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Abstract

We quantify the impact of scientific grant funding at the National Institutes of Health (NIH) on 

patenting by pharmaceutical and biotechnology firms. Our paper makes two contributions. First, 

we use newly constructed bibliometric data to develop a method for flexibly linking specific grant 

expenditures to private-sector innovations. Second, we take advantage of idiosyncratic rigidities in 

the rules governing NIH peer review to generate exogenous variation in funding across research 

areas. Our results show that NIH funding spurs the development of private-sector patents: a $10 

million boost in NIH funding leads to a net increase of 2.3 patents. Though valuing patents is 

difficult, we report a range of estimates for the private value of these patents using different 

approaches.
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1 Introduction

It is often taken for granted that investments in innovation underpin economic growth 

(Romer 1990; Aghion and Howitt 1992). In leading models and empirical studies, these 

R&D investments are undertaken by private firms with the goal of creating new products or 

improving existing ones (Pakes and Griliches 1980). While most studies of innovation focus 

on a firm’s own R&D investments, and more recently on knowledge spillovers between 

firms (e.g., Bernstein and Nadiri 1989; Bloom, Schankerman, and Van Reenen 2013), the 

impact of public sector research investments has received less attention.
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In many industries, private-sector innovations often have their roots in public-sector research 

investments. The pharmaceutical firm Novartis, for example, made use of decades of 

government-funded research on gene mutation and cell-signaling in the development of 

Gleevec, a revolutionary treatment for chronic myelogenous leukemia (Wapner 2013). In the 

U.S., the belief that public-sector research matters for private-sector innovation has fueled 

considerable federal investment in R&D for at least the past seventy years—despite the fact 

that economists and policymakers have acknowledged that little is known about the returns 

to these investments (Jaffe 2002; Marburger 2005). This paper aims to fill this gap in 

knowledge.

Assessing the impact of public-sector research is conceptually different from quantifying the 

returns to private R&D, and in many ways more difficult. There are three issues. First, while 

private R&D investments are typically targeted to specific applications in the hope of direct 

commercial payoffs, public R&D investments—especially those in basic science—are often 

made with the opposite goal: to produce non-rival ideas that maximize potential spillovers. 

As a result, traditional empirical approaches—which rely on foreseeable linkages between 

investments and outcomes—are ill-suited to help trace the unpredictable and often 

convoluted path between public expenditures and final commercial products (Griliches 

1992). Second, analyses of the effects of public R&D on outcomes are beset by potential 

endogeneity problems: public investments may target research areas with the most potential 

for follow-on innovation, for example those where disease burden is rising (Acemoglu and 

Linn 2004) or scientific opportunities are increasing (Lichtenberg 2001). Finally, research on 

public R&D needs to account for the possibility that public research “crowds out” private 

investment (David, Hall, and Toole 2000).

This paper makes progress on each of these issues to provide causal evidence on the returns 

to public investments in biomedical research.1 Our empirical setting is the 

biopharmaceutical industry, an area where innovations are thought to be extremely important 

for health, productivity and welfare, and where the US National Institutes of Health (NIH) is 

the single largest funder of research in the world. We analyze the impact of NIH research 

funding on patenting by private sector firms, from 1980 through 2012.

Our first contribution is to construct new measures of the commercial output associated with 

publicly funded research. The most recent work in this area examines the effects of funding 

for a disease on outcomes relevant for that same disease, typically using pre-specified lag 

structures (Manton et al. 2009; Toole 2012), or selecting optimal lags based on goodness-of-

fit criteria (Blume-Kohout 2012). While these papers are an important step toward 

understanding the relationship between public research inputs and practical outputs, a 

drawback to these approaches is that they do not capture the impact of funding on other 

diseases or with other time lags. This concern is particularly salient in our setting because 

the possibility of such unanticipated spillovers is among the main rationales for the public 

funding of science in the first place.

