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Background: Electroencephalogram (EEG) signals of a brain contain a unique pattern for

each person and the potential for biometric applications. Authentication and security is a

very important issue in our life and brainwave-based authentication is an addition to

biometric authentication systems, which has many advantages over others. In this paper,

we study the performance of a single channel brainwave-based authentication systems

and select optimum channels based on mental activities.

Methods: In this study, we used a dataset with fivemental activities with seven subjects (325

samples). The EEG based authentication system includes three pre-processing steps,

feature extraction, and classification. Features for Subject Authentication, are obtained

from discrete Fourier transform, discrete wavelet transform, autoregressive modeling, and

entropy features. Then these features are classified using the Neural Network, Bayesian

network and Support Vector Machine.

Results: We achieved accuracy in the range of 97e98% mean accuracy with Neural Network

classifier for single-channel authentication system with optimum electrode placement for

mental activity. We also analyzed the authentication system independently from the type

of mental activity and chose channel O2 as the optimum channel with an accuracy of 95%.

Conclusions: Channel optimization can obtain higher performance by reducing the number

of EEG channels and defined the optimum electrode placement for different mental

activities.
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At a glance commentary

Scientific background on the subject

Authentication and security have great importance in

various life fields. Electroencephalogram (EEG) contains

a unique pattern for each person and the potential for

biometric applications and cannot be faked or

duplicated.

What this study adds to the field

Authentication systems should make a balance between

user-friendliness and security. Most of these systems

used 32, 64 or more channels that are high-cost and

bounded mobility of the users. Single-channel systems

could provide user-friendliness and selecting channels

placement based on mental activities could provide se-

curity with increasing accuracy.

b i om e d i c a l j o u r n a l 4 2 ( 2 0 1 9 ) 2 6 1e2 6 7262
Each system needs types of authentication for providing its

security. The traditional form of authentication, like using

passwords, PINs are losing attraction because they are

vulnerable to falsification as it is possible to forge or steal.

Biometric-based ways which are referred to ways that use

personal biological features like iris pattern, fingerprint is

being used muchmore in new usages. Recently, attention has

been drawn to the use of electrical medical signals for bio-

metric applications. Examples of these signals are the Elec-

troencephalographic Signal (EEG) [1] and Electrocardiogram

(ECG) [2].

One of the effective ways for authentication purpose is

Electroencephalogram (EEG) recordings. EEG is the electrical

activity of the brainwhich is recorded bymeasuring the voltage

fluctuations on the scalp surface with simple placement of the

electrodes on the skin [3]. It is measured by placing electrodes

on several locations on the scalp. The uniqueness of EEG is the

main advantage of using it; the electrical activities and brain

signals are different for each person and cannot be faked or

duplicated [4,5]. Performing a behavioral activity or task in an

emergency will result in a change in the brain signals due to

emotional stress [6]. This property also makes EEGmore secure

because it's difficult to obtain them under force and threat [4].

There are other advantages of EEG over other biometric-based

features i.e. they aren't visual and can't be stolen by others.

Also, one important advantage over other biometrics is that the

person must be alive during the process of recording signals.

EEG signals are very dependent on person's mood so even if the

mental activity is the same the result is different for different

persons [1].

EEG-based methods for authentication are getting popular

thesedays. In1980, EEGsignalshavebeenused for thefirst time

for automatic user recognition [7]. Palaniappan et al. proposed

a two-stage threshold method to verify five subjects on 6

channels based on the features of autoregressive coefficients

(AR), channel spectral powers and inter-hemispheric channel

spectral power differences (IHPD), inter-hemispheric channel
linear complexity (IHLC), and non-linear complexity. False

reject error (FRE) for thismethodwas in the range of 0e1.5% [8].

He et al. introduced a system with 4 subjects based on Multi-

variate autoregressive (mAR) features, naı̈ve Bayes classifier

and obtained half total rate (HTER) of 6.7% [9].

