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Adipose Tissue Gene Expression Associations
Reveal Hundreds of Candidate Genes
for Cardiometabolic Traits

Chelsea K. Raulerson,1 Arthur Ko,2,3 John C. Kidd,4 Kevin W. Currin,1 Sarah M. Brotman,1

Maren E. Cannon,1 Ying Wu,1,13 Cassandra N. Spracklen,1 Anne U. Jackson,5 Heather M. Stringham,5

Ryan P. Welch,5 Christian Fuchsberger,6 Adam E. Locke,7 Narisu Narisu,8 Aldons J. Lusis,2

Mete Civelek,9 Terrence S. Furey,1,10 Johanna Kuusisto,11 Francis S. Collins,8 Michael Boehnke,5

Laura J. Scott,5 Dan-Yu Lin,4 Michael I. Love,1,4 Markku Laakso,11 Päivi Pajukanta,2,12

and Karen L. Mohlke1,*

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including

type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcu-

taneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-

expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were

located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements

compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318

transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits exam-

ined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized

eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were

associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 in-

dividuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candi-

date genes that may act in adipose tissue to influence cardiometabolic traits.
Introduction

Excess adipose tissue, especially in central abdominal de-

pots, is associated with increased cardiometabolic risk1,2

and mortality.3 Subcutaneous adipose tissue expands to

store additional lipids and serves as a buffering system

for lipid energy balance, especially for fatty acids,4,5

providing a protective role in metabolic risk.6 However,

expansion of adipocyte size, rather than formation

of new adipocytes has also been linked to insulin

resistance.5,7

Genome-wide association studies (GWASs) have identi-

fied thousands of loci for hundreds of human traits, but

most functional variants, genes affected by variants, and

mechanisms remain elusive. Identification of genetic vari-

ants associated with gene expression level (eQTLs) in rele-

vant tissues has proven useful to link non-coding GWAS

variants to plausible candidate genes that may influence

complex traits.8 While 94% of eQTLs are shared across at

least two tissues,8 some are specific to one tissue or a subset
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of tissues, necessitating the study of tissues that potentially

contribute to GWAS traits to identify candidate genes.

Recently, eQTL studies have begun to identify additional

eQTL signals through conditional analysis9–11 in addition

to the more commonly reported primary eQTLs. These

additional conditionally distinct secondary eQTL signals

are widespread and located more distal than primary sig-

nals from the transcription start sites of the associated

genes.9,10 The additional eQTL signals have also been

shown to colocalize with GWAS loci,10 suggesting that

they can detect additional candidate genes.

Previous studies have identified adipose tissue cis-eQTLs

and tested for colocalizations of eQTL signals with cardio-

metabolic GWAS loci.12–15 Additionally, GWASs have re-

ported colocalized subcutaneous adipose cis-eQTLs with

loci for body mass index (BMI), waist-hip ratio (WHR),

WHR adjusted for BMI (WHRadjBMI), type 2 diabetes

(T2D), circulating lipid levels, and adiponectin, a hormone

produced by adipocytes that regulates glucose levels

and fatty acid breakdown.16–20 However, colocalization
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presents its own challenges, particularly when the GWASs

and eQTL studies are from different ancestries or when

multiple, conditionally distinct signals exist.

Here, we describe the analysis of subcutaneous adipose

tissue gene expression levels from 434 participants in the

METabolic Syndrome in Men (METSIM) study. METSIM

participants have been well characterized for detailed clin-

ical phenotypes, including metabolic and cardiovascular

traits such as plasma lipids, anthropometric, and glycemic

traits.21 We identified and characterized primary and sec-

ondary cis-eQTL genes that colocalize with GWAS loci for

BMI, cholesterol and triglyceride levels, WHR and

WHRadjBMI, T2D, adiponectin, cardiovascular endpoints,

and other cardiometabolic traits. We further associated

gene expression level with cardiometabolic trait levels in

the METSIM cohort and identify the genes that show the

strongest evidence of mediating the variant to trait

associations.
Subjects and Methods

METSIM Study Participants and Sample Characteristics
METSIM is a population-based cohort composed of 10,197 males

of Finnish ancestry from Kuopio, Finland.21 For this analysis, we

used a subset of 550 participants from whom subcutaneous adi-

pose tissue had been collected near the umbilicus by needle bi-

opsy. The METSIM study was approved by the Ethics Committee

of the University of Eastern Finland and Kuopio University Hospi-

tal in Kuopio, Finland and carried out in accordance with the Hel-

sinki Declaration.Written informed consent was obtained from all

participants.

Genotypes were measured using the Illumina OmniExpress

BeadChip array and the Illumina HumanCoreExome at the Center

for Inherited Disease Research (Baltimore, MD). Genotyping qual-

ity control (QC) and imputation to the Haplotype Reference Con-

sortium (HRC) panel22 have been previously described.12 For this

study, we filtered HRC-imputed genotypes to retain 7.8 million

variants withminor allele frequency (MAF)> 0.01 and imputation

quality, r2 > 0.3.
RNA Extraction and Sequencing
Following the adipose tissue biopsies, total mRNAwas isolated us-

ing the Qiagen miRNeasy kit (Qiagen), following the manufac-

turer’s instructions. mRNA was isolated with a polyAþ selection

protocol (Illumina TruSeq RNA Sample Preparation Kit v2) and

sequenced on the Illumina HiSeq 2000 platform at the University

of California Los Angeles Neuroscience Genomics Core (UNGC) to

an average sequencing depth of 45million paired-end 50 bp reads.

Readswere filtered using the Fastx-toolkit requiring 80%of bases

to have phred quality > 20. Reads containing linker and adapter

sequences were removed using TagDust (see Web Resources). We

implemented STAR (v.2.4.2a)23 to align reads to the hg19/

GRCh37 human genome reference sequence,24 using GENCODE

v19 (July 2013 freeze) as the annotation. Duplicate reads were re-

tained. Read pairs with unpaired alignments were removed. The

average uniquely mapped reads across all samples was 82.2%.

To ensure RNA samples were matched with the correct geno-

types, we applied MixupMapper,25 verifyBamID,26 and GATK

best practice guidelines (see Web Resources) to call variants from
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RNA-seq data and assign best matches between the RNA-seq and

genotype data. We retained samples that matched DNA genotypes

corresponding to the expected self-sample for at least onemethod.
Expression Quantification and Sample Level QC
To identify fragments mapping to transcript isoforms, we used

Salmon (v.0.7.2)27 and provided GENCODE v.19 as annotation;

to correct for bias in isoform abundance estimates due to technical

biases resulting from GC content, we used the –gcBias option. Iso-

form abundances were collapsed to the gene-level, and transcript

per million (TPM) values were calculated using tximport

(v.1.0.3).28 To remove genes with limited evidence of expression,

we retained genes with R 5 reads in >25% of samples, resulting

in using 21,735 genes of 57,821 for cis-eQTL analysis.

