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Projecting Suitability and Climate 
Vulnerability of Bhutanitis 
thaidina (Blanchard) (Lepidoptera: 
Papilionidae) with Conservation 
Implications
Shao-Ji Hu   1,2,5, Dong-Hui Xing3,5, Zhi-Xian Gong4 & Jin-Ming Hu   1,2*

Bhutanitis thaidina is an endemic, rare, and protected swallowtail in China. Deforestation, habitat 
fragmentation, illegal commercialised capture, and exploitation of larval food plants are believed to be 
the four major causes of population decline of B. thaidina in the recent decade. However, little attention 
was paid to the impact of climate change. This study used ecological niche factor analysis and species 
distribution model to analyse the current suitable areas for B. thaidina with BioClim variables as well 
as its future suitable areas under four future climate scenarios (represented by four Representative 
Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Statistical analysis was carried out 
to compare the possible area and altitude changes to the distribution of B. thaidina under changing 
climate. Our analyses showed that the suitable areas for B. thaidina are fragmented under the current 
climate, with four suitable centres in northwestern Yunnan, northeastern Yunnan and northwestern 
Guizhou, the western margin of Sichuan Basin, and Qinling mountains. Apart from further habitat 
fragmentation under climate change, slight range expansion (average 6.0–8.9%) was detected under 
the RCP2.6 and RCP4.5 scenarios, while more range contraction (average 1.3–26.9%) was detected 
under the RCP6.0 and RCP8.5 scenarios, with the two southern suitable centres suffering most. Also, 
a tendency of contraction (2,500–3,500 m) and upslope shift (~600 m) in suitable altitude range were 
detected. The findings of this study supported the climate-vulnerable hypothesis of B. thaidina, 
especially under future climate like the RCP6.0 and RCP8.5 scenarios, in terms of contraction in suitable 
areas and altitude ranges. Conservation priority should be given to northwestern Yunnan, northeastern 
Yunnan, and northwestern Guizhou to alleviate the stress of massive habitat loss and extinction. 
Refugial areas should be established in all four suitable centres to maintain genetic diversity of B. 
thaidina in China.

Bhutanitis (Atkinson) (Lepidoptera: Papilionidae: Parnassiinae) is a group of world-class rare and regional 
endemic swallowtails (CITES Appendix II, ICUN enlisted)1,2 comprising only four known Sino-Himalayan 
species (Fig. 1), namely B. ludlowi Gabriel, B. lidderdalii (Atkinson), B. thaidina (Blanchard), and B. mansfieldi 
(Riley)3–11. China, especially its southwest part, is the diversity centre of these butterflies, containing the last three 
species10,11.

Bhutanitis thaidina and B. mansfieldi are two National Grade II protected species of high conservation value 
endemic to southwest China12. In the past three decades, population decline has been observed in both species 
mainly due to deprivation of habitat linked to human activities. Deforestation for firewood, habitat fragmen-
tation by agriculture and infrastructure expansion; illegal commercialised capturing for overseas markets; and 
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exploitation of larval food plants (Aristolochia spp.) for traditional herbal medicines were believed to be the main 
aspects4,13–15.

Habitat losses associated with human activities are undoubtedly imminent threats to the survival of certain 
populations of these two Bhutanitis species in China. In recent years, a few conservation studies were carried out 
on B. thaidina in attempt to alleviate the situation from biological and ecological aspects4,14,15, while little could 
be done with B. mansfieldi, a bionomic and distribution data-poor species. Apart from human activities, climate 
change is another factor which is attributed to many cases of extinction of rare and endemic species globally16,17. 
However, unfortunately, little attention has been paid to such slow but prolonged effect of climate change on the 
future of these butterflies.

Species distribution models (SDM) contains a range of effective analytical tools for simulating and visualising 
suitable areas (potential distribution range) of organisms, and has been widely applied to species of conservation 
interests as well as policy making over the past decade18–29. Among these methods, ecological niche factor analysis 
(ENFA) and maximum entropy (MaxEnt) modelling are the most frequently applied SDMs which project the 
suitable area of a species using the presence-only data without depending on bionomical parameters of the focal 
species, or being biased by pseudoabsence data30,31.

