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Abstract
Background  The 15q11.2 deletion is frequently 
identified in the neurodevelopmental clinic. Case–control 
studies have associated the 15q11.2 deletion with 
neurodevelopmental disorders, and clinical case series 
have attempted to delineate a microdeletion syndrome 
with considerable phenotypic variability. The literature 
on this deletion is extensive and confusing, which is a 
challenge for genetic counselling. The aim of this study 
was to estimate the effect size of the 15q11.2 deletion 
and quantify its contribution to neurodevelopmental 
disorders.
Methods  We performed meta-analyses on new and 
previously published case–control studies and used 
statistical models trained in unselected populations 
with cognitive assessments. We used new (n=241) and 
previously published (n=150) data from a clinically 
referred group of deletion carriers. 15q11.2 duplications 
(new n=179 and previously published n=35) were used 
as a neutral control variant.
Results  The deletion decreases IQ by 4.3 points. The 
estimated ORs and respective frequencies in deletion 
carriers for intellectual disabilities, schizophrenia and 
epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), 
respectively. There is no increased risk for heart 
malformations and autism. In the clinically referred 
group, the frequency and nature of symptoms in 
deletions are not different from those observed in 
carriers of the 15q11.2 duplication suggesting that most 
of the reported symptoms are due to ascertainment bias.
Conclusions  We recommend that the deletion should 
be classified as ’pathogenic of mild effect size’. Since 
it explains only a small proportion of the phenotypic 
variance in carriers, it is not worth discussing in the 
developmental clinic or in a prenatal setting.

Introduction
Translating the results of clinical series and case–
control studies into clinical practice is a difficult 
task especially for genetic variants with moderate 
or small effect sizes and incomplete penetrance.1 

The 15q11.2 deletion located between breakpoints 
1 and 2 (BP1–BP2) (MIM:615656) has been asso-
ciated with neurodevelopmental disorders (NDDs), 
and a mild enrichment of the deletion is observed 
in individuals with schizophrenia (OR 1.8),2 devel-
opmental delay (OR 2.36),3 epilepsy (OR 4.9)4 
and learning disabilities (OR 4.4, dyslexia and 
dyscalculia combined).5 The deletion has also been 
associated with congenital heart disease (CHD).6–8 
More than 200 15q11.2 deletion carriers have 
been reported in clinical series with mild, moderate 
and severe neurodevelopmental symptoms as well 
as malformations leading authors to delineate a 
microdeletion syndrome with considerable pheno-
typic variability9 and incomplete penetrance.10

The BP1–BP2 region span approximately 500 
kb and contains four evolutionarily conserved 
and non-imprinted genes (NIPA1 (MIM:608145), 
NIPA2 (MIM:608146), CYFIP1 (MIM:606322) 
and TUBGCP5 (MIM:608147)).11 These four genes 
are expressed in the central nervous system. Several 
studies have demonstrated that altered CYFIP1 expres-
sion impact neuronal function and morphology.12 13 
Although CYFIP1 intragenic mutations have not yet 
been associated with neurodevelopmental disorder, 
it is considered as a primary candidate gene for the 
NDDs observed in 15q11.2 deletion carrier patients. 
Heterozygous dominant negative mutations in NIPA1 
are associated with autosomal dominant hereditary 
spastic paraplegia type 6.14

The literature on the 15q11.2 deletion is extensive 
but confusing, with many studies focused on charac-
terising carriers referred through neurodevelopmental 
clinics. Since most clinicians rely on descriptions from 
clinically referred samples, the interpretation and 
the counselling remains challenging for this variant 
frequently identified in the clinic.15

The overarching aim of the paper is to provide an 
accurate estimate of the effect size on cognition and 
risk for neurodevelopmental symptoms conferred 
by the 15q11.2 deletion. Specifically, we (1) investi-
gated the association between the 15q11.2 deletion 
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Table 1  Study aims and corresponding methods

Aim Methods Tables and figures

(1) Investigate the association between the 
15q11.2 deletion and neurodevelopmental 
disorders

(1a) Enrichment of the 15q11.2 deletion in two neurodevelopmental cohorts (SJCHU and 
OUH) compared with controls (UK BIOBANK) using Fisher’s exact test. The same analyses were 
performed for duplications (neutral control CNV).

Table 2

(1b) Estimating the effect size on IQ of the 15q11.2 deletion based on a model using pLI as 
well as a model using de novo frequency (Huguet et al33).

 �

(2) Investigate the association between 
15q11.2 deletions and specific developmental 
diagnoses.

(2a) Meta-analysis of previously published studies to estimate the association of 15q11.2 
deletions and duplications with autism, schizophrenia, epilepsy and congenital heart disease.