Marcel et al. implemented a statistical framework with a

Gaussian mixture model (GMM) and maximum a posteriori

(MAP) estimation. These were used for authenticating 9

subjects, achieving HTER as low as 6.6% [4]. Yeom et al. used

10 subjects and got an accuracy of 86.1% using the visual

stimuli related to the face of individuals [10]. Garima Bajwa

et al. used EEG signals for authenticating using the same

database that uses in this paper. They used discrete Fourier

transform and discrete wavelet transform for feature

extraction process and Bayesian network and Support Vector

Machine classifiers. Finally obtained 98.46% mean accuracy,

by combining the extracted features from Fourier transform

and Wavelet transform [6]. Ying Zeng et al. combine two

kinds of biometric trait, face and EEG an authentication

method based on Hierarchical Discriminant Component

Analysis and Genetic Algorithm is proposed to build a

subject-specific model with optimized fewer channels. The

averaged authentication accuracy of 94.26%. For a 30-day

averaged time interval, their method can still reach the

averaged accuracy of 88.88% [11]. Thomas et al. used band

power features extracted from alpha, beta and gamma bands.

During online authentication, recorded test EEG pattern is

matched with the template that generated during enrollment

and degree of matching in terms of its correlation coefficient

predicts the genuineness of the claimant, and achieves an

average recognition rate of 88.33% using 14 EEG channels and

6 subjects [12].

Most of theseworks have done for clinical purposes or used

high-density EEG systems with access to 32, 64, 128, or even

more channels of EEG data. These type of systems can provide

good space-time resolution of brain activities but they are

high-cost and also they bound mobility of the user in real-life

scenarios. Only a few studies with high performance have

reported for single channel EEG authentication systems.

Koike-Akino et al. achieved an accuracy of 96.7% by joint

classification of multiple epochs [13]. Recently Chuang et al.

did another research using single channel EEG data on 15

subjects and accuracy of their authentication system in veri-

fication mode was more than 99% [14].

Authentication systems should make a balance between

user-friendliness and security in practical applications [14]. In

this paper, we introduced a single channel authentication

system with high accuracy. The system is based on different

mental activities and uses different machine learning algo-

rithms for classification with the decreased error for practical

applications.

Most of the current authentication systems are based on

multi-channel or less reliability in user recognitions. authen-

tication systems should make a balance between user-

friendliness and security in practical applications [14]. In this

paper, we introduced a single-channel authentication system

with high accuracy. The system is based on different mental

activities and uses different machine learning algorithms for

classification with the decreased error for practical

applications.
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Materials and methods

Experimental data

Dataset used in this work has been gathered by Keirn and

Aunon [15]. This set contains EEG signals which have been

recorded from seven subjects with five different mental tasks.

Tasks have been chosen in consideration of hemispheric

brainwave asymmetry.

Above mentioned five tasks are described as follows:

1. Baseline Task: The subjects were asked not to do any

mental task and rest with very few movements and not to

think of anything.

2. Letter Task: subjects were instructed to compose a letter to a

friendor a relativewithout spelling thewords (novocalizing).

3. Math Task: A picture of some multiplication problems has

been shown to the subjects. For example, it can be 78 � 49.

Subjects were asked to solve it without any physical

movement or vocalizing the answer.

4. Geometric Figure Rotation: subjects were taught to visu-

alize a particular 3-D geometric figure which is spinning

around an axis.

5. Visual Counting: subjects were asked to imagine a black-

board and think that multiple numbers were written on it

sequentially.

Signals were recorded from six channels, C3, C4, P3, P4, O1,

O2 and placing the electrodes was done using the 10e20

standard system. Sampling rate of data recording was 250 HZ.

Blinking was detected by two electrodes which have been

placed below and above the subject's left eye. All tasks were

done with the subject's eyes open.

First subject was a left-handed person with age 48 and the

other one was a right-handed 39 years old person. Both were

an employee of the university. Subjects 3e7 were right-

handed university students with age 20e30. All subjects

were male except subject 5.

All 5 trials of a task were done on the same day. The

duration of each task was 10 seconds and subjects returned in

another day for doing the next tasks. Subjects 2 and 7

completed one session consist of five trials, subject 5 did three

sessions and all others did them 2 sessions.
Preprocessing

In this step, a bandpass filter (0.1e64 Hz) was applied on

recorded signals in order to reduce noise effects. Also for
Fig. 1 Relationship between the EEG standard ban
getting a better result and using data in its best performance,

each record was divided into 10 segments and each segment

was 1 secondwith 250 samples. In this way, feature extraction

methods were applied on each 1 second segment and the

feature vector of each trial was obtained combining all the

features of the 10 segments.