In an attempt to fill the gap in conservation of Bhutanitis, the present study chose B. thaidina, a data-rich 
species as our model, analysed the current distribution and the future distribution shift under different climatic 
change scenarios32 using SDMs of ENFA and MaxEnt. The results will provide us an overview of its suitable areas 
in China and facilitate our understanding of how the suitable areas would shift in the process of climate change. 
The findings of the present study are beneficial to conservation management in current time as well as to formu-
late countermeasures to alleviate population decline of this rare butterfly in the future.

Materials and Methods
Data sources.  Species distribution points were extracted from specimen collections (Natural History 
Museum, London; Zoologisches Forschungsinstitute und Museum Alexander König, Bonn; Institute of Zoology, 
Chinese Academy of Sciences (CAS); Kunming Institute of Zoology, CAS; Southwest Forestry University; and 
private collections), literature3,4,9,14,33–37, and web databases and photo records (www.papc.cn; www.flickr.com) 
(Table S1). In total, 61 distribution points for B. thaidina were obtained (Fig. 2). All coordinates were transformed 
to decimal degrees and stored in an Excel spreadsheet for further use.

Nineteen BioClim38 variables were used to represent the current climate features (averaged over 1970–2000), 
the 19 BioClim variables and the altitude mask with 30 arc seconds resolution were obtained from the WorldClim 
database (www.worldclim.org). All data was further cropped by the political boundary of the People’s Republic of 
China, and will be referred as ‘environmental factors’ hereafter.

The CMIP5 climate projections under the IPCC-AR5 (the 5th Assessment Report of the Intergovernmental 
Panel on Climate Change) frame were used to represent the future climate32. Four representative concentration 
pathways (RCPs), RCP2.6, RCP4.5, RCP6.0, and RCP8.5 were selected to simulate possible climate changes32. 
Data with 30 arc seconds resolution was also obtained from the WorldClim database and cropped by the political 
boundary of the People’s Republic of China.

Species distribution points and environmental factors were transformed into two formats, with the IDRISI 
format for ENFA analysis31,39 and the ASCII format for MaxEnt analysis40.

Frequency and importance of environmental factors.  Ecological niche factor analysis (ENFA) was 
performed in Biomapper 4.031 for current climate only, as future models cannot be inferred from current distribu-
tion data. To minimise possible negative influence of autocorrelation between environmental factors, correlation 

Figure 1.  Tentative distribution range of four known species of Bhutanitis swallowtails. Photo of B. ludlowi 
© The Research Institute of Evolutionary Biology, Tokyo, Japan; photos of B. lidderdalii, B. thaidina, and B. 
mansfieldi © Shao-Ji Hu.
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of the 20 environmental factors were tested using a UPGMA dendrogram in Biomapper 4.0, and factors with 
correlation coefficients above 0.95 were removed from the dataset. When removing autocorrelated factors, those 
representing short-period extremes (e.g., minimum temperature of the coldest month, maximum precipitation 
of the wettest month) were removed, while those representing longer periods (e.g., mean temperature of the 
coldest quarter, precipitation of the driest quarter) were kept, as such type of environmental factors often play an 
important role in species distribution.

In an attempt to analyse the distribution prevalence of B. thaidina, values of previously screened environ-
mental factors in the distribution area of B. thaidina and the entirety of China were extracted using DIVA-GIS 
5.7 (www.dive-gis.org)41. The distribution frequencies were calculated in Biomapper 4.0. The importance of the 
environmental factors was measured using the jackknife method in MaxEnt 3.4.1 with 1,000 iterations42,43.

Species distribution model (SDM).  Environmental factors with ENFA scores over 0.2 were selected and 
assigned to the MaxEnt 3.4.140 to project suitable areas (current and future climate variables were analysed sepa-
rately) based on the presence data points, among which 25% were extracted for random testing. The logistic out-
put method was selected to estimate the distribution (or presence) probability of B. thaidina considering certain 
assumptions of species’ prevalence and sampling effort44. The resultant map was saved as ASCII format and then 
redrawn using Surfer 10.0 (Golden Software Inc., Golden, CO, USA). Model robustness was evaluated using the 
receiver operation curve (ROC) and the area under the ROC curve (AUC)45,46, where the AUC value [AUC ∈ (0, 1)]  
approaching 1.0 is usually considered acceptable, whereas it should be rejected when approaching the random 
turquoise line of 0.547.

