

diabetes, %

– 70.1 –

Fasting glucose, mg/dl 84.0 (79–88) 88 (81–95) <0.001
b

2 h, 75 g glucose, mg/dl 105.0 (93–111) 161.0 (149–176) <0.001
b

HbA1c, % – 5.6 (5.3–5.9) –
1,5-Anhydroglucitol,

lg/ml

11.7 � 6.9 9.8 � 5.1 0.060

Total cholesterol, mg/dl 213.9 � 50.0 224.7 � 45.6 0.074

HDL-cholesterol, mg/dl 55.4 � 15.8 56.8 � 12.5 0.451

LDL-cholesterol, mg/dl 130.9 � 41.5 123.5 � 38.9 0.146

Triglycerides, mg/dl 124.0 (96–171) 221.0 (175–270) <0.001
b

Total Protein, g/dl 6.9 � 0.8 6.4 � 0.5 <0.001
Albumin, g/dl 4.2 � 0.6 3.4 � 0.4 <0.001
Creatinine, mg/dl 0.80 (0.7–0.9) 0.70 (0.60–0.72) <0.001

b

Urea, mg/dl 20.4 � 5.3 16.1 � 4.8 <0.001
Uric acid, mg/dl 3.6 (3.0–3.9) 4.3 (3.7–4.9) <0.001

b

Values are presented as mean � SD, median (interquartile range), or

%, –, no information available; Controls, healthy pregnant women;

GDM, pregnant women with gestational diabetes; P, P-values calcu-

lated by Student’s t-test (independent variables)
aChi-square test or bMann–Whitney U test.

TABLE 2. Genotype and Allele Frequencies of GCKR
rs780094 in the Absence (Controls) or Presence of Gestational

Diabetes Mellitus (GDM)

Gene/SNP Model Genotypes

Controls

n = 125

GDM

n = 127 P

GCKR

rs780094

(C>T)

Codominant CC 43 (34.4) 64 (50.4) 0.022a

CT 68 (54.4) 48 (37.8)

TT 14 (11.2) 15 (11.8)

Allele T

Frequency

[95% CI]

38.4

[32–44]
30.7

[25–36]
0.069

Dominant CC/CT+TT 43/82 64/63 0.010

Recessive TT/CC+CT 14/111 15/112 0.879

Genotypes depicted as number (%).95% CI, 95% confidence inter-

val; P, probability determined by chi-square or atwo-tailed Fisher’s

exact test.

Significant p values (P<0.05) are in bold.
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Creatinine and urea did not show any indication of
overt kidney disease. Total protein and albumin was
significantly reduced in the GDM group and uric acid
was higher, although this was not clinically significant.
The rs780094 variant of the GCKR gene was associ-

ated with GDM in the study population (P = 0.022 and
P = 0.010 in codominant and dominant models, respec-
tively). The odds ratio for the risk C allele was 1.41
(95% CI; 0.97–2.03). In a Finnish population, the C
allele was associated with a 1.25-fold increase in the risk
of developing GDM (24), consistent with our findings.
The minor allele (T) frequency for the control group

in the study was 38.4% (95% CI: 32–44%), similar to
frequencies in populations with different ethnicities
(Table 3); however, African Americans showed signifi-
cantly lower, and Asians (Chinese and Japanese) sig-
nificantly higher, T allele frequencies.
The association between the T allele of rs780094 and

increased triglyceride levels was strongly demonstrated
in a study examining different populations (15); how-
ever, a similar association was not observed in the pre-
sent study (data not shown), which may be due to the
sample size or population characteristics.
The frequency of the T allele in a Chinese study of

individuals who were obese or had T2DM was associ-
ated with high concentrations of triglycerides, but also
with lower BMI and lower risk for T2DM (18). Han
Chinese C-allele carriers are 1.22 times more likely to
develop T2DM than those with the T allele (22).
The frequency of the T allele among women with

GDM in this study was similar to that reported for
Finnish and Danish women with T2DM, and lower
than the frequencies reported in Asians. African Amer-
icans with GDM had a lower frequency of the T allele
compared to pregnant women with GDM in this
study, probably because of the ethnic differences
between the populations.

In our study, carriers of the C allele of rs780094
were 1.41 (odds ratio, 95% CI, 0.97–2.03) times more
likely to develop GDM. Glucokinase is an enzyme
that phosphorylates glucose and determines hepatic
glucose clearance. The glucokinase regulatory protein
enables adaptive regulation of hepatic glucose disposal
(37, 38). However, the effect of rs780094 polymor-
phism on GCKR expression is not known. Sparso
et al. (16) proposed that this intronic polymorphism
may be in linkage disequilibrium with other genes
responsible for the effect on the concentrations of glu-
cose or triglycerides. In addition, we did not find any
associations between rs780094 genotypes and glucose,
2-h, 75 g glucose, HbA1c, or triglyceride concentra-
tions in both groups including in dominant or reces-
sive models (data not shown). The sample size in our
study has no power to exclude definitely the associa-
tion among the genotypes with laboratory markers.
Finally, the association of the polymorphism with
GDM also needs to be confirmed in a large sample
size.
In conclusion, the C allele of the GCKR rs780094

polymorphism is a risk factor for GDM in a Brazilian
population.
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