Feature extraction

Fourier Transform and power spectrum density
Fourier Transform is one of the non-parametric feature

extraction techniques for EEG signals [1] and signal power

spectrum is one of the most common signal representations

in the frequency domain. Hence the spectrum estimation is

one of the most commonly discussed issues in defining and

extracting the features of the signals [1].

EEG signals are divided into five standard sub-bands, Delta

(1e4 Hz), Theta (4e8 Hz), Alpha (8e12 Hz), Beta (12e30 Hz) and

Gamma (30e44 Hz) frequencies. In this paper, time domain sig-

nalswere converted to the frequency domain using Fast Fourier

Transform (FFT), which is an efficient algorithm for calculating

DFT. FFT was applied to all channels to obtain the frequency

spectrum. Then, by averaging this value on the EEG standard

bands, five featureswere obtained for each channel andalso the

power of each frequency band from 1 to 44 Hzwas calculated.

Wavelet transform
In this paper, Discrete Wavelet Transforms (DWT) from the

Daubechies family of wavelets (Daubechies's versions of "db8")
have been used to extract the features. The signal decompo-

sition into its details and approximate coefficients was ach-

ieved by applying a series of high-pass and low-pass filters to

the signal. Unlike the FFT, DWT displays a time-frequency

representation of the signal and helps in analyzing signals

which suffer from discontinuity or severe changes [6].

[Fig. 1] shows the Wavelet decomposition tree at five levels

and relationship between the EEG standard bands and the

Wavelet decomposition tree.

For the purpose of deriving features by DWT, instead of

using all the coefficients at each decomposition level, the

mean of the absolute value of the coefficients, average power

of wavelet coefficients, the standard deviation of coefficients

and Shannon entropy of coefficients were extracted from the

wavelet coefficients at each subband.

Autoregressive modeling
In autoregressive modeling, the amount of signal in each

moment was defined by a linear combination of the white

noise and signal's amount in previous moments.
ds and the Wavelet decomposition tree [6].

https://doi.org/10.1016/j.bj.2019.03.005
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The mathematical expression x [k] was modeled Eq. (1).

x½k� ¼
Xp

i¼1

aix½k� i� þ e½k� (1)

In Eq. (1) e [k] is Gaussian white noise. Coefficients of this

linear combination (ai) are parameters of the model. These

coefficients are directly considered as features [16]. In this

paper, p was selected as 10.

Log energy entropy
Log Energy Entropy can clearly illustrate the complexity of the

signal in time and show the spectral feature of the signal.

If Eð0Þ;Eð1Þ; :::; EðN� 1Þ represent the distribution of energy

in N samples of the spectrum in each frequency band.

Probability distribution function denoted by PðEÞ and defined

as Eq. (2)

PiðEÞ ¼ EðiÞ
PN�1

m¼0
EðmÞ

(2)

The log energy entropy of E is obtained from Eq. (3), [17].

LogEn ¼ �
XN�1

i¼0

�
log2ðPiðEÞÞ

�2
(3)

Sample entropy
Sample entropy is a revised version of the approximate en-

tropy and is less sensitive to noise and can be applied for

short-length time series of data. Sample entropy can be

defined as the negative logarithm of the probability of two

sequences that are similar in m points. The condition which

must be considered is that they remain similar at the next

point, where self-matches are not included in calculating the

probability. This similarity is calculated by considering toler-

ance as ±r. To calculate sample entropy, the time series

fuðjÞ 1 � j � NgfuðjÞ 1 � j � NgfuðjÞ 1 � j � Ng is

expressed in an m-dimensional space with vectors of length

m as Eq. (4):

n
xmðiÞ ¼ ½uðiþ kÞ�m�1

k¼0 ; i ¼ 1; ::N�mþ 1
o

(4)

For vectors in length of m, �BmðrÞ is the probability of

sharing two sequences in m points, which is obtained by

counting the average number of vectors with Euclidean dis-

tance less than ±r (In this paper the value of r is set to 0.1). The

same procedure is repeated by incrementing the vector

m)mþ 1 and calculating the probability of �AnðrÞ for n)mþ
1 same as calculating the BmðrÞ [18] Eq. (5) shows the exact

definition:

SampEnðm; r;NÞ ¼ �ln

�
AnðrÞ
BmðrÞ

�
(5)

Classification

Support Vector Machine (SVM)
Support Vectormachine is one of the best and popularmachine

learning techniques for accuracy prediction [19]. Themain idea

behind the SVM is the assumption that the classes are sepa-

rated linearly and they can create hyper-plain that can separate
the classes. In cases where the data is not linearly separable

non-linear mathematical functions are used which are known

as kernel functions. In this case, data are mapped to a higher-

dimensional space to be linearly separable [20]. One of the

problems which can be mentioned about SVM is that it is still

unclear how the kernel and its parameters are determined. The

choice of a suitable kernel and its parameters depend on the

nature of the data and is determined empirically [19].