1Adams (1990) uses distributed lags and panel data to shed light on the effect of scientific knowledge stocks on productivity growth at 
the industry level. Moretti, Steinwender, and Van Reenen (2014) use shocks to defense R&D induced by the end of the cold war to 
identify the impact of government expenditures on TFP growth, once again at the industry level.
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To capture the potentially unanticipated impact of public funding, our paper takes a different 

approach. We construct a dataset that uses bibliometric information to explicitly link NIH 

grants with the publications they support and the patents that cite those publications—even if 

these patent outcomes are in substantially different research areas, and regardless of the lags 

involved. By letting the data reveal the relevant linkages, we are able to identify patents that 

build on NIH-funded research without making a priori assumptions about the diffusion of 

scientific knowledge over time and across diseases.

Our second contribution relates to identification. Public investments may target research 

areas with the most potential for follow-on innovation, which could lead to a correlation 

between public funding and private patenting even if public investments were unproductive. 

To address concerns about the endogeneity of public investments, our paper begins by 

considering a finer-grained unit of analysis: NIH funding for a given disease (D), relying on 

a specific set of scientific approaches and methodologies (S), at a particular time (T). 

Organizing our analysis at the level of a DST captures the notion of a biomedical research 

area as a collection of projects focusing on a particular disease, that also share an interest in 

the same underlying scientific questions. Constructing funding flows for a DST is also 

straightforward, since every NIH grant is funded by a specific Institute (e.g., the National 

Cancer Institute), which tells us the disease area it is targeting, and evaluated for scientific 

merit by a committee (e.g., Behavioral Genetics and Epidemiology), which informs us about 

the science domain to which it belongs.

Using DST as the unit of analysis helps our identification strategy in two ways. First, it 

enables us to include detailed pairwise disease/science, disease/time, and science/time fixed 

effects to account for the most common potential sources of endogeneity in funding (e.g. 

differences in innovative potential across diseases, changes in disease burden, and changes in 

scientific opportunity). Second, it enables us to construct an instrument for total DST 

funding, by taking advantage of NIH funding rules which specify how grant applications are 

prioritized across disease and science areas.

As an illustration, consider a grant application related to a specific disease/science area, say 

cancer/cell signaling. This grant is evaluated by a group of cell signaling experts and is 

assigned a raw score. One might decide whether to fund this application by comparing its 

raw score with other cell signaling applications (its science rank) or by comparing it with 

other cancer applications (its disease rank). The NIH does neither. Instead, it decides 

whether to fund an application based on how its science rank compares with the science 

ranks of other applications in the same disease area (its “rank of rank”). As we explain in 

detail in Section 3.2, a funding threshold based on rank of ranks effectively means that DSTs 

can have the same number and quality of applications based on peer review evaluations, but 

nonetheless differ in the total funding that they receive. We operationalize this notion of 

“windfall” funding as the amount of funding for a DST that comes from grants that fall just 

above an Institute’s funding threshold—holding constant its applications’ raw scores and 

science ranks. Our IV approach thus compares patenting outcomes across DSTs that look 

similar in terms of scientific quality, but differ in windfall funding arising from their 

applications’ rank of ranks. We demonstrate that these windfall funds do indeed look 
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random at the DST level and that grant applicants cannot anticipate these fluctuations and 

strategically submit applications in response.

The third contribution of our paper is to account for the impact of crowd-out. We develop a 

novel method to identify the set of private-sector patents intellectually related to a given NIH 

research area—even if these patents do not build explicitly on NIH-funded work. By 

identifying private-sector patents in areas potentially influenced by NIH funding, we are able 

to measure the impact of public research investments on total private-sector output in 

affected areas, net of potential crowd-out.

Our results show that NIH funding increases total private-sector patenting. We obtain similar 

estimates using both our fixed effects and IV estimation strategies. Our preferred empirical 

specification suggests that an additional $10 million in NIH funding for a research area 

generates 2.3 additional private-sector patents in that area, or roughly one patent for every 

two to three NIH grants. Not all patents are equally valuable; the distribution of patent value 

is highly skewed (Harhoff, Scherer, and Vopel 2003). In a series of back-of-the envelope 

calculations (Section 5.4 and Table 10) we report a range of estimates for the private value of 

these patents using different approaches.