Figures 1 and 2

(2b) Frequencies of psychiatric and medical issues in 15q11.2 CNV carriers are computed 
based on relative risk and OR established in (1a) and (2a). These estimates are compared with 
frequencies reported in case series.

Table 4

(3) Investigate the effect on 
neurodevelopment of deletions with pLI 
scores similar to 15q11.2.

Compute the frequencies of developmental conditions for 442 CNVs with a pLI between 1 and 
3 identified in the SJCHU and DECIPHER data sets.

Online supplementary Figure S5

DECIPHER, Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources; OUH, Odense University Hospital; SJCHU, Saint-Justine University 
Hospital; pLI, probability of being loss-of-function intolerant.

Table 2  Enrichment of the 15q11.2 deletion in two independent cohorts of patients referred for neurodevelopmental disorders

CNV
NDD cohort

Deletion Duplication

SJCHU OUH SJCHU+OUH SJCHU OUH SJCHU+OUH

No. in NDD cohort 98/14 463 11/985 109/15 448 77/14 463 8/985 85/15 448

Frequency in NDD cohort 0.7% 1.1% 0.7% 0.5% 0.8% 0.6%

Frequency in UKBB* 0.36% 0.36% 0.36% 0.5% 0.5% 0.5%

P value 7.2e−08 1.1e−03 1.8e−09 0.62 0.17 0.44

OR and (95% CI) 1.9
(1.5–2.4)

3.1
(1.6–5.7)

2.0
(1.6–2.4)

1.1
(0.8–1.3)

1.6
(0.7–3.2)

1.1
(0.9–1.4)

Statistical significant values are in bold.
*UKBB frequencies of the 15q11.2 deletion and duplication are 0.36% (544/151619) and 0.50% (762/151619), respectively.
CI, confidence interval; NDD, neurodevelopmental disorder;OR, odds ratio; OUH, Odense University Hospital; SJCHU, Saint-Justine University Hospital; UKBB, UK BIOBANK.

and NDDs as well as IQ, (2) investigated the association between 
15q11.2 deletion and specific developmental diagnoses and (3) 
investigated the effect on neurodevelopmental conditions of dele-
tions with similar probability to be loss-of-function intolerance 
(pLI) score (table 1).

To this mean, we used new and previously published data. 
To accurately estimate the frequency of the 15q11.2 CNVs, 
analyses were computed using the largest control groups 
from unselected populations. To understand the discordance 
with frequencies and risks classically provided during genetic 
counselling, we compared our estimates to observations in a 
large clinical series of deletions (n=391) clinically referred 
for a neurodevelopmental disorder. To characterise the bias 
introduced by clinical referral, we use a control neutral CNV 
(15q11.2 duplication). Our estimates of the frequencies for 
medical and psychiatric issues in 15q11.2 deletion carriers are 
much lower than what has been previously reported and have 
implications on the relevance of reporting this CNV back to 
patients and families.

METHODS
Data sets
Cohorts of patients with a neurodevelopmental disorder referred for 
CMA analysis (aim 1)
We used data from the chromosomal microarray (CMA) diag-
nostic databases of the cytogenetic laboratory at Saint-Justine 
University Hospital (SJCHU) and Odense University Hospital 
(OUH) including 14 463 and 985 probands referred for NDDs 
and/or malformations for our enrichment analyses of the 
15q11.2 CNVs.

Unselected population used as a control group (aims 1 and 2)
We used data on CNV frequency from the UK BIOBANK (151 
619 individuals),16 which is an unselected population. This 
control data were used to compute the enrichment in NDDs 
(aim 1, table 2) and the meta-analyses on the association with 
specific diagnoses (aim 2, figures 1 and 2).

DECIPHER data set used to compute de novo frequency (aim 1) and 
frequencies of developmental conditions in carriers of CNVs with a 
pLI between 1 and 3 (aim 3)
A data set including all 28 970 cases from the Database of 
Chromosomal Imbalance and Phenotype in Humans using 
Ensemble Resources (DECIPHER)17 (https://​decipher.​sanger.​
ac.​uk) was received and accessed March 2018. Phenotypic 
information concerning CHD and epilepsy as well as infor-
mation about transmission were extracted and evaluated for 
patients who carry either a BP1–BP2 15q11.2 CNV (n=429), 
or a CNV (n=382) with an annotated pLI score between 1 and 
3 (described below).