To assess the tissue heterogeneity of tissue samples, we used the

unmix function in DESeq229 to estimate the percent composition

of whole blood, Epstein Barr virus (EBV)-transformed lympho-

cytes, skeletal muscle, and subcutaneous adipose, using Geno-

type-Tissue Expression (GTEx) v7 median TPM values per tissue

as reference.30 We examined the expression of adipose-specific

genes in three sample sets: all samples (n ¼ 550) and the subsets

comprised of samples with approximately >50% adipose compo-

sition (n ¼ 434) and >75% adipose composition (n ¼ 387).
eQTL Mapping
To adjust for the known and unknown technical factors that influ-

ence gene expression estimates, we inverse normal transformed

gene-level TPMs and implemented probabilistic estimation of

expression residuals (PEER)31 and inverse normal transformed

again, since both PEER and eQTL detection require data in a

normal distribution. To optimize for cis-eQTL discovery, we

performed PEER analysis including differing numbers of factors

(k¼ 10 to 90) at intervals of 10.We next performed cis-eQTL detec-

tion using FastQTL (v.2.184)32 on all variants within 1 Mb of the

TSS of each gene and assessed the total number of cis-eQTLs and

the number of genes associated with R1 variant with various

PEER factor values. We selected 60 PEER factors to maximize the

number of cis-eQTLs identified. We next implemented FastQTL

permutation testing to estimate adjusted p values and calculated

the p values corresponding to 1% FDR using the qvalue package

in R (p < 9.6 3 10�6) to account for genome-wide eQTL testing

of variants within 1 Mb of each transcript and determine the sig-

nificance threshold.

To identify conditionally distinct cis-eQTLs, we first identified

all genes with R1 significantly associated variant at FDR < 1%

and the lead variant for each of these genes. We then included

the dosage values of the lead variant for each gene as a covariate

for eQTL mapping using FastQTL. Conditional secondary eQTLs

were considered significant at FDR < 1% for primary cis-eQTLs

(p < 9.6 3 10-6).

To identify trans-eQTLs, we removed 3,182 pseudogenes33 and

genes with low mappability as these have been observed to in-

crease false positives in distal eQTL analyses.34 We implemented

RSeQC35 to calculate transcript integrity number (TIN),36 the dis-

tribution of deletions across reads, and the distribution of inserted

nucleotides across reads from BAM files. We inverse normal trans-

formed the gene expression for 18,553 remaining genes and

adjusted for TIN, batch, age, insert size, deletion distribution,

and either 0 or 3 PEER factors prior to analysis. To avoid collider

bias, we used limited PEER factors in trans-eQTL mapping.

Using QTLtools (v.1.1),37 we performed association tests for
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variants>1Mb away from the transcription start site (TSS); the sig-

nificance threshold for identifying trans-eQTLs was calculated us-

ing the Bonferroni correction (p < 3.4 3 10�13).
eQTL Validation
For validation, we compared eQTLs with the significant

eQTLs from the GTEx Project V7 release for both subcutaneous

(n ¼ 385) and visceral adipose (n ¼ 313) tissue. For variant-gene

pairs available in both files, we matched the effect alleles to

compare the direction of effect. To ensure that groups of variants

associatedwith the same gene did not inflate replication estimates,

we limited this analysis to the lead variants for each gene in either

METSIM or GTEx.We used the lead variant for each gene from one

study and assessed whether that variant was significant for the

same gene in the other study. We then counted the number of

variant-gene pairs that showed a consistent direction of effect

and met several different p value thresholds between 5 3 10�3

and 5 3 10�8 in both studies.
eQTL Enrichment in Adipose Tissue Open Chromatin

and Roadmap Adipose Nuclei Chromatin States
We compiled a set of adipose tissue transcriptional regulatory ele-

ments from tissue-derived adipose nuclei chromatin states from

the Roadmap Epigenomics Consortium38 andMETSIM adipose tis-

sue accessible chromatin regions39 generated using an Assay for

Transposase-Accessible Chromatin (ATAC-seq).40 For Roadmap

chromatin states, we used the 18 state chromatin model and

selected promoter states (1_TssA, 2_TssFlnk, 3_TssFlnkU,

4_TssFlnkD, 14_TssBiv) and enhancer states (7_EnhG1, 8_EnhG2,

9_EnhA1, 10_EnhA2, 11_EnhWk, 15_EnhBiv).We defined adipose

tissue accessible chromatin regions as the union of ATAC-seq peaks

across three METSIM subcutaneous adipose samples.39 We also

tested for enrichment among the subsets of ATAC-seq peaks that

overlapped Roadmap adipose nuclei promoters and enhancers,38

requiring that a peak be completely contained within the epige-

nomic region. We pruned eQTL variants based on linkage disequi-

librium (LD, r2> 0.2) using swiss to prevent variants in nominal LD

with each other from inflating enrichment estimates. We selected

background variants using GREGOR;41 variants were matched on

allele frequency, distance to gene, and LD (r2> 0.8; 1000 Genomes

phase 1, in a 1Mbwindow). Backgroundvariantswere thenpruned

with swiss using the same parameters as for significant eQTLs. We

removed background variants that were themselves significant

eQTLs at FDR < 1% (primary or secondary signals) or that were in

high LD (r2> 0.8) with an eQTL lead variant (primary or secondary

signals).We tested for enrichmentusing logistic regression, regress-

ing the eQTL status of a variant (1 ¼ significant eQTL, 0 ¼ not

eQTL), against whether that variant overlapped a given genomic

annotation (1¼ overlapped, 0¼not overlapped). An eQTLor back-

groundvariantwas considered tooverlapagenomicannotation if it

or any of its LD proxies (r2 > 0.8, 1000 Genomes phase 1) overlap-

ped the annotation. Enrichment was defined as the beta of the

regression model, which is the log of the odds ratio that a variant

is an eQTL if it overlaps the given genomic annotation.