Statistical analyses.  The number of grid cells (further transformed into area using 1 grid cell = 1 km2) as 
well as their elevation property were extracted in ArcGIS 10 (ESRI, USA) from projection maps under the current 
climate and the four future climate scenarios in both the 2050 s and the 2070 s. Comparative bar charts for suita-
ble areas and curve line charts for suitable altitude range were made to 2050 s vs. current, 2070 s vs. current, and 
2070 s vs. 2050 s, mainly focusing on suitability ranks from 0.5 to over 0.8.

Results
Key environmental factors.  Nine environmental factors, Alt, Bio5, Bio6, Bio8, Bio9, Bio13, Bio14, Bio18, 
and Bio19, were removed from the dataset due to strong autocorrelation (correlation coefficients >0.95) in 
UPGMA dendrogram test. ENFA analysis using the remaining eleven environmental factors further excluded 
Bio15 and Bio17 as all scores of ecological factors were under 0.2 (Table 1). The final remaining nine environmen-
tal factors, Bio1, Bio2, Bio3, Bio4, Bio7, Bio10, Bio11, Bio12, and Bio16, were key influential factors of the current 
suitability for distribution of B. thaidina in China (Table 1).

Frequency distribution of B. thaidina against the nine key influential environmental factors for the entirety 
of China showed evident preference for each factor. For temperature factors, B. thaidina occurs in areas where 
annual mean temperature (Bio1) ranges between 1–17 °C, mean temperature of the warmest quarter (Bio10) 
ranges between 10–23 °C, and mean temperature of the coldest quarter (Bio11) ranges between −9–10 °C 
(Fig. S1). For precipitation factors, B. thaidina occurs in areas where annual precipitation (Bio12) ranges between 
630–1,400 mm and precipitation of the wettest quarter (Bio16) ranges between 250–750 mm (Fig. S1). For tem-
perature variabilities, B. thaidina mainly occurs in areas where mean diurnal temperature range (Bio2) varies 
between 7–12 °C, temperature annual range (Bio7) varies between 22–35 °C, relatively higher isothermality (Bio3) 
and low temperature seasonality (Bio4) (Fig. S1).

Current suitable areas.  The MaxEnt analysis produced a projection with the training AUC = 0.983 and the 
testing AUC = 0.981, representing a credible result of the suitability distribution for B. thaidina under the current 
climate.

On the large scale, the current suitable areas for B. thaidina are still confined to west China, as mirrored 
by its actual distribution localities (Fig. 2). Four areas with higher suitability were identified. (1) Northwest 
Yunnan. This area occupies the Hengduan Mountains in Yunnan and southwest Sichuan, including the moun-
tains separated by the upper Irrawaddy, Salween, Mekong, and Yangtze watersheds. The eastern edge of this area 

Figure 2.  Distribution of the presence data points of B. thaidina in China with designation of subspecies range.
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approximately reaches Anning River (a branch of upper Yangtze River), while the southern edge of it reaches east 
Dali to Yunlong (Fig. 3). (2) Northeast Yunnan, northwest Guizhou, and the western edge of Sichuan Basin. A 
larger stripe-shaped area initiates from Dongchuan and Luquan of east Yunnan altiplano and the west part of Bijie 
area in northwest Guizhou, runs northward to the north of Ya’an, and then turns northeastwardly to the border 
of south Gansu, with a gradient reduction of suitability (Fig. 3). (3) Taibai Shan and Daba Shan areas in south 
Shaanxi. Two small patches are separated by the Qinling ridge, reaching the southern edge of Hanzhong Plain in 
the north, and the northern edge of Sichuan Basin in the south (Fig. 3). (4) East Daba Shan and Shennongjia areas 
in the juncture of northeast Chongqing and northwest Hubei. A smaller patch with relatively lower suitability 
(Fig. 3).