The empirical approach we propound also sheds light on the path through which NIH 

investments influence private sector innovation by developing estimates of the cross-disease 

spillover effects of NIH funding. We show that fully half of the patents resulting from NIH 

funding are for disease applications distinct from the one that funded the initial research. 

The size of this effect underscores the importance of our approach to linking patents with 

funding: by looking only within the same disease area when measuring impact, the prior 

literature in this area appears to have missed almost half of the total impact of basic research 

funding.

We proceed as follows. In Section 2, we discuss institutional background and the various 

effects that NIH funding may have on private patenting. We describe our conceptual 

framework and empirical strategy in Section 3. Sections 4 and 5 present our data and main 

results, respectively. Section 6 concludes. Robustness checks and alternative specifications 

can be found in Appendices F, I, J, K, and L. Appendix M discusses the impact of NIH 

funding for a given research area on how firms reallocate investments to and from other 

areas.

2 Background

2.1 The NIH

The NIH was responsible for funding 28 percent of U.S. medical research in 2008. This 

compares to 37 percent of research funded by pharmaceutical firms, 15 percent by 

biotechnology firms, and 7 percent by medical device firms (Dorsey et al. 2013).2 The bulk 

of NIH funding is for “basic” research that aims to extend the frontiers of medical 

2Other funders include foundations, accounting for 4 percent, other federal funders, about 5 percent, and state and local governments, 
also about 5 percent.
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understanding. About one-third of NIH funding is for clinical research (including patient-

oriented research, clinical trials, epidemiological and behavioral studies, as well as outcomes 

and health services research) that is more applied in nature. The agency also supports a 

range of training grants that help develop the U.S. scientific and medical workforce.

The NIH comprises 27 Institutes or Centers (ICs) that are typically organized around body 

systems (e.g., the National Heart, Lung, and Blood Institute), or disease areas (e.g., the 

National Cancer Institute). Each Institute receives its own Congressional appropriation and 

is responsible for funding research that is potentially relevant to its mission. Scientific 

evaluation of grant applications, by contrast, occurs primarily in approximately 180 standing 

review committees known as study sections. Each study section is organized around a 

scientific topic (for example, “Behavioral Genetics and Epidemiology” or “Cellular 

Signaling and Regulatory Systems”) and is responsible for evaluating the quality of 

applications in its area. Study sections review grant applications from multiple disease areas 

with similar scientific underpinnings. In turn, ICs fund applications evaluated by multiple 

study sections. As such, we construct total NIH funding for our unit of analysis, the disease/

science/year (DST), by identifying the amount of funding for all grants assigned to a given 

NIH institute (which corresponds to a disease area) and study section (which captures the 

scientific area) pairing, in any given year.

Study sections assign each application a raw score. During the timespan covered in our 

analysis, these ranged from 5.0 (worst) to 1.0 (best). This raw score is meant to be a 

summary statistic for the study section’s assessment of the quality of that application. Raw 

scores are then normalized within a study section and converted into a percentile. We call 

this normalized score the application’s “science rank.” Once a study section has evaluated an 

application, the NIH’s funding rule is mechanical: an IC must fund the applications it is 

assigned in order of their science rank until its budget has been exhausted. The worst score 

that is still funded is known as that IC’s “payline.” In summary, the peer review process at 

NIH generates three separate scores for each application: (i) the “raw score” given by the 

study section; (ii) the within-study section “science rank” immediately derived from the raw 

score; and (iii) the within-IC ranking of science ranks. It is this final “rank of rank” that 

determines whether an application is funded. As discussed in the introduction, the structure 

of the NIH and its funding rules will play an important role in our empirical work. Section 

3.2.2 details how we exploit these features to isolate exogenous variation in NIH investments 

across research areas. Appendix A provides more details about the NIH and its funding 

rules.