To compare the effect sizes of eQTL signals that overlap various

genomic annotations, we used the lead eQTL variant and all vari-

ants in high LD (r2 > 0.8) to identify overlaps with promoters, en-

hancers, and ATAC-seq peaks, stratified by primary and secondary

eQTLs. We then used the effect size of the lead variant of the over-

lapping eQTLs to test for differences in the strength of effect

among different annotations using a Wilcoxon rank sum test.
The America
Selection of GWAS Loci and GWAS-eQTL Colocalization
We downloaded the NHGRI-EBI GWAS catalog42 in December

2017 and extracted 4,588 GWAS variants associated with one or

more of 93 cardiometabolic traits (Table S8) at genome-wide signif-

icance (p < 5 3 10�8) and then added results from five additional

large GWASs for cardiometabolic traits.18,19,43–45 To ensure that

GWAS variants representing the same signal did not inflate coloc-

alization estimates, we performed LD pruning using swiss (seeWeb

Resources) across all traits; variants were ranked by p value, and

variants in LD r2 R 0.8 in METSIM with the lead variant at each

locus were removed.We defined the GWAS risk allele as the variant

associated with a disease state or with the higher quantitative trait

level, except for adiponectin and high-density lipoprotein (HDL)

cholesterol levels, for which we defined the risk effect allele as

associated with a lower trait level as these indicate poorer health

outcomes.

We performed initial colocalization analysis based on LD

between a lead GWAS variant and a lead eQTL variant. We then

performed conditional analysis in the eQTL data by providing ge-

notypes for the lead GWAS variant to FastQTL as a covariate. We

considered signals to be colocalized if (1) the pairwise LD was

high between the GWAS variant and eQTL variants (r2 R 0.8 in

METSIM) and (2) after conditioning on the GWAS variant, the

lead eQTL variant no longer met the 1% FDR equivalent p value

(p > 9.6 3 10�6).

To identify METSIM variant-gene pairs that were observed in 13

GTEx tissues (n >300 in GTEx v.7; see Table S10 for the tissues

tested), we first determined whether variants of colocalized

variant-gene pairs observed in METSIM were significant eQTLs

in GTEx (FDR < 5%). We next identified the lead eQTL variant

in GTEx and calculated the LD r2 (1000 Genomes, phase 3 EUR)

between the lead GWAS variant and the lead eQTL variant. We

considered these signals to be colocalized if the variants were in

strong LD (r2 R 0.8).

We further performed GWAS colocalizations with METSIM

eQTLs using variants for additional non-cardiometabolic GWAS

traits. For these analyses, we initially used all variants, without

pruning by pairwise LD or distance. We considered signals to be

colocalized if the lead GWAS variant and lead eQTL variant were

in strong LD (r2 R 0.8 in METSIM). After colocalization, we per-

formed LD pruning, removing variants in LD r2 > 0.8 in METSIM

with the lead GWAS variant, to estimate the number of unique

GWAS signals with colocalized eQTLs.

For eQTLs that appeared colocalized with GWAS signals based

on LD, we applied coloc210 to further assess evidence of colocali-

zation. Coloc2 is a Bayesian method that uses summary statistics

to test whether variants underlying a signal are shared between

two studies. For each gene, we included all variants located within

1 Mb of the TSS for which summary statistics were available in

both the GWASs and eQTL studies. Coloc2 estimates the posterior

probabilities of five hypotheses concurrently (H0, no association

signal in either the GWAS or eQTL; H1, only the GWAS has an as-

sociation signal; H2, only the eQTL has an association signal; H3,

both datasets have an association signal, but they are not the

same; H4, the GWAS and eQTL associations signals are colocal-

ized). To make our results more comparable with prior colocaliza-

tion studies, we set prior probabilities for coloc2 to values

comparable to coloc’s46 default settings, rather than allowing the

software to generate its own priors. We used coloc’s default priors

for p1 and p2, the prior probabilities that a variant is causal for

either GWAS or eQTL, respectively (p1 and p2 ¼ 1 3 10�4). We

set p12, the prior probability that a variant is causal to both
n Journal of Human Genetics 105, 773–787, October 3, 2019 775



GWAS and eQTL, to 1 3 10�6. We selected this more conservative

value than coloc’s default p12 prior (1 3 10�5) because we are

using coloc to provide additional support for conditional analysis

results based on LD and conditional analysis. We evaluated the

posterior probabilities that correspond to H3 and H4, that both

the GWAS and the eQTL have signals, but that they are not the

same (PP3) and that the GWAS and eQTL signals colocalize (PP4),

respectively. We considered the signals to have strong evidence

of colocalization if PP4 > 0.8.
Trait-Gene Expression Association
For 287 genes that showed evidence of GWAS signal colocalization

with a primary eQTL signal based on LD and conditional analysis,

we tested for association between gene expression level and each

of the 20 cardiometabolic traits measured in the 434 individuals

(for a list of traits, see Tables S14 and S15). We adjusted traits for

age and gene expression level for TIN, sequencing batch, and

age. Following inverse normal transformation of both trait- and

expression-level residuals, we used linear regression to test for as-

sociation between the gene expression levels and traits. Because

adipose expression level of a large number of genes is associated

with BMI, we also performed these analyses additionally adjusting

both gene expression levels and traits for BMI. The p value corre-

sponding to 5% FDR was calculated using the qvalue package in R.
Mediation Analysis
Mediation analyses were conducted in 434 METSIM individuals

using a procedure described by Imai et al.,47 similar to that of

Huang et al.,48 implemented in R and Cþþ, assuming an additive

effect and modified for a continuous outcome. We performed

mediation analyses only when the eQTL and GWAS data were co-

localized and trait data for the GWAS trait itself or a similar trait

was available for METSIM individuals, specifically testing fasting

glucose, fasting insulin, Matsuda index, and HOMA-b for T2D.

We determined the effect of a variant on a trait through the medi-

ator of gene expression, the effect of the variant on the trait when

the mediator is held constant, and the combined effect, which is

the sum of the mediation and variant-trait effects. This method

uses two least squares regression models, where the first model

uses the variant genotype, coded as 0, 1, or 2, as the predictor

and the mediator of gene expression as the response, and the sec-

ond model uses both gene expression level and variant genotype

as predictors and the trait outcome as the response. The mediation

effect was estimated by the product of coefficients from the two

linear regression models. We assumed that the individual effects

were linear and that there is not an interactive effect between

the variant and mediator on the outcome. Confidence intervals

for the mediating effect were calculated using Monte Carlo simu-

lations. We set a ¼ 0:05 and calculated 95% confidence intervals

corresponding to a possible range for the estimates of the effect.