At smaller and local scales, the suitable areas for B. thaidina are highly fragmented, even within the four iso-
lated patches mentioned above. Despite ridges of high mountains and deep valleys of large rivers cutting these 
patches into separate pieces, the suitable areas for B. thaidina are further isolated by complex terrains in a small 
range (Fig. 3).

Future change of suitable range.  The MaxEnt analysis produced a projection with the training 
AUC = 0.983–0.986 and the testing AUC = 0.986–0.987, representing credible results of the suitability distribu-
tions for B. thaidina under the four future climate scenarios (four RCPs) in the 2050 s and the 2070 s, respectively.

In the 2050 s, the overall distribution pattern of the suitable areas showed obvious but non-radical changes. 
The change under RCP2.6 scenario is very limited, making the distribution pattern very similar to that under the 
current climate, but the 0.7 grade suitable areas expanded in northwest Yunnan, occupying the 0.6 grade suita-
ble areas under the current climate; while the 0.7 grade suitable areas retreated in southwest Sichuan bordering 
with northeast Yunnan (Fig. 4A). Under the RCP4.5 scenario, the distribution pattern remained the same with 
that under the RCP2.6 scenario, except for an elevation of suitability grade (0.8–0.9) in the western edge of the 
Sichuan basin (Fig. 4B). Under the RCP6.0 and RCP8.5 scenarios, distribution pattern changed more obviously 
with the low-medium suitability grades (0.5–0.6) retreating in the southern edge and lower-altitude areas of the 
distribution range, but a higher suitability grade (0.8–0.9) appearing in northwest Yunnan and the western edge 
of the Sichuan basin (Fig. 4C,D). Gain of high suitability grade (0.7) was also detected in south Qinling under the 
RCP8.5 scenario (Fig. 4D).

In the 2070 s, the overall distribution pattern of the suitable areas under the RCP2.6 and the RCP4.5 sce-
narios almost remained the same as that in the 2050 s (Fig. 5A,B). However, dramatic changes to the suitability 

EFs

F1 F2 F3 F4 F5 F6 F7 F8

62% 24% 5% 5% 2% 1% 1% 1%

Bio1 0.16 0.62 −0.52 0.09 0.21 0.06 −0.04 0.47

Bio2 −0.28 −0.10 −0.23 0.28 0.12 0.04 0.07 0.02

Bio3 0.38 0.08 0.11 −0.10 −0.05 −0.03 −0.01 −0.01

Bio4 −0.47 0.41 −0.13 0.12 −0.35 0.56 −0.42 −0.35

Bio7 −0.48 0.09 0.47 −0.71 −0.25 −0.07 −0.17 −0.08

Bio10 −0.06 −0.64 0.13 0.27 0.39 −0.53 0.54 0.14

Bio11 0.32 0.05 0.49 −0.55 −0.78 0.63 −0.70 −0.80

Bio12 0.28 0.06 0.30 −0.07 0.01 0.01 −0.04 0.00

Bio15 −0.07 −0.04 0.13 −0.05 0.00 0.00 −0.01 0.01

Bio16 0.33 0.00 −0.24 0.06 0.01 0.01 0.05 −0.02

Bio17 −0.02 −0.09 −0.04 −0.04 −0.01 −0.01 0.02 0.02

Table 1.  Score matrix of current key environmental factors screened by ENFA analysis. EF = environmental 
factors, F = ecological niche factors identified by ENFA analysis. Marginality = 1.43, speciality = 7.12, 
tolerance = 0.14.

Figure 3.  Suitable areas for B. thaidina in China under current climate condition.

https://doi.org/10.1038/s41598-019-51972-6


5Scientific Reports |         (2019) 9:15384  | https://doi.org/10.1038/s41598-019-51972-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

distribution under the RCP6.0 and the RCP8.5 scenarios were detected. Not only the low-medium suitability 
grades (0.5–0.6) largely retreated in the southern margin and the lower-altitude areas, the medium-high suita-
bility grades (0.6–0.8) also dramatically retreated in the southern portion of the distribution range, especially in 
northwest Yunnan, northeast Yunnan, and northwest Guizhou (Fig. 5C,D). Similar to the 2050 s, gain of higher 
suitability grade (0.8–0.9) was detected in south Qinling under the RCP8.5 scenario (Fig. 5D).