Data sets for the meta-analysis of autism, schizophrenia, epilepsy 
and CHD (aim 2)
We performed a PubMed search and included all studies reporting 
the 15q11.2 CNVs between 2007 and 2017. We also searched 
the reference lists of retrieved studies and reviews to identify 
additional studies of relevance. For the meta-analysis shown 
in figures 1 and 2 using case–control studies, we identified 24 
publications on the 15q11.2 deletion and seven on the duplica-
tion. We excluded six deletion and two duplication studies due 
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Figure 1  The 15q11.2 deletion case–control studies of neurodevelopmental disorders and CHD. Forest plot showing the results of 20 studies2 4 6–8 15 18–29 
including the SJCHU and OUH cohorts examining the association between the 15q11.2 deletion and the OR of a neurodevelopmental disorder or CHD 
in cases versus controls. Of note, the year reported for the SJCHU and OUH cohorts refers to the year the data were extracted and analysed. Previously 
published studies are detailed in the online supplementary table S1. If a study contains a value of zero, we added 0.5 as suggested by the rma function of 
the metafor package. Data in the individual studies are reported with corresponding 95% CI based on a RE model. The horizontal whiskers correspond to 
the 95% CI for each study. The sizes of the box areas are proportional to the weight of the individual study in the meta-analysis. The width of the diamond 
is a summary estimate of the CI, and the dotted vertical line shows the null value of the OR and is equivalent to no effect. OR in the left side shows the OR 
and 95% CI for studies including the original control population, and OR in the right side shows the OR and 95% CI for the recomputed studies with the UK 
BIOBANK as control population (n=151 619). The test for heterogeneity (Q=39.74, df=19, p=0.00, I2=61.5%) for OR (left side) using the original control 
population suggests important heterogeneity among the studies. The I2 statistic describes the percentage (0%–100%) of total variation across studies that is 
due to heterogeneity rather than chance. The 0% indicate no observed heterogeneity, while larger values show increasing heterogeneity.36 Publication bias 
was assessed in a funnel plot (online supplementary figure S2), and the Egger’s test was used to test for funnel plot asymmetry (z=2.1337, p=0.0329). A p 
value below 0.05 suggests the presence of publication bias in the funnel plot. ASD, autism spectrum disorders; CHD, congenital heart disease; del+, cases or 
controls with the 15q11.2 deletion, del−, cases or controls without the 15q11.2 deletion; DD/ID, developmental delay/intellectual disability; df, number of 
studies; OUH, Odense University Hospital; Q, χ2 test of heterogeneity; RE, random effect; SJCHU, Saint-Justine University Hospital; SZ, schizophrenia.

to overlap between cases reported. Our final analysis included 
20 studies2 4 6–8 15 18–29 on the deletion and seven18 20 21 30 31 on the 
duplication including the SJCHU and OUH cohorts (figures 1 
and 2 and online supplementary table S1 and S2).

15q11.2 CNV carrier groups (clinically referred) (aim 2)
We compared our estimates of frequencies for neurodevelop-
mental symptoms and diagnoses computed in aims 1 and 2 to 
observations from a large clinical series incorporating data from 
391 deletion carriers (326 probands and 65 related carriers) and 
214 duplication carriers (176 probands and 38 related carriers) 
(table 3). Data were acquired from three different sites: SJCHU, 
Canada (n=220), CHUV Lausanne, Switzerland (n=143) 
and OUH, Denmark (n=28). We further included previously 
published data from 185 (150 deletions and 35 duplications) 
carriers.

Inclusion criteria
Inclusion criteria include the presence of the recurrent 15q11.2 
deletion or duplication between BP1 and BP2 (22.8–23.0 Mb, 
according to the human genome build CRCh37/hg19). Carrier 
relatives were defined as relatives who carry the same CNV as the 
proband. 15q11.2 deletion and duplication carriers with additional 
pathogenic CNVs, single-nucleotide variants (SNVs) or structural 
chromosomal variants were not excluded from the analyses as our 
working hypothesis is that every proband with a 15q11.2 deletion 
or duplication carry additional pathogenic variants.

Information about the participants was gathered by completion 
of questionnaires by the referring clinician/review of patient files 
(n=363) or by full assessment (n=28). We also included partici-
pants from Unique the chromosomal disorder support group, UK 
(n=16), and the US based 15q11.2 duplication network (Facebook 
group) (n=13). These participants completed self-administered 
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Figure 2  The 15q11.2 duplication case–control studies of neurodevelopmental disorders. Forest plot showing the results of seven studies18 20 21 30 31 
including the SJCHU and OUH cohorts examining the association between the 15q11.2 duplication and the OR of a neurodevelopmental disorder in cases 
versus controls. Of note, the year reported for the SJCHU and OUH cohorts refers to the year the data were extracted and analysed. Published studies are 
detailed in the online supplementary table S2. Data in the individual studies are reported with corresponding 95% CI based on a RE model. The test for 
heterogeneity (Q=16.41, df=6, p=0.01, I2=67.6%) for OR (left side) using the original control population suggests important heterogeneity among the 
studies. Publication bias was assessed in a funnel plot (online supplementary figure S3) and the Egger’s test was used to test for funnel plot asymmetry 
(z=3.3826, p=0.0007). This result suggests asymmetry in the funnel plot, and the presence of publication bias. ASD, autism spectrum disorders; dup+, cases 
or controls with the duplication; dup−, cases or controls without the duplication; DD/ID, developmental delay/intellectual disability; df, number of studies; 
OUH, Odense University Hospital; Q, X2 test of heterogeneity; RE, random effect; SJCHU, Saint-Justine University Hospital. See figure 1 legend for more 
details.