Confidence intervals that did not include 0 were considered evi-

dence of a mediating effect.
Results

Analysis of Tissue Heterogeneity

To identify cis-eQTLs for subcutaneous adipose tissue, we

performed RNA-seq on needle biopsy samples obtained

from 550 Finnishmen in theMETSIM study (Table S1). Ad-

ipose tissue is comprised of adipocytes, pre-adipocytes,
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endothelial cells, and various immune cells,49,50 and nee-

dle biopsies of adipose tissue can include whole blood

and/or muscle. The resulting heterogeneity between

samples can confound the analysis of bulk tissue transcrip-

tomics,51–53 but its effects can be mitigated by tissue de-

convolution methods. We estimated tissue composition

using tissue from GTEx as reference tissue profiles

(Figure S1). We found wide variation in the estimated per-

centage of adipose tissue within our samples. To determine

whether to limit the analysis to higher-purity samples or to

retain the larger sample size including lower-quality sam-

ples, we compared eQTL results from the set of all 550 sam-

ples to subsets of samples with estimated adipose tissue

percentage of approximately >50% (n ¼ 434) and >75%

(n ¼ 387). For all three sample sets, we performed cis-

eQTL analyses with a range of PEER factor corrections us-

ing 7.8M variants and 21,735 genes. We then compared

the strength of association at three previously described

adipose eQTL loci12,13 and counted the total number of

variant-gene associations observed (Tables S2 and S3).

The known eQTLs showed the strongest associations

within the >50% adipose subset (Table S3). The 50% adi-

pose subset also had the most significant cis-eQTL variants

(1.6M versus 1.5M and 1.4M, for the 50%, all, and 75%

sample sets, respectively) and the most variant-gene pairs

(3.0M versus 2.8M and 2.5M, for the 50%, all, and 75%

sample sets, Table S2). These results suggest that the het-

erogeneity between samples in the full sample set of 550

samples and the smaller sample size of the 387 samples

with >75% adipose attenuated the association signals

and that requiring samples to contain>50% adipose tissue

(n ¼ 434) yielded a set of cis-eQTL results that best corre-

spond to adipose tissue; thus, we performed all subsequent

analyses using the subset of 434 samples.

eQTL Identification and Characterization

We performed genome-wide cis-eQTL analyses using �7.8

million genetic variants (MAF> 0.01) from the 434 samples

with>50% adipose tissue and 21,735 genes. Of these, 9,687

genes were associated with at least one variant located

within 1Mbof the TSS (FDR< 1%, p< 9.63 10�6). The first

and second PEER factors correlated with TIN36 and esti-

mated percent adipose tissue, respectively (Figure S2).

To examine the validity of our results, we compared the

METSIM subcutaneous adipose tissue eQTL results to those

from theGTExproject’s subcutaneous (n¼ 385) and visceral

(n ¼ 313) adipose eQTL analyses. Overall, GTEx detected

fewer cis-eQTLs (FDR < 5%) than METSIM (Table S4). At a

significance threshold of p < 5 3 10�5, which meets the

FDR < 5% threshold in both studies, 4,442 (95.4%) and

3,370 (96.4%) of the lead eQTL variants identified in

METSIM also showed significant associations with the

same gene and in a consistent direction of effect in the

GTEx subcutaneous and visceral adipose data, respectively.

Combined, these results demonstrated consistency of the

METSIM subcutaneous adipose tissue eQTLs with GTEx

eQTLs.
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Figure 1. Comparison of Primary and
Secondary eQTL Association Signals
(A) For each type of transcript (x-axis), the
number of transcripts associated with at
least one nearby variant that met the
genome-wide FDR <1% is shown (y-axis).
(B) Density plot showing the distance from
the lead eQTL variant to the TSS. Dashed
lines represent the median distance to
the TSS for primary (purple) and secondary
(green) eQTLs.
(C) Enrichment of primary and secondary
eQTLs in chromatin marks from Roadmap
adipose nuclei chromatin marks and open
chromatin ATAC-seq peaks from adipose
tissue. The horizontal lines represent the
logistic regression coefficient for enrich-
ment with vertical lines representing
the 95% confidence interval around the
coefficient.
(D) Absolute value of the effect sizes of
eQTL variants that overlap Roadmap adi-
pose nuclei promoters and enhancers.
Black horizontal lines represent the me-
dian effect size for primary and secondary
eQTL variants.
Secondary association signals are frequently identified at

eQTL loci and may reflect more complex gene regula-

tion.9,10 Of 9,687 genes that exhibited primary eQTL sig-

nals, 2,785 genes (28.7%) showed a significant secondary

cis-eQTL (FDR < 1%, p < 9.6 3 10�6). The proportions of

transcript types with primary and secondary cis-

eQTLs were not significantly different from each other

(c2 p ¼ 0.42, Figure 1A). Secondary eQTLs have been

reported to be located farther away from the TSS than pri-

mary eQTLs.9,10 We also observed this pattern: the distri-

bution of distances to TSS for secondary eQTLs

(median ¼ 40.3 kb) was significantly higher than for pri-

mary eQTLs (median ¼ 26.7 kb, Mann Whitney U-test, p

< 2.2 3 10�16; Figure 1B). The identification of secondary

eQTL signals in subcutaneous adipose tissue greatly

expanded the set of cis-eQTL signals for available further

investigation.

To characterize the potential function of the primary

and secondary eQTL signals, we evaluated the enrichment

of and effect sizes of the lead variant and LD proxies

compared to adipose nuclei chromatin states (promoters,

enhancers) defined by the Roadmap Epigenomics

Project38 and METSIM adipose tissue open chromatin as

measured by ATAC-seq.39 Lead variants of primary eQTL

signals were more enriched in open chromatin, promoters,

and enhancers than matched control variants, especially

in open chromatin regions within promoters (p < 2 3

10�308; b ¼ 2.83). Secondary eQTL variants showed a
The American Journal of Human Gen
similar but weaker pattern of enrich-

ment in all categories, even for a

matched number of eQTL genes

(Table S5; Figure 1C). Further, effect

sizes for primary eQTL variants were
significantly larger than those of secondary eQTL variants

found within promoters and enhancers (Wilcoxon rank

sum test, p ¼ 4.3 3 10�131; Figure 1D). Including both pri-

mary and secondary eQTL variants, effect sizes of variants

within promoters were significantly larger than variants

within enhancers (p ¼ 8.1 3 10�12; Figure S3), and effect

sizes of variants within open chromatin in promoters

were significantly larger than promoter variants generally

(p ¼ 3.2 3 10�5). We observed no significant difference

in the effect sizes between variants within open chromatin

in enhancers and all enhancer variants. These results indi-

cate that eQTL variants within promoters, particularly

those in open chromatin, have larger effects on expression

levels of nearby associated genes than those variants in

enhancers.