Future change of suitable area and altitudes.  Our quantitative analysis of the change of suitable areas 
showed that, in the 2050 s, suitable areas of the 0.5–0.6 and 0.7–0.9 ranks all increased under all future climate 
scenarios, with the 0.5–0.6 rank increased most (3.32–16.07 × 103 km2, average 16.6%) and the 0.8–0.9 rank 
increased least (1.06–2.88 × 103 km2, average 95,487.5%); however, suitable areas of 0.6–0.7 rank decreased 

Figure 4.  The suitable areas for B. thaidina in China in the 2050 s under the RCP2.6 (A), RCP4.5 (B), RCP6.0 
(C), and RCP8.5 (D) scenarios.

Figure 5.  The suitable areas for B. thaidina in China in the 2070 s under the RCP2.6 (A), RCP4.5 (B), RCP6.0 
(C), and RCP8.5 (D) scenarios.
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significantly under all future climate scenarios (3.51–17.98 × 103 km2, average 12.0%) (Fig. 6A,D). The total suit-
able areas for B. thaidina increased 11.14 × 103 km2 (5.9%) and 11.30 × 103 km2 (6.0%) under RCP2.6 and RCP4.5 
scenarios, while they decreased 3.55 × 103 km2 (1.9%) and 1.27 × 103 km2 (0.7%) under RCP6.0 and RCP 8.5 
scenarios (Fig. 6A,D).

In the 2070 s, suitable areas of the 0.5–0.6 and 0.7–0.8 ranks increased under RCP2.6 and RCP4.5 scenar-
ios (13.39–15.64 × 103 km2 and 4.17–5.59 × 103 km2 respectively; average 23.1% and 12.3% respectively) but 
decreased under RCP6.0 and RCP8.5 scenarios (3.96–17.04 × 103 km2 and 21.11–36.49 × 103 km2 respectively; 
average 10.5% and 28.8% respectively), the suitable areas of the 0.8–0.9 rank increased under all future climate 
scenarios (0.57–6.90 × 103 km2, average 197,500.0%); however, suitable areas of 0.6–0.7 rank decreased signif-
icantly under all future climate scenarios (0.58–49.37 × 103 km2, average 25.0%) (Fig. 6B,E). The total suitable 
areas for B. thaidina increased 19.80 × 103 km2 (10.5%) and 13.63 × 103 km2 (7.2%) under RCP2.6 and RCP4.5 
scenarios, while they decreased 34.12 × 103 km2 (18.0%) and 67.67 × 103 km2 (35.7%) under RCP6.0 and RCP 8.5 
scenarios (Fig. 6B,E).

Comparison between the 2070 s and the 2050 s showed a similar tendency, the total suitable areas for B. thaid-
ina increased 8.66 × 103 km2 (4.3%) and 2.33 × 103 km2 (1.2%) under RCP2.6 and RCP4.5 scenarios, while they 
decreased 30.57 × 103 km2 (16.4%) and 66.40 × 103 km2 (35.3%) under RCP6.0 and RCP 8.5 scenarios (Fig. 6C,F).

Analysis of frequency distribution change of suitable altitudes showed that, under RCP2.6 and RCP4.5 sce-
narios, the frequency distribution of suitable altitudes did not shift obviously but were more contracted between 
2,500–3,200 m in the 0.5–0.6 and 0.6–0.7 ranks, while they shifted to 2,600–3,500 m in the 0.7–0.8 rank (Fig. 7). 
The frequency of suitable altitudes in the 2050 s is almost equal to that in the current, while the frequency of suit-
able altitudes in the 2070 s was significantly higher than that in the 2050 s (Fig. 7). Under RCP6.0 scenario, the 
frequency distribution patterns were similar to those under the preceding scenarios, but the peak frequency of the 
suitable altitudes was lower, with that in the 2070 s even significantly lower than the 2050 s in the 0.6–0.7 and the 
0.7–0.8 ranks (Fig. 7). It is noticeable that under the RCP8.5 scenario, the peak frequency of the suitable altitudes 
was further significantly lowered, especially in the 2070 s (Fig. 7).