Table 3  Gender, age and inheritance status by carrier group and ascertainment

CNV Carrier group No.

Sex ratio

Mean age,
years (SD)

De novo frequency, no.
(95% CI)M F

M/F ratio (95% CI), P 
value

Deletion All probands 326 200 126 (0.56 to 0.67), 4.9e−05 8.7 (9.1) 5.9%, 8/136 (2.6 to 11.3)

Probands +NDD 266 179 87 (0.61 to 0.73), 1.8e−08 9.3 (7.3) 7.4%, 8/108 (3.3 to 14.1)

Probands −NDD 60 21 39 (0.24 to 0.48), ns 8.9 (14.5) 0/28

Relative carriers 65 32 33 1.0, ns 32.0 (15.9) 0/15

Duplication All probands 176* 110 65 (0.55 to 0.70), 8.3e−04 7.8 (9.0) 2.2%, 1/46 (0.1 to 11.5)

Probands +NDD 139* 91 47 (0.57 to 0.74), 2.3e−04 8.7 (7.9) 2.4%, 1/42 (0.1 to 12.6)

Probands −NDD 37 19 18 1.0, ns 9.0 (12.6) 0/4

Relative carriers 38 19 19 1.0, ns 32.0 (16.2) 0/8

*The sex of one duplication proband is unknown.
CI, confidence interval; F, female; M, male; −NDD, probands not ascertained for NDD; +NDD, probands ascertained for neurodevelopmental disorder; SD, standard deviation; ns, 
not significant.

questionnaires and/or provided copies of hospital files and reports. 
Participant ascertainment is detailed in the online supplementary 
materials and methods S1.1.

Among 322 deletion probands with available data, 88.8% 
(n=286) were children (<18 years) and 11.2% (n=36) were 
adults (≥18 years) at the time of ascertainment. Frequencies 
were similar in 170 duplication probands with 86.4% (n=152) 
being children and 10.2% (n=18) adults. Most deletion 79.7% 

(n=51) and duplication 79.4% (n=27) carrier relatives were 
adults (table 3).

Cognitive, psychiatric and behavioural assessments in the 15q11.2 
CNV carrier groups
We collected information about global cognitive functioning 
for all carriers from the clinical referred group who had been 
assessed by different standardised neuropsychological tests as 
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Table 4  Frequencies of psychiatric and medical issues in 15q11.2 CNV carriers estimated based on case–control studies and reported in clinical 
series

Diagnosis

Frequencies in deletion Frequencies in duplication

Estimates using OR
Reported in
clinical series
(n=326)

Estimates using OR Reported in
clinical 
series
(n=176)Original controls UKBB controls Original controls UKBB controls

ASD 1.9% 2.4% 12.9% 2.3% 2.4% 13.6%

ID 5.4% (1.7 to 3.9) 3.5% (1.4 to 2.2) 42.3% 3.2% 1.9% 35.2%

Epilepsy 3.5% (2.6 to 9.3) 2.1% (2.0 to 4.5) 15.3% 2.8% 2.9% 14.2%

CHD 4.5% (1.7 to 12.3) 1.4% 8.9% – – 5.7%

Frequencies are computed by multiplying the RR by the frequency of the condition of interest in the general population (see the section Methods). Frequency (or penetrance) 
estimates in bold are those associated with a significantly increased RR (95%CI). If the RR is not significantly increased, the corresponding frequency is in italic. Of note RR and 
OR presented in figures 1 and 2 are very similar. There are no case–control association studies calculating the enrichment of duplications in CHD cohorts.
ASD, autism spectrum disorder; CHD, congenital heart disease; ID, intellectual disability; OR, odds ratio; UKBB, UK BIOBANK.

part of their initial diagnostic evaluation. The different scales 
used to obtain Full Scale Intelligence Quotient (FSIQ) and results 
are detailed in online supplementary materials and methods S1.2 
and online supplementary table S3. A FSIQ of 70 or below was 
considered diagnostic for intellectual disability (ID). IQ range 
55–70 was defined as mild ID, IQ range 40–55 as moderate and 
severe as IQ<40. For carriers without available FSIQ score, but 
with information about the spectrum of ID severity, global devel-
opmental delay, a history of learning difficulties or unspecified 
cognitive deficits, we calculated the frequency after re-grouping 
the information into the following ID categories; unspecified, 
mild, moderate, severe or profound (online supplementary table 
S3). Additional diagnosis defined by the Diagnostic and Statis-
tical Manual of Mental Disorders, fifth edition criteria32 diag-
nosed in carriers before inclusion in the study are also reported 
in the online supplementary table S3.