To identify variants that influence the expression of

distal genes and contribute to regulatory networks in adi-

pose tissue, we performed a trans-eQTL analysis using

7.8M variants (MAF > 0.01) and 18,553 protein-coding

and lncRNA transcripts, requiring variants to be >1 Mb

away from the TSS. Accounting for the number of tests per-

formed (Bonferroni, p < 3.4 3 10�13), we identified

4,432 target genes, and at a relaxed significance threshold

(p < 5 3 10�8), we identified 13,953 target genes, repre-

senting 24% and 75% of genes tested, respectively (Table

S6). At the known adipose-specific trans-eQTL hub near

KLF14,12,54 which is also a known GWAS locus for HDL-

cholesterol55 and type 2 diabetes (T2D),56 we identified
etics 105, 773–787, October 3, 2019 777



Table 1. Primary and Secondary eQTLs Colocalized at GWAS Loci

Primary Signals Secondary Signals

Trait GWAS Signals
Associated
with R1 Gene

Colocalized
GWAS Signals

Colocalized
Genes

Genes (%) for Which
the Trait Risk Allele
Is Associated with
Decreased Expression

Colocalized
GWAS
Signals

Colocalized
Genes

Genes (%) for Which
the Trait Risk Allele Is
Associated with Decreased
Expression

BMI 310 85 116 60 (52%) 12 11 4 (36%)

All lipids 186 56 62 31 (50%) 7 7 3 (43%)

HDL 73 25 30 18 (60%) 3 3 2 (67%)

LDL 64 16 18 8 (44%) 1 1 0 (0%)

Triglycerides 42 18 19 11 (58%) 2 2 1 (50%)

Total cholesterol 47 13 13 6 (46%) 2 2 1 (50%)

WHRadjBMI 157 48 57 35 (61%) 9 9 5 (56%)

WHR 134 40 49 32 (65%) 6 6 3 (50%)

T2D 115 28 37 20 (54%) 7 8 4 (50%)

Cardiovascular disease 28 9 10 6 (60%) – – –

Adiponectin 11 4 4 2 (50%) – – –

Any trait 874 231 287 152 (53%) 31 31 15 (48%)

Colocalized eQTL (FDR< 1%; p< 9.633 10�6) among 2,843 GWAS signals (variants clumped by LD r2> 0.8) associated with one or more of 93 cardiometabolic
traits. Each GWAS variant may colocalize with an eQTL for more than one gene. GWAS signals reported for multiple traits are included in counts of colocalized
eQTLs for each trait, so signals and genes are not unique by row. Percentages expressed as the number of genes for which the GWAS risk allele was associated with
decreased expression among all colocalized genes for that trait. No secondary eQTL signals were found to be colocalized with GWAS loci for cardiovascular disease
or adiponectin.
rs4731702 as the lead KLF14 cis-eQTL variant and vali-

dated (p < 5 3 10�8) the distal association of this variant

with expression level of one known target gene, PRMT2,

and two additional target genes, SNX14 and RBBP7, not

previously reported12,54 (Table S7). This male-only

METSIM study detected fewer trans-eQTL associations for

KLF14 than the larger female-only TwinsUK study,54

consistent with power and the reported stronger effects

in females at this locus.57

Colocalization of eQTLs and Cardiometabolic

GWAS Loci

While thousands of cardiometabolic GWAS loci have been

identified, many of the genes underlying these associa-

tions remain unknown. We evaluated cis-eQTLs for evi-

dence of colocalization with 2,843 GWAS signals (variants

clumped by LD r2 R 0.8) associated with one or more of 93

cardiometabolic traits and available in our cis-eQTL data

(Table S8). Of the 2,843 GWAS signals, 874 (30.7%) were

significantly associated with at least one nearby (<1 Mb)

gene at FDR < 1% (Table S9). Using LD and conditional

analysis (see Subjects and Methods), we identified colocal-

izations of 231 GWAS variants with expression of 287

genes, described further below as GWAS-colocalized pri-

mary eQTLs. Of these GWAS-eQTL colocalizations, only

125 (43%) were detected in GTEx subcutaneous adipose

data (GTEx n ¼ 385, FDR < 5%) (Tables S10 and S11).

Among 12 additional tissues with at least 300 samples,

only 59–102 (21%–36%) of these colocalizations were de-

tected (Tables S10 and S11).
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Colocalized GWAS and eQTL signals suggest potential

candidate genes for cardiometabolic risk. Among the 287

primary eQTL genes colocalized with a GWAS trait, eQTLs

for 116 genes were identified at BMI loci, 62 genes for lipid

traits, 57 genes for WHRadjBMI, 37 genes for T2D, and 10

genes for cardiovascular disease (Table 1). These colocaliza-

tions were based on differing numbers of GWAS signals per

trait; to identify the proportion of GWAS signals with colo-

calized eQTLs for each trait, we compared the total number

of signals reported by five recent GWAS publications for

BMI, lipids, WHR, WHRadjBMI, and T2D, which reported

between 79 and 851 conditionally distinct GWAS signals

per trait, to the number of signals with a colocalized

eQTL signal from those same studies. Across traits from

five studies,18,19,43–45 the proportion of signals found to

be colocalized ranged from 8% for T2D and BMI to 12%

for WHRadjBMI, 14% for all lipids, and 15% for WHR

(Table S12). Among additional non-cardiometabolic

GWAS signals, we observed the highest proportion of colo-

calized signals for blood cell traits and autoimmune

diseases (Tables S13 and S14). These results suggest that ad-

ipose tissue gene expression levels are relevant to a broad

set of cardiometabolic and other GWAS traits, potentially

reflecting the cell types present in adipose tissue.

Genes may influence disease risk by downregulating or

upregulating expression level or function.58 To assess the

direction of effect of GWAS signals on gene expression

level, wematched the GWAS risk alleles to the gene expres-

sion effect alleles (see Subjects and Methods). Across all

primary colocalized loci, the GWAS trait risk allele
r 3, 2019



Figure 2. Cardiometabolic GWAS and eQTL Colocalizations, Stratified by Trait
Each point represents the lead GWAS variant of a signal colocalized by LD and conditional analysis with an eQTL for the named gene.
Plots show eQTLs at GWAS loci for (A) T2D, (B) WHRadjBMI, and (C) lipids. The x-axis shows chromosomal positions of colocalized
signals and the y-axis shows the �log10 p values of the GWAS variant’s association with gene expression level in adipose tissue. After
matching the effect allele from the eQTL study with the risk allele from the GWAS, risk alleles that are associated with increased gene
expression level are shown in red and risk alleles that are associated with decreased gene expression level are shown in blue. Triangles
indicate that more than one gene is colocalized with the GWAS variant (other genes would appear at the same x-axis position). Variants
colocalized as secondary eQTLs are designated by a star after the gene name. Only the strongest associations for the named traits are
shown; full results can be found in Table S9.
corresponded to decreased gene expression for 53% of

transcripts (Table 1; Figures 2 and S4), with a range from

44% for LDL loci to 65% for WHR loci. These results

show that for common complex traits, disease risk is asso-

ciated with decreased gene expression level for about half

of all colocalized signals.