2.2 Measuring the impact of publicly funded medical research: previous research and 
challenges

Publicly-funded research can influence private innovation in numerous ways and through 

diverse channels, including through increasing the stock of knowledge (which may suggest 

new projects, or aid in completion of existing projects), training graduates, creating scientific 

instruments and tools, creating networks, and creating new firms (Salter and Martin 2001; 

Cohen, Nelson, and Walsh 2002; Mansfield 1995; Bekkers and Bodas Freitas 2008). Public 
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and private sector biomedical research can be linked through all of these overlapping 

channels (Henderson, Orsenigo, and Pisano 1999).

One channel which has attracted considerable attention from policy makers and economists 

is the patenting and licensing of university inventions, which are then developed by private 

firms. Academic patenting and licensing have become increasingly common in recent 

decades, encouraged by the 1980 Bayh-Dole Act and other policies. This has led to an 

extensive set of studies focusing on IP-based, academic entrepreneurship (Henderson, Jaffe, 

and Trajtenberg 1998; Mowery et al. 2004; Azoulay, Ding, and Stuart 2009). Yet survey 

research (Cohen, Nelson, and Walsh 2000; Arundel and Geuna 2004; Agrawal and 

Henderson 2002) as well as work by economic historians (Rosenberg and Nelson 1994) 

suggest this channel may miss a potentially more important contribution to private-sector 

innovation: the informational value of scientific research (typically communicated through 

publication and other “open science” channels), which may suggest project ideas to firms 

and more generally improve the efficiency of their R&D activities.

These potential benefits are more difficult to trace than inventions directly patented and 

licensed by academics. Previous research has examined the effects of public science 

spillovers on private innovation in different ways, including surveys (Cohen, Nelson, Walsh 

2002; Mansfield 1995) and analyses relating variation in public funding (by geography, 

scientific area, disease area, and over time) to outcomes (Jaffe 1986, Adams 1990; in 

medicine see Blume-Kohout 2012; Toole 2012; Manton 2009). A common approach to 

measuring these spillovers from academic research is to look at citations to university 

patents (Trajtenberg et al. 1997). However, a high share of patent-to-patent citations comes 

from examiners, not applicants (Alcácer and Gittleman 2006; Sampat 2010), perhaps 

compromising these measures of knowledge flows. Moreover, previous research suggests 

that patenting is a minority activity in academia (Azoulay, Michigan, and Sampat 2007), 

implying that the patent-to-patent citation lens may have a narrow focus.

In the analyses below, we use patent-to-article citations instead. Building on the idea that 

citations in journal articles can be used to track knowledge flows, the pioneering work of 

Francis Narin and colleagues at CHI research in the 1970s used references on the front page 

of patents to scientific articles (part of the “non-patent references” cited in the patent), to 

examine the “science dependence” of technology (Carpenter and Narin 1983) and linkages 

between science and technology (Narin and Olivastro 1992, 1998). This research also found 

that life science patents cite non-patent references more intensively than do patents from 

other fields. In the economics literature, the count of non-patent references (or the share of 

non-patent references in all citations) has been used a proxy for the extent to which patents 

are science-based (e.g., Trajtenberg et al. 1997). Patent-to-article citations are less likely to 

come from examiners than are patent-to-patent citations, and recent validation against survey 

results (Roach and Cohen 2013) suggests they are more informative than the latter in 

measuring the intellectual influence of public sector research. Our paper builds on and 

extends this approach, by linking life science patents back to the articles that cite them, and 

the specific NIH grants funding the production of these articles.3
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A long-standing challenge in evaluating spillovers from publicly funded research is that 

effects are realized with long and variable lags (Griliches 1992) and in potentially diverse 

fields. Another major advantage of linking grants to articles to patents is that this allows the 

data reveal where to look for impact in time and space. In addition, as discussed below, our 

paper goes beyond previous work trