Skip to main content
. 2019 Oct 22;10:1009. doi: 10.3389/fgene.2019.01009

Table 2.

Effects of the varied hyper-parameters through a 10-fold cross-validation in terms of AUC based on the validation and test datasets.

Hyper-parameter Parameter Validation Test
Kernel size 2 0.8310 0.8321
3 0.8121 0.8172
Stride 1 0.8310 0.8321
2 0.8089 0.8156
Number of neurons 25 0.8191 0.8232
81 0.8310 0.8321
169 0.8189 0.8236
Learning rate 0.01 0.8250 0.8296
0.001 0.8310 0.8321
0.0001 0.7763 0.7802
Dropout probability 0.1 0.8310 0.8321
0.2 0.8196 0.8228
0.3 0.8180 0.8227
Batch size 200 0.8166 0.8231
250 0.8310 0.8321
300 0.8135 0.8209
Activation function ReLU_ReLU 0.8132 0.8224
ReLU_Sigmoid 0.8127 0.8210
ReLU_Tanh 0.8127 0.8242
Sigmoid_ReLU 0.8224 0.8296
Sigmoid_Sigmoid 0.8245 0.8301
Sigmoid_Tanh 0.8271 0.8308
Tanh_ReLU 0.8253 0.8297
Tanh_Sigmoid 0.8245 0.8309
Tanh_Tanh 0.8310 0.8321

FCNN model obtains the optimal AUC value, based on the different hyper-parameters combinations.