We also evaluated secondary eQTL signals for colocaliza-

tion with the initial 2,843 GWAS signals. Of 154 lead
The America
GWAS variants associated (FDR < 1%) with a secondary

eQTL signal for at least one nearby gene (Table S15), 31

eQTL signals for 31 transcripts were colocalized at GWAS

loci. Of these, 10 (32.3%) variants showed evidence of co-

localization with at least one primary eQTL gene and with

a different secondary eQTL gene. The other 21 variants

(67.7%) did not demonstrate any evidence of colocaliza-

tion with a primary eQTL signal such that no gene would
n Journal of Human Genetics 105, 773–787, October 3, 2019 779



Figure 3. A WHRadjBMI Signal Colocalizes with the Secondary
eQTL for DGKQ
Locus plots for the DGKQ locus, colored by two distinct signals
present in the METSIM eQTL data. The lead GWAS variant associ-
ated with WHRadjBMI at this locus,44 rs11724804 (top), is associ-
ated with DGKQ expression but is not in LD with the variant most
strongly associated with DGKQ expression, rs11731377 (eSNP;
middle). After conditional analysis, a second eQTL signal for
DGKQ is apparent and is colocalized with the lead GWAS variant
(bottom). Variants are colored by the strength of their LD with the
lead variant for each signal (diamond), with darker colors indi-
cating stronger LD.
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have been identified using primary eQTLs alone. We did

not observe the same gene to be colocalized with a

GWAS variant for both a primary and secondary eQTL.

For example, the lead variant rs11724804 from a WHR

and WHRadjBMI locus is not colocalized with the primary

eQTL signal for DGKQ via conditional analysis

(rs11731377; LD r2 ¼ 0.26) but was colocalized with the

secondary eQTL signal for DGKQ, rs13101828, based on

LD and conditional analysis (r2 ¼ 1.0; Figure 3). In hepatic

cells, silencing DGKQ decreased the ability of synthetic

FXR ligand to promote phosphorylation of mTOR, Akt,

and FoxO1,59 and misregulation of the mTOR pathway

has been shown to result in peripheral insulin resistance

and to promote adipogenesis and lipogenesis in adipose

tissue.60 These results suggest that colocalization of sec-

ondary eQTLs can identify substantially more GWAS loci

for which at least one potential candidate gene can provide

insights into GWAS biology, than primary eQTL colocaliza-

tions alone.

For a subset of the 287 GWAS-colocalized primary

eQTLs for which GWAS summary statistics were available

(n ¼ 173; BMI, WHR, WHRadjBMI, and T2D), we further

investigated colocalization of primary eQTL signals by

applying coloc2, a Bayesian colocalization test that uses

summary statistics10,46 (Table S16). Of 173 genes tested,

81 showed strong or moderate evidence of GWAS-eQTL co-

localization (coloc2 posterior probability H4 > 0.8 and

H4 > 0.5, respectively). An additional 82 genes showed

strong or moderate posterior probabilities that did not sup-

port colocalized signals (coloc2 H3 > 0.8 and H3 > 0.5,

respectively), which was especially unexpected for nine

signals with the same lead variant in both the GWAS and

eQTL data and 31 signals with very strong pairwise LD

(r2 > 0.95) between lead GWAS and eQTL variants. A com-

parison of GWAS and eQTL association plots (e.g.,

Figure S5; Table S16) showed the GWAS and eQTL signals

are very similar and suggests that coloc2 is sensitive to

additional nearby GWAS and eQTL signals.

Cross-ancestry Colocalization Analysis

Colocalization methods rely on examining association

patterns in GWAS and eQTL studies for similarity; associa-

tion patterns can differ due to the extent of LD in a region,

which can vary by ancestry. We further examined LD pat-

terns in cis-eQTLs discovered in Finns for a subset of the

BMI GWAS loci that were discovered in individuals from

Japan (Tables S9 and S17, Figure 4). We evaluated the LD

r2 values between the GWAS variant and eSNP in both

the Finnish eQTL population and in East Asian 1000G

data. Of the six loci (corresponding to nine eQTL tran-

scripts) that met the GWAS variant-eSNP colocalization

LD threshold (r2 > 0.8) in Finns, lead variants at four loci

had similar pairwise LD in East Asians and two had lower

LD in East Asians (Table S17).

As an example of similar LD patterns across populations,

the lead BMI-associated variant near GON4L in Japanese

individuals,61 rs860295, was also the lead eSNP for DAP3
r 3, 2019



Figure 4. Cross-ancestry Comparison of Colocalized GWAS-eQTL Signals
Locus plots showing the regional associations for BMI in Japanese individuals,61 colored by East Asian LD (EAS) (top) and gene expres-
sion in Finns (bottom), colored by Finnish LD.
(A) ADAP3 eQTL signal is colocalized with a BMI signal nearGON4L. The lead variant is shared between the GWAS and eQTL studies and
the patterns of association are similar.
(B) A SULT1A2 eQTL signal is colocalized with a BMI signal near IL27/NUPR1. The LD between the lead eQTL andGWAS variants is low in
East Asians (r2 ¼ 0.22) but high in Finns (r2 ¼ 0.93).
(Figure 4A). Similar to previous examples comparing

GWAS and eQTL signals within one ancestry, the similar

patterns of GWAS and eQTL association signals here sug-

gest DAP3 as a candidate gene for the observed association

with BMI. DAP3 has been shown to mediate interferon

gamma-induced cell death,62 which is involved in pro-in-

flammatory responses related to obesity.63 Of note, a

GWAS in Europeans43 also identified BMI-associated vari-

ants in this chromosomal region, although the European

and Japanese GWAS variants exhibited low pairwise LD

(r2 ¼ 0.32 in 1000 Genomes East Asians and r2 ¼ 0.35 in

Finns) and the European signal was not colocalized with

any genes (Table S9). While further characterization of

the locus may identify additional candidate genes, the

shared LD patterns support cross-ancestry conclusions of

colocalized GWAS and eQTL signals.