Bayesian network
Naive Bayesian classifier is one of the most effective classi-

fiers. This classifier learns from the conditional probability of

Ai as a training dataset attribute, given the class label C. Bayes

rule is applied in order to do the classification. The rule is

applied to compute the probability of C given the particular

instance of A1, A2,…, An and then predicting the class with the

highest posterior probability. Simplification of This compu-

tation is possible using a strong independence assumption: all

the training dataset attribute (Ai)are conditionally indepen-

dent given the value of the class C [21].

Neural network
Neural networks are composed of interconnecting artificial

neurons and modeling the brain of human. Various neural

network architecture has been introduced for different func-

tions, one of the most popular architecture is the feedforward

network. Feedforward network is commonly known for its

ability in pattern recognition, predicting and fitting nonlinear

function [22].
Results

In the authentication systems, first the EEG signals are

recorded for all subjects and tasks, and after the pre-

processing step, the appropriate features are extracted. The

combined feature vector for one of the ten segments of one

trail of the single electrode for each subject had 85 features,

containing (44 þ 5) FFT features, 24 DWT features, one Log

Energy entropy feature, one sample entropy feature and 10

autoregressive coefficients. Given that each ten-second trail of

the signal is divided into ten one-second parts, the feature

vector for each trail will be 850 feature.

In this paper polynomial kernel function for SVM classifier

is used with Polynomial Order ¼ 1 with 70% training data and

30% test data, and for training step of feedforward neural

network classifier two sets of data are required.

� Input data: represents the extracted features of the signal

� Target data: defines the desired output of the neural

network (labels of feature vectors that represent the signal

class and the person whose signal is recorded.)

Network setup that gives the best performance is in formof

70% training data, 10% validation and 20% testing data. 1

hidden layer with 10 neurons is used to obtain the best cross

entropy in the neural network training GUI. The architecture

of the neural network is shown in [Fig. 2]. In this study, the

number of outputs (number of subjects) is 7 and the number of

inputs is 850 (number of extracted features). The transfer

https://doi.org/10.1016/j.bj.2019.03.005
https://doi.org/10.1016/j.bj.2019.03.005


Fig. 2 Architecture of the neural network.
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function for hidden layer is tan-sigmoid and activation func-

tion for output layer is softmax.

Training parameters for Neural Network are shown in

[Table 1]. Training stops when any of the parameters are

fulfilled.

In the classification step, k-fold cross validation has been

used with k ¼ 5. Also, to evaluate the results of the classifi-

cation, two criteria of accuracy and f-score Measures were

derived from the confusion matrix to evaluate the perfor-

mance of the models using the flowing metrics:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(6)

Percision ¼ TP
TPþ FP

(7)

Recall ¼ TP
TPþ FN

(8)

Fscore ¼ 2:Percision:Recall
Percisionþ Recall

(9)

TP: True Positive, TN: True Negative, FP: False Positive, FN:

False Negative.

Another important criterion used to determine the effi-

ciency of a classifier is the AUC criterion. The area under the

curve or AUC is equal to the probability that a classifier will

rank a randomly chosen positive instance higher than a

randomly chosen negative one [23].

Accuracy and F-score for all electrodes and tasks are

calculated as single-channel. The results are averaged and are

shown in [Table 2].
Table 2 Mean and standard deviation of accuracy and F-score

Classifier Accuracy (%)

Average Standard dev

SVM 84.49 5.37

Bayesian network 85.97 5.91

Neural network 92.89 4.41

Table 1 Neural network training parameters.

Maximum number of epochs 1000

Minimum performance gradient 0.000001

Performance goal 0

Maximum validation failures 100
In [Fig. 3] accuracy for all 6 channels and for all of the

mental tasks and in [Fig. 4] mean of accuracy and f-score for

all mental tasks and all 6 channels are shown.

In this database, each electrode in a specific task shows

optimum accuracy according to recorded tasks. Therefore for

each task, a specific channel is set as an optimum channel.