Discussion
Distribution shift and climate vulnerability.  Based on the EGV frequency distribution characters, B. 
thaidina mainly occurs in temperate climate zones with less precipitation, relatively higher diurnal temperature 
range, and lower temperature seasonality (Fig. S1). Such habitat is represented by montane broadleaf forest and 
subalpine evergreen needle leaf forest, which may extend from 2,000 m to below the treeline in west China, with 
its lower and upper limits varying from the south to the north48,49. With climate change, the habitat belt will be 
forced to ‘move’ upslope50. However, shift rates of the lower and upper limits are not expected to be the same, and 
such asymmetric shift rates will eventually result in a decline in suitable altitude belt51.

Although some research indicates that species will move or expand their ranges upslope and poleward with 
climate change52–56, our analysis implied that B. thaidina would more likely suffer from rapid habitat compres-
sion or be driven to extinction during this process57–59. On the one hand, the distribution shift rate of species 
can hardly keep up with the pace of habitat shift and compression51; and on the other hand, ascent of the upper 
part of its suitable range will be limited by unfavourable climate or soil condition (e.g., increased precipitation, 

Figure 6.  The change of suitable areas (103 km2) (A–C) and the percentage of suitable area change (%) (D–F) 
for B. thaidina in China: (A,D) 2050 s vs. current, (B,E) 2070 s vs. current, (C,F) 2070 s vs. 2050 s.
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erosion linked to permafrost degeneration)60. More practically, the ability of B. thaidina to move from one habitat 
to another is largely limited by lack of connecting mountain ridges with suitable habitat, since its suitable area is 
already highly fragmented even under the current climate. Our speculation on this issue was similarly demon-
strated in the tropical forests61.

The adult is the only stage at which all butterflies can achieve distant movement, while other stages from egg 
through pupa can only stay in the same locality. Such a life history further reduces their ability to escape from bad 
climate. Bhutanitis, a univoltine group with a maximum adult stage of only 2.5 months per year14,62, can hardly 
defend themselves against any climate induced incidents, including extreme precipitation, long-lasting drought, 
or even forest fire63,64. The extinction of B. lidderdalii on Doi Chiang Dao of northern Thailand in 1983, caused 
by a severe forest fire in the dry season as a result of the 1982–1983 El Niño, is a most recent case (A. M. Cotton, 
pers. comm.).

As a result, the distribution shift for B. thaidina in light of climate change would compress its suitable habitat 
and further reduce its refugial areas (Figs 3–7). Globally, the climate vulnerability of B. thaidina is much higher 
under the RCP6.0 and RCP8.5 scenarios compared to that under the RCP2.6 and RCP4.5 scenarios. Regionally, 
climate vulnerability of the two southern distribution centres is higher than the two northern ones (Figs 4 and 5) 
(discussed in detail below).

Biodiversity significance.  The current suitable areas revealed a patchy and highly fragmented distribution 
pattern for B. thaidina (Fig. 3), while future projection showed a compressed and further fragmented distribution 
pattern (Figs 4 and 5). Nonetheless, as the present study only applied climatic factors in SDM simulation, the 
actual distribution pattern of B. thaidina could be more fragmented on an unsuitable matrix when availability of 
host resources and vegetation are taken into consideration. In population genetics, highly fragmented distribu-
tion would result in a reduction of gene flow and genetic diversity65–71.

B. thaidina is a morphologically variable species with four subspecies recognised to date: ssp. thaidina in 
west Sichuan, ssp. hoenei Bryk in northwest Yunnan, ssp. melli Bryk in Qinling and Taibai Shan (probably also 
in Shennongjia), and ssp. dongchuanensis Lee in northeast Yunnan and northwest Guizhou3,9,11,33,35,72 (Fig. 2), 
mirroring our identification of four suitability centres (Figs 3–5). The biological and ecological issue under-
pinning the taxonomic complexity is that each subspecies possesses a distinct genetic profile. The genetic and 

Figure 7.  The frequency distribution of suitable altitudes for B. thaidina in China under different suitability 
ranks (0.5–0.6, 0.6–0.7, 0.7–0.8, >0.8) and the change under four future climate scenarios (RCP2.6, RCP4.5, 
RCP6.0, RCP8.5) in the 2050 s and 2070 s.
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morphological profiles altogether constitute the entire biodiversity integrity of B. thaidina in China, and any 
degeneration or loss of such profiles will directly lead to a loss of biodiversity of this endemic species.