Two GWAS-eQTL signals we considered to be colocalized

showed high LD (r2 R 0.8) between the lead GWAS and

eSNP in Finns but not in East Asians. The lead GWAS

variant at the IL27/NUPR1 East Asian BMI locus,

rs62034325, is a cis-eQTL for SULT1A2 (p ¼ 1.03 3 10�27;

b ¼ 0.67; Figure 4B). LD between the lead GWAS variant

and the eSNP, rs28698667, is high in Finns (r2 ¼ 0.93)

but low in East Asians (r2 ¼ 0.22). However, LD between

the lead GWAS variant and other near-lead eQTL variants
The America
(e.g., rs62034322, p ¼ 1.02 3 10�27; b ¼ 0.67) is high in

both Finns (r2 ¼ 1.0) and East Asians (r2 ¼ 0.89), and con-

ditional analyses in the eQTL data (pcond ¼ 1.61 3 10�3)

showed that these signals are colocalized. The SULT1A2

eQTL signal in Finns consists of more variants than the

BMI signal in Japanese, and the BMI-associated variants

appear to be a subset of the eQTL variants. SULT1A2 cata-

lyzes the sulfate conjugation of estrogens, estrogenic alkyl-

phenols, and 17-b-estradiol, to facilitate their removal

from the body,64 and increased levels of 17-b-estradiol are

associated with obesity;65 in addition, SULT1A1 levels

were altered in adipose tissue of rats on a high fat diet.66

These results are consistent with the dependence of all co-

localization methods on patterns of association that vary

by ancestry and suggest that, regardless of GWAS study

ancestry, LD-basedmethods to assess colocalization should

focus on the eQTL study population.

Cardiometabolic Trait Association with Expression Level

of eQTL-GWAS Colocalized Genes

To further investigate the 287 genes identified based on co-

localized primary eQTL-GWAS signals, we tested for associ-

ation of expression level with 20 cardiometabolic traits

measured in the same 434 METSIM individuals. Because

BMI is correlated with the expression level of a high
n Journal of Human Genetics 105, 773–787, October 3, 2019 781
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percentage (51%) of all genes in our study, we performed

gene-trait associations with and without adjustment for

BMI (Tables S18 and S19). Without adjustment for BMI,

expression levels of 154 genes were associated with at least

one trait, and with adjustment for BMI, expression levels of

49 genes were associated with a trait. The difference be-

tween the analysis with and without adjustment for BMI

may demonstrate the influence of this trait on adipose tis-

sue gene expression levels. This difference also could be

due to gene expression and cardiometabolic traits influ-

encing BMI (collider bias). We recommend caution inter-

preting association results when a gene’s expression level

is associated with BMI (Table S18), as collider bias can alter

the effect size and significance level of the association. The

traits associated with expression level of the most genes

were Matsuda index, WHR, and triglycerides. For example,

at a WHRadjBMI locus, EIF4G2, also known as DAP5,

was significantly associated with fasting free fatty acids

(p ¼ 3.0 3 10�5) and with Matsuda index, a measure of in-

sulin sensitivity67 (p¼ 7.23 10�5) (Table S19), and EIF4G2

was not associated with BMI (Table S18), suggesting that

this gene may affect these traits. EIF4G2 is thought to

play a role in the interferon gamma-induced cell death

pathway.68 Association between adipose gene expression

level and clinical traits provides an additional line of evi-

dence that changes in expression of the colocalized genes

may influence quantitative traits and disease risk.

Mediation Analysis

We next evaluated colocalized signals for evidence that

gene expression mediates the effect of a GWAS variant

on a cardiometabolic trait. We estimated the mediating ef-

fect of a variant on a trait level through gene expression

level, adjusted for age, relevant covariates, and BMI (except

when evaluating BMI as an outcome; see Subjects and

Methods for covariates). Of note, observing mediation de-

pends on detecting effects of variants on traits in only 434

individuals. Among the colocalized loci, we tested media-

tion paths only at loci for which a trait comparable to

the reported GWAS signal had been measured in the indi-

viduals with gene expression data; this choice resulted in

testing the same variant and gene for multiple traits in

some cases, leading to more potential mediations than co-

localized signals. Of 348 potential mediations, 90 (25.9%)

showed evidence of gene expression mediating the effect

of an association signal on a trait (the 95% CI of a media-

tion effect, ME, does not include 0; Table S20). We focused

on signals with nominal evidence of the combined effect

of mediation and a direct effect of the GWAS variant on

the trait (p < 0.05, Table 2). Of these, at least four loci

have functions relevant to cardiometabolic traits. For

example, at a well-characterized GWAS locus for adiponec-

tin levels, adipose expression level of CDH13, which en-

codes a receptor for high-molecular-weight adiponectin

multimers,69 mediates the effect of rs12051272 on plasma

adiponectin levels (ME ¼ 0.34; CI [0.086, 0.63]). At

another GWAS locus, MLXIPL (also known as ChREBP)
r 3, 2019



mediates the variant effect on triglyceride levels (ME ¼
�0.12; CI [�0.21, �0.40]). In adipose tissue, MLXIPL has

been shown to regulate glucose homeostasis and fatty

acid synthesis.70 In addition, RSPO3 mediates the effect

of rs72959041 on triglycerides (ME ¼ �0.12; CI

[�0.21, �0.043]), and RSPO3 activates the Wnt/b-catenin

pathway which promotes angiogenesis,71 suggesting a po-

tential role in the expansion of adipose tissue. Finally,

JAZF1 mediates the effect of rs1708302 on BMI (ME ¼
0.17; CI [0.059, 0.30]); in adipocytes, overexpression of

JAZF1 inhibits lipid accumulation and regulates lipidmeta-

bolism.72 In addition to these well-characterized loci,

expression level of CATSPERZ, also known as TEX40,

mediates an association with BMI (ME¼ �0.23; CI

[�0.44, �0.065]), and expression level of ADH1A

mediates an association with WHR (ME¼ �0.01; CI

[�0.016, �0.005]). CATSPERZ encodes a calcium ion chan-

nel and ADH1A encodes a member of the alcohol dehydro-

genase family; while neither gene has yet been directly

linked to body size or fat distribution, these mediation re-

sults support the eQTL colocalization and suggest that

these genes play a role in obesity.
Discussion

We identified primary and secondary cis-eQTLs in subcu-

taneous adipose from 434 Finnish males from the METSIM

study and linked their gene expression levels to cardiome-

tabolic GWAS signals and measures of 20 cardiometabolic

traits. By colocalizing eQTL signals with 262 cardiometa-

bolic trait GWAS signals, we identified 318 candidate

genes, the highest proportion of which corresponded to

traits with multiple biological pathways relevant to adi-

pose tissue: WHR (15% of GWAS signals), lipids (14% of

GWAS signals), and T2D (8% of GWAS signals). Additional

integration of clinical trait information from the eQTL

study participants through gene-trait association and

mediation analysis provided further support of a role for

these genes in cardiometabolic trait variation.