Microarray platforms and additional pathogenic variants in the 
15q11.2 CNV carrier groups
The majority of participant samples had been analysed across 
nine custom chromosomal microarray platforms (online supple-
mentary materials and methods S1.3). All gene annotations of 
CNVs in this paper refers to the human genome build GRCh37/
hg19. 40 (27 deletion and 13 duplication) probands carry addi-
tional pathogenic CNV (online supplementary table S4). These 
CNVs and the guidelines used for the interpretation are detailed 
in online supplementary table S5 and supplementary materials 
and methods S1.4. Another 10 probands (7 deletion and three 
duplication) were known to carry additional pathogenic or likely 
pathogenic (n=1) SNVs or structural chromosomal rearrange-
ments (online supplementary table S6).

Written informed consent was obtained from patients, parents 
or guardian when appropriate.

Analyses
Case–control enrichment analysis (aims 1 and 2)
In order to characterise the potential unique phenotype(s) of the 
15q11.2 deletion, we compared all analyses with the reciprocal 
duplication considered to represent a neutral CNV. Fisher’s exact 
test was used to assess the association between binary variables. 
Significance levels (p value), ORs and 95% CI were calculated 
using a two-tailed Fisher’s exact test. Statistical significance was 
set by a p value <0.05. All statistical analysis was conducted in 
R (V.3.3.3, the R Project for Statistical Computing; http://www.​
R-​project.​org/).

Estimating effect size on IQ using OR for ID (aim 1)
The conversion of ORs into IQ shift of CNV enrichment in 
cohorts of patients with NDDs is based on a model adapted from 
Huguet and colleagues (2018) detailed in the online supplemen-
tary materials and methods S1.5.33

Logistic regression to estimate the de novo occurrence of deletions 
(aim 1)
The logistic regression was performed using ‘lrm’ function from 
the ‘rms v5.1–2’ package34 (online supplementary figure S1 and 
supplemental materials and methods S1.6).

Meta-analyses (aim 2)
We used the metaphor package35 of the R Statistical Package 
to perform the meta-analyses in figures 1 and 2. The package 
has functions for fitting both fixed-effects and random-effects 
meta-analytic models. We fitted a random-effects model to the 
data used. We assessed statistical heterogeneity between studies 
with the Q (χ2) test and I2 statistic (total heterogeneity/total 
variability).36 Heterogeneity was considered significant when 
p<0.05. Publication bias was evaluated with the contour-en-
hanced funnel plot with reference line in zero (online supplemen-
tary figures S2 and S3). Funnel plot asymmetry was evaluated 
with a regression test (Egger’s test).

OR, relative risk (RR) and frequency (aim 2)
ORs were computed for the enrichment of the 15q11.2 deletion 
in autism, epilepsy and CHD. RRs of the presence of a symptom 
in deletion carriers compared with non-deletion carriers were 
computed for table 4. Of note, OR and RRs are very similar due 
to the low frequency of the CNVs. Frequencies (or penetrance) 
of a symptom or diagnosis in CNV carriers were computed by 
multiplying the RR by the frequency of the symptoms in the 
general population (table 4).

Investigating CNVs with similar pLI (aim 3)
Genes are annotated using the pLI, where 1 means that the gene 
is intolerant.37 The default value associated to a gene without 
available score was 0. The score attributed to a CNV is the sum 
of scores of all genes deleted by the CNV (online supplementary 
materials and methods S1.7).

Additional pathogenic variants present in deletion and duplication 
carriers
We compared the frequency, median size (Wilcoxon Rank Sum 
test), mean number of genes (Student’s t-test) and the mean pLI 
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score (Student’s t-test) of additional CNVs between deletion and 
duplication probands (online supplementary figures S5A-C).

Results
Enrichment of 15q11.2 deletions and duplications in clinical 
cohorts
The deletion is significantly enriched in the SJCHU (OR 1.9, 
95% CI 1.5 to 2.4) and OUH CMA database (OR 3.1, 95% CI 
1.6 to 5.7), compared with the deletion prevalence from the UK 
BIOBANK (0.36%, 544/151619)16 (table  2). The enrichment 
is consistent with our meta-analyses of previously published 
studies in NDD cohorts (OR 1.7–2.7, figure 1). The reciprocal 
duplication is not enriched in both the SJCHU and OUH cohorts 
(table  2) when using the prevalence in an unselected popula-
tion provided by the UK BIOBANK (0.5%, 762/151619)16 and 
is therefore used as a control neutral CNV throughout the rest 
of this study.