Results are shown in [Table 3].
Discussion

Since EEG signals have a significantly low spatial resolution,

therefore they are dominant for different tasks and mental

activities over specific areas of the brain rather than others.

Selecting the appropriate channel with high accuracy for

different tasks is an important part of authentication systems.

Different classifiers in the classification of EEG signals and EEG

based authentication systems are used, three classifiers (SVM,

Bayes network, neural network) are used in this paper order to

obtain the optimum classifier. According to the results of

[Table 2] higher values of accuracy and F-score is recorded for

neural network classifier so this classifier is selected to

continue the discussion.
for 6 electrodes and all tasks.

Mean F-score

iation Average Standard deviation

0.79 7.18

0.85 6.04

0.88 5.90

Fig. 3 Accuracy for all 6 channels and for all of the mental

tasks.

https://doi.org/10.1016/j.bj.2019.03.005
https://doi.org/10.1016/j.bj.2019.03.005


Fig. 4 Mean accuracy and mean f-score for all 6 channels

independent of mental tasks.
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According to [Table 3] and comparing the classification

accuracy for various tasks shows that task 1 is more precise,

which emphasizes the use of specific brain activity signals for

security applications and authentication. To design a single

channel authentication system with mental tasks indepen-

dency for this dataset, a channel withmaximumaccuracy and

f-score must be chosen. According to the results of [Figs 2 and

3] each differentmental task, according to its essence, enables

different part of brain and O2 is chosen as the best electrode

for single channel system.

Usually, the EEG biometric authentication system is eval-

uated in two modes:

� Identification mode: classification one to many compari-

son (user identified or not)

� Verification mode: classification one to one comparison

(true/false)

The mean accuracy of our single channel authentication

systems for all channels independent of mental tasks based

on identification mode was 95% and when we used a selected

channel based onmental activity, mean accuracy was 97.54%.

For the first time, we can achieve high accuracy for this data

set in single channel mode.

In Ref. [13] Experimental results show that an identifica-

tion accuracy of 72% can be achieved using only a single

epoch and 96.7% by joint classification of multiple epochs.

Our method uses only a single epoch for classification and

Maximum accuracy in our paper is 98.3% for count mental

activity and P4. In Ref. [14] two modes of identification and

verification are used. In verification mode, they used
Table 3 Accuracy, F-score and AUC of the subject
classification using a Neural network for different tasks
and mental activity.

optimum channel Accuracy F-score AUC

Baseline P3 97.1 0.97 0.98

Multiply O1 97.07 0.98 0.99

Letter C4 97.1 0.97 0.98

Rotation O2 98.15 0.98 1

Count P4 98.3 0.98 0.99
methods based on the similarity between EEG signals ach-

ieved 99% accuracy.

In identification mode, they used classification algorithm

machine learning. They used k-nearest neighborhood classi-

fier with k¼ 5 and achieved a 22% success rate. Nonetheless, a

22% success rate still falls far below levels acceptable for

practical user identification systems.

According to the results presented in Ref. [6], the mean

accuracy for 6-channel authentication was 98.46%. Based on

the results of the proposed method, we were able to use a

single-channel instead of a six-channel system with accept-

able decreasing in accuracy, which is cost effective to use in

practical applications.

EEG signals are being affected by a person's mood like

stress happiness and etc. Stress is a mental condition that

affects brain electrical activity to be different from the

normal state [24]. Performing a mental activity under

stress will also result in a change in the EEG patterns.

Many common methods to estimate the mental stress are

based on features extracted from different signals,

including electrocardiogram, blood pressure, skin temper-

ature, galvanic skin response [25]and EEG signals [26,27].

With the increasing availability of devices and methods

for detecting stress, and implementing a new biofeedback

methodology for personalized stress management devices

with low power-cost and low complexity [28], the problem

of EEG based authentication system with stress can be

solved.
Conclusion

In this paper, we studied the performance of single channel

brainwave-based authentication systems and selected chan-

nels placement based on mental activities. We used different

feature extracting methods and by splitting each trail of the

signals into ten parts, we used the signals in an optimal way.

We examined the performance of different classifiers to get

the least error and achieve 97.54%mean accuracy with neural

network classifier for single-channel authentication systems

with optimum electrode placement. We also analyzed the

authentication system individually, without considering the

type of mental activity, and chose channel O2 as the optimum

channel with an accuracy of 95%.
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