The distribution pattern of suitable areas for B. thaidina is highly fragmented, thus making each subspecies 
a metapopulation comprised of multiple scattered and isolated smaller local populations. A recent population 
genetic analysis suggested very low genetic diversity among all populations of B. thaidina in China73, implying 
vulnerability to degeneration or extinction in the dynamic wild74. In the process of climate change, the future 
distribution pattern of B. thaidina will be further fragmented and isolated, which would inevitably bring more 
restriction to the gene flow between the four distribution centres as well as within each one. Our future projec-
tions showed significant suitability loss in the distribution range of ssp. dongchuanensis in northeast Yunnan and 
northwest Guizhou, followed by ssp. hoenei in northwest Yunnan (Figs 4 and 5), making these two subspecies 
more prone to extinction under the RCP6.0 and RCP8.5 scenarios, compared to the other two subspecies.

Conservation implications.  The present study showed that the fragmented suitable areas for B. thaidina 
will undergo further fragmentation and reduction in the process of climate change (Figs 3–5). Hence, maintain-
ing current existing suitable areas is vital to the conservation of this rare species.

To conserve B. thaidina with genetic integrity, conservation strategies must firstly take all four suitable centres 
into equal consideration, as each suitable centre represents a distinct subspecies of B. thaidina in China. Next, 
combining the degree of rarity and vulnerability, priority should be given to areas with ssp. dongchuanensis and 
ssp. hoenei, which will be the most threatened in the future (Figs 4 and 5); followed by ssp. melli, which is only 
found in a narrow area in Qinling (Fig. 3); and ssp. thaidina being of least concern.

Availability of larval food plants is also crucial in conservation of B. thaidina. This species shows a strong host 
association in nature, and subspecies use different Aristolochia species, e.g., in northwest Yunnan and most parts 
of west Sichuan, B. thaidina mainly uses A. moupinensis and A. delavayi3,14, while using A. mandshuriensis in the 
Qinling Mountain area4. These food plant species have being exploited for traditional Chinese herbal medicines 
until recent years75. Such long lasting exploitation has already depleted wild resources of Aristolochia in some 
places2. Apart from human exploitation, deforestation of virgin forests on the median altitude to subalpine moun-
tains is another important threat to wild Aristolochia resources, as most Aristolochia species are shade plants. 
Deforestation will also destroy the suitable habitats of Aristolochia.

Establishing refugial areas for B. thaidina could be an optimal in situ protection method. When selecting 
sites for refugial areas, vegetation surveys must be performed in advance to ensure the best vegetation type being 
included, e.g., Quercus stands associated with multiple local Aristolochia species76. However, the optimal planning 
of refugial areas for B. thaidina must rely on future in-depth research involving bionomics, dispersal capability, 
food plant adaptability, habitat matrix composition and connectivity, as well as a thorough evaluation of popula-
tion genetic diversity.

By establishing refugial areas in such vegetation types, not only could B. thaidina be well conserved, but 
also many other rare, regional endemic, or data-poor butterflies can be protected under the umbrella-species 
effect77,78, e.g., Bhutanitis lidderdalii, B. mansfieldi, Byasa daemonius (Alphéraky), B. plutonius (Oberthür), B. 
rhadinus (Jordan) associated with Aristolochia62; as well as numerous Theclini hairstreaks (Lycaenidae) associated 
with Quercus79.

When in situ protection faces the challenge of high and progressive habitat fragmentation due to climate 
change found in the present study, coupled with the limited genetic diversity described earlier73, other meas-
ures must also be considered in the future to increase the genetic diversity and evolution flexibility of B. thaid-
ina to respond to rapid environmental changes in a certain area. Possible measures include introducing ex situ 
populations containing new genetic profiles from other distribution areas, or even releasing laboratory genetic 
recombinants80.
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