The enrichment of the deletion in clinical cohorts are likely 
driven by the main referral motifs in probands, which are neuro-
developmental symptoms, epilepsy and CHD. We therefore 
investigated the association of the deletion with those symptoms 
and used the reciprocal duplication as a control.

Effect on IQ
Neurodevelopmental symptoms, and in particular cognitive 
deficits, represent a major referral motif for clinical cohorts. 
Using our model33 based on observation of IQ measured in 
deletion carriers in the general population, we estimate that the 
15q11.2 deletion decreases IQ by 4.3 points (95% CI 6.5 to 
2.03). Assuming an additive model, this effect translates into a 
4% risk for ID (compared with 2% in the general population).

This mild effect is in strong contrast with the ID frequency of 
42.3% (138/326) reported in deletion-carrying probands from 
the clinically referred group (table  4). In the same group, the 
mean full scale IQ (FSIQ) (available in 20/138) of deletion-car-
rying probands is 70.9 (±15.3 SD) (online supplementary table 
S3). The level of bias of the clinically referred group is illustrated 
by the duplication, which is not enriched in clinical cohorts and 
should therefore not have any detectable effect on IQ. ID is 
reported in 35.2% (62/176; 95% CI 28.2 to 42.8) of duplica-
tion-carrying probands (table  4) and their mean FSIQ is 75.3 
(±23.0 SD) (online supplementary table S3).

Our previous study established a tight relationship between de 
novo frequency of CNVs and their effect size on IQ.33 The de 
novo frequency observed in the deletion carriers from the clini-
cally referred group is 5.3% (8/151; 95% CI 2.3 to 10.2) (table 3 
and online supplementary table S7). Merging the data from the 
clinically referred group and the DECIPHER data set (n=306) 
(online supplementary table S8) provides a de novo frequency 
of 8.3% (38/457; 95% CI 6.0 to 11.2). The estimated de novo 
frequency for any deletion with a pLI of 1.69 is 7.5% (95% CI 
6.3 to 8.9, p=2e−71) (online supplementary figure S1) and is 
consistent with an impact on IQ of 4.3 (95% CI 6.5 to 2.03) 
points.

Autism and other psychiatric disorders
Autism is also a major referral motif for genetic testing. Our 
meta-analysis of case–control studies (figure  1) did not show 
a significant association between the deletion and autism spec-
trum disorder (ASD) (OR 1.30), which again is discordant with 
the frequency of ASD in deletion (12.9%, 42/326)) and dupli-
cation-carrying probands (13.6%, 24/176)) from the clinically 
referred group (table 4 and online supplementary table S9).

Although schizophrenia is not a referral motif for the neurode-
velopmental clinics, we nevertheless performed a meta-analysis, 
which shows the same OR whether we used controls provided 
by the initial studies or UK BIOBANK data. This translates into 
a 2% risk for schizophrenia based on a population prevalence of 
approximately 1.0% for this condition.38

Epilepsy and neurological symptoms
Our meta-analysis of case–control studies for epilepsy in 
15q11.2 deletion carriers4 23 26 27 shows an OR of 5.14 when 
using the small control groups from the original studies and 3.09 
using the UK BIOBANK data (figure 1). Based on the prevalence 
of epilepsy in the paediatric population of 6.8 per 1000 chil-
dren,39 we estimate the frequency of epilepsy in deletion carriers 
at 3.5% or 2.1% (table 4). This is in strong contrast with the 
frequency of epilepsy reported in deletion-carrying probands 
(15.3%, 50/326)) from the clinically referred group (table  4). 
A similar frequency of epilepsy is observed in carriers of the 
neutral duplication (14.2%, 25/176)) (table 4 and online supple-
mentary table S10). A broad spectrum ranging from (benign) 
focal epilepsies to severe syndromic epilepsies is reported in 
deletion and duplication-carrying probands, with a predomi-
nance of generalised seizures in both deletion (6.4%, 21/326)) 
and duplication probands (5.7%, 10/76)). None of the relatives 
who carry a 15q11.2 CNV reported epilepsy (online supplemen-
tary table S11 and S12). A wide range of additional neurological 
manifestations is reported in deletion and duplication carriers at 
similar frequencies (online supplementary results S1.1 and S1.2 
and online supplementary table S11 and S12).