While GWASs have successfully identified thousands of

genomic regions associated with cardiometabolic diseases

and complex traits, the genes andmechanisms responsible

for many of these loci remain unknown. Identifying candi-

date transcripts for GWAS loci is relatively straightforward

when one of the lead GWAS variants is predicted to cause

a loss of gene function, but identifying candidate genes

with a testable link to function is more ambiguous when

all candidate GWAS variants are noncoding. Colocalized

eQTL signals provide one of several approaches to identify

reasonable candidate genes.73,74 The value of eQTLs derives

from the low prior probability that GWAS variants will by

chance also be functional variants associated with a gene’s

expression level. For our main colocalization analysis, we

assumed that candidate functional variants would be

among those that show the strongest association with

both a GWAS trait and gene expression level. Consistent
The America
with widespread evidence that expression levels of most

genes are regulated by genetic variants,75 31% of lead

GWAS variants in this study showed nominal evidence of

association (FDR < 1%) with expression levels of at least

one transcript. Further evaluation of signal colocalization

using one or more methods46,76–79 is critical, because here

only 1.3% of the associations showed the identical lead

variant to be associated with both the GWAS and gene

expression traits. Interpretation of colocalization can be

challengingas comparisonof signals is affectedby sampling

heterogeneity, the presence of multiple and/or differing

GWAS and eQTL signals per locus, and differences in LD

patterns between GWAS and eQTL study participants.

The use of eQTLs to detect candidate genes at GWAS loci

is becoming more widespread, but colocalizations often

consider only primary eQTL signals, which are most easily

available via summary data. While primary eQTLs identi-

fied 90% of the candidate genes detected here, analysis of

secondary eQTLs detected another 21 genes that would

have been missed by summary level analysis. These sec-

ondary eQTLs may reflect parallel biology with primary

eQTL signals or they may derive from a different underly-

ing cell type present in bulk tissue samples. As eQTL study

sample sizes increase and single-cell or in silico cell-type de-

convolution technologies improve, studies will have more

potential to detect multiple regulatory effects per gene.

Colocalization methods are imperfect and sensitive to

the thresholds applied. In the LD and conditional analysis

approach, we applied a threshold for LD between the

GWAS variant and the eSNP as well as a threshold for evi-

dence of association after conditional analysis. These

thresholds are arbitrary and sensitive to the strength of

the original eQTL signal, the use of lead variants subject

to sampling variability, and a conditional analysis step

that requires individual-level data. In comparison, coloc2

requires setting prior probabilities and thresholds for inter-

preting posterior probabilities and is sensitive to the pres-

ence of multiple signals in either the eQTL or the GWAS

data. Further development of colocalization methods

may improve the use of eQTLs for identifying candidate

genes for GWAS loci.

We provide evidence for cross-ancestry GWAS-eQTL co-

localizations and demonstrated the importance of evalu-

ating colocalization using the LD structure of the eQTL

study population. When the lead variants for the GWAS

and eQTL studies are the same or in high LD in both pop-

ulations, colocalization is straightforward. At these loci,

conditional analysis showed evidence of colocalization.

However, when the LD structure differs substantially be-

tween populations, closer comparison of the patterns of

association in GWAS and eQTL data is required to ensure

that the conclusion of colocalization is warranted. The

results of colocalization across populations can be influ-

enced especially when the pattern of association is

broader due to LD in one population than another and

the selection of a different lead variant within the set of

highly associated variants would result in high LD
n Journal of Human Genetics 105, 773–787, October 3, 2019 783



between the GWAS variant and eSNP in both ancestries.

Although some loci can be compared cleanly across

ancestries, as eQTL studies in more diverse populations

become available, comparing GWAS and eQTL signals

within ancestries will likely provide stronger evidence of

colocalization.

To further investigate causal relationships between ge-

netic variants and clinical traits, we used the extensive

phenotypic trait information available for the METSIM

eQTL study participants and identified 49 genes associated

with cardiometabolic traits at colocalized GWAS loci.

Although Matsuda index, WHR, and triglycerides showed

the most associations with genes, these traits did not

exhibit the most variation between individuals, suggesting

that even small changes in traits can result in association

with colocalized genes. Because BMI is associated with

nearly half of all genes in our data, the direction of the rela-

tionship between BMI, related traits, and gene expression

is hard to determine; expression level of a gene may affect

BMI, or BMI may influence expression level of a gene and a

trait independently. We further tested for effects of the var-

iants mediated through gene expression on the GWAS trait

or a related trait. The six highlighted mediations (Table 2)

show not only an association between these variants,

genes, and traits, but also a directional, and potentially

causal, path. This mediation analysis method is limited

by statistical power because it uses only the hundreds of in-

dividuals with expression data to detect an effect of the ge-

notype on the trait, whereas thousands of samples were

used to originally detect these associations in GWASs. To

mitigate this limitation, we confined our analysis to estab-

lished GWAS loci and required the combined effect of the

genotype on the trait and the mediation to be significant.

The results of both gene-trait associations and mediation

analysis can be used to guide efforts in functional tests of

genes for mechanistic effects on cardiometabolic traits.

The 318 candidate genes identified here correspond to

GWAS loci across a broad range of cardiometabolic traits.

These genes may act to influence obesity, diabetes, and car-

diovascular traits and should be prioritized for future func-

tional analysis. As larger subcutaneous adipose data sets

become available in diverse ancestries, multiple eQTL sig-

nals will become easier to identify and colocalize with

GWAS signals from across populations.
Data Availability

Summary eQTL data are provided at http://mohlke.web.

unc.edu/data/. Gene expression data are provided in

GEO: GSE135134.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.09.001.
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M.N., Zheng, H.-F., Richards, J.B., Glass, D., Small, K.S., Dur-

bin, R., et al. (2015). Gene-gene and gene-environment inter-

actions detected by transcriptome sequence analysis in twins.

Nat. Genet. 47, 88–91.

14. Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S.,

Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters, G.B., Gun-

narsdottir, S., et al. (2008). Genetics of gene expression and its

effect on disease. Nature 452, 423–428.

15. Franzén, O., Ermel, R., Cohain, A., Akers, N.K., Di Narzo, A.,

Talukdar, H.A., Foroughi-Asl, H., Giambartolomei, C., Fullard,

J.F., Sukhavasi, K., et al. (2016). Cardiometabolic risk loci share

downstream cis- and trans-gene regulation across tissues and

diseases. Science 353, 827–830.
The America
16. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H.,

Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang,

J., et al.; LifeLines Cohort Study; ADIPOGen Consortium;

AGEN-BMI Working Group; CARDIOGRAMplusC4D Con-

sortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investi-

gators; MuTHER Consortium; MIGen Consortium; PAGE

Consortium; ReproGen Consortium; GENIE Consortium;

and International Endogene Consortium (2015). Genetic

studies of body mass index yield new insights for obesity

biology. Nature 518, 197–206.

17. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira,
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