Congenital heart disease
Our meta-analysis of CHD case–control studies6–8 shows an OR 
of 4.96 when the small control groups from the original publica-
tions are used (figure 1). There is, however, no significant enrich-
ment 1.55 (95% CI 0.97 to 2.48) if the UK BIOBANK population 
frequency of 0.36% is used as the control group. This suggests that 
the frequency of CHD in deletion carriers is 4.5%–1.4% based 
on the prevalence of CHD of 9 per 1000 live births (table 4).40 
Again the frequency reported in deletion-carrying probands from 
the clinically referred group is high (8.9%, 29/326) (table 4) but 
it is not significantly different from the frequency of CHD in 
duplication-carrying proband from the clinically referred group 
(5.7%, 10/176; 95% CI 2.8 to 10.2) (online supplementary table 
S13). In the same group, there were no other recurrent major 
malformations, medical conditions or dysmorphism reported in 
carriers of the 15q11.2 CNVs (online supplementary results S1.3, 
S1.4 and S1.5 and online supplementary table S14 and S15).

Additional pathogenic variants in 15q11.2 CNV probands
The frequency of additional CNVs reported as pathogenic, in the 
clinically referred group is similar in probands carrying a dele-
tion (8.3%, 27/326) and duplication (7.4%, 13/176). The mean 
number of genes, the mean pLI score and the median size of addi-
tional pathogenic autosomal CNVs are also similar in deletion 
and duplication proband carriers (online supplementary figures 
S4A-C). Removing deletion and duplication probands with addi-
tional pathogenic CNVs, SNVs and structural chromosomal rear-
rangements from all analyses detailed above did not change any 
of the results (online supplementary table S9, S10, S13 and S16).

The general effects of deletions with pLI scores similar to the 
15q11.2 deletion
Our previous study suggests that the sum of pLI of genes included 
in a deletion is tightly correlated to its effect size on cognition.33 
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We investigated features of deletions with a pLI sum similar to the 
15q11.2 deletion (pLI sum=1.69). In the SJCHU database, the 
diagnostic classification of 406 CNVs with a pLI between 0.5 and 
3 is benign for 60.6% (n=246), unknown for 7.6% (n=31) and 
pathogenic for 31.8% (n=129) (online supplementary figure S5).

The frequency of epilepsy in 442 deletions with a pLI score 
between 1 and 3 from the DECIPHER (n=382) and SJCHU 
(n=60) database is 9.3% (30/321, 95% CI 6.4 to 13.1). The 
frequency of CHD in deletions with 1<pLI <3 in the DECI-
PHER and SJCHU database is 2.5% (8/321, 95% CI 1.1 to 4.9).

Discussion
Our study provides estimates for the effect size of the 
15q11.2 deletion on cognition as well as the risk of medical, 
behavioural and cognitive symptoms in deletion carriers. We 
use statistical models trained in the general population and 
performed meta-analyses of case–control studies using disease 
cohorts and control subjects. The effect size of the 15q11.2 on 
general intelligence is very mild with a decrease of 4.3 points 
in IQ, which is equivalent to a shift in IQ of 0.28 z-scores. 
This is identical to the estimate of the impact on IQ measured 
in carriers of the 15q11.2 deletion in the general Icelandic 
population41 and translates into a frequency of ID of 4.0% 
(compared with 2% in the general population). This is in line 
with the enrichment of the deletions in neurodevelopmental 
cohorts (OR 1.7, figure 1).

Our estimates for the frequency or ‘penetrance’ of schizo-
phrenia, epilepsy and heart malformation in deletion carriers 
are 2.0%, 3.5% and 4.5%, respectively. These estimates could 
be as low as 1.5%, 2.1% and 1.4%, respectively, if one uses 
the population frequency of the deletion estimated in the UK 
BIOBANK (table 4). In the latter case, there is no significant 
enrichment detected for schizophrenia and CHD. In all cases, 
we did not detect any increased risk for ASD. Many initial 
case–control studies overestimated the enrichment of the 
15q11.2 deletion in clinical cohorts due to small control groups 
providing incorrect estimates of the deletion frequency in the 
general population. Currently, the best estimates range from 
0.36% (UK BIOBANK)16 to 0.24% (Icelandic population).41

The effects of the 15q11.2 deletion may point towards 
important biological mechanism, but they are too small to 
support any relevant counselling in the clinic. The deletion 
should not be considered as an etiological factor for patients 
referred to the developmental clinic. In particular, the SD of 
IQ observed among siblings (±12 points around the parental 
mean)42 is three times higher than the effect size of the 15q11.2 
deletion. The presence or absence of the deletion in a young 
child is therefore a very poor predictor of developmental delay 
or IDs. Our estimate of the effect size on IQ is concordant 
with the frequency of de novo occurrence observed in deletion 
carriers (8.3%), which is tightly related to the effect size of 
deletions on IQ.33

Clinical series have been useful to delineate rare syndromes 
with remarkable and/or severe presentations. Using the duplica-
tion as a ‘neutral CNV’ control group, we show that the average 
proband referred for CMA testing presents with ID, epilepsy, 
autism and cardiac malformations in approximately 35%, 14%, 
17% and 6% of the cases, respectively. This suggests that clin-
ical series will report similar frequencies regardless of any formal 
association (ie, association of the 15q11.2 deletion with ASD 
and CHD has yet to be demonstrated). Clinical series are espe-
cially problematic for genetic variants with an effect size much 
smaller than the average referral criteria (ie, 16p13.11, 1q21.1 

TAR, 17q12, 16p11.2 Distal (SH2B1), 1q21.1 Distal (Class I) 
and 15q13.3).33

In our clinically referred groups, we observed no significant 
difference in symptom frequency between deletions and dupli-
cations. Even the distribution of epilepsy types was similar 
in deletion and duplication carriers (generalised seizures in 
6.4%–5.7%).

Based on our estimates, ID in 15q11.2 deletion carriers 
is mostly due to additional factors. Previous studies have 
suggested that the deletion may interact with other factors or 
that expression levels of genes within the 15q11.2 locus may 
underlie the phenotypic variability but a properly powered 
study has yet to demonstrate this.43 Instead, it is likely that 
the deletion acts additively on cognition with other genetic 
and environmental factors, which is consistent with the fact 
that most of the genetic contribution to general intelligence 
is thought to be additive.44 In this context, the contribution 
of the deletion to the important decrease in IQ observed in 
a proband carrier referred for ID would be negligible. Our 
investigation of non-overlapping deletions with similar effect 
size on cognition (based on the sum of pLI scores) show that 
a large proportion of these rare CNVs are classified as benign 
(online supplementary figure S5). If the 15q11.2 deletion had 
been less frequent, it would obviously not have been identified 
as a neurodevelopmental risk factor.

The guidelines of the American College of Medical 
Genetics45 46 recommend three categories of clinical significance 
including pathogenic, uncertain clinical significance and benign. 
Variants with uncertain clinical significance are subcategorised 
in likely pathogenic, likely benign and no subclassification. The 
15q11.2 deletion has been assigned in laboratories as a variant of 
uncertain clinical significance; likely pathogenic as well as patho-
genic with variable expressivity and incomplete penetrance. We 
propose that variants should be reported in medical diagnostics, 
when possible, with a quantitative estimate of effect size. There 
is strong evidence associating the 15q11.2 deletion with NDDs 
and a decrease in cognitive abilities so this variant should not be 
classified as ‘uncertain significance’. We propose a new classifi-
cation of the 15q11.2 deletion as ‘pathogenic of mild effect size’. 
We recommend informing patients that because these variants 
only explain a small proportion of phenotypic variance, they are 
not discussed in the developmental clinic or the prenatal setting. 
The clinician may therefore consider additional genetic testing 
based on the clinical phenotype. In the near future, such variants 
will likely be integrated in polygenic risk scores.

Limitations
Our estimates are derived from case–control studies and 
statistical models trained in unselected populations. Different 
unselected population cohorts may provide slightly different 
prevalence’s of the 15q11.2 deletion and therefore change our 
estimates. However, many of the early case–control studies 
grossly underestimated the frequency of the deletion in the 
general population due to very small control groups.

Our statistical model estimates small effect sizes on IQ for 
CYFIP1, NIPA1, NIPA2, and TUBGCP5 (-2.72, –0.59, −1.33 
and 0.0 points of IQ, respectively) and could underestimate 
the overall effect of the deletion.33 Our individual gene esti-
mates are, however, concordant with the absence of any de 
novo mutations in NIPA1, NIPA2, CYFIP1 and TUBGCP5 
in the public archive of interpretations of clinically relevant 
variants, ClinVar accessed March 2018 (http://www.​ncbi.​nlm.​
nih.​gov/​clinvar).47 This may lead to reassessment of the effect 
size of CYPFIP1, which has been proposed as a large effect 
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size neurodevelopmental gene.12 13 Estimates and frequencies 
derived from case–control association studies do not allow 
to clearly rank the symptoms contributing to the enrichment 
in disease cohorts. For example, it is unclear, which features 
among cognitive symptoms, seizure and heart malformations 
are mainly driving enrichment in neurodevelopmental cohorts.

In conclusion, we recommend that the 15q11.2 deletion 
should not be reported back to patients, as the contribution of 
this variant to symptoms of a proband referred to the neuro-
developmental clinic is modest. Pursuing diagnostic analyses 
is recommended in any 15q11.2 deletion carrier referred for 
significant neurodevelopmental symptoms. This variant cannot 
be used as a marker for prenatal testing because it explains 
only a small fraction of the phenotypic variance. Series of 
clinically referred patients should not be used to study mild 
or moderate effect-size variants unless strategies such as intra-
familial control subjects are used to mitigate ascertainment 
bias.1 In the future, polygenic risk scores will help estimate 
the cumulative impact of small effect size variants identified 
in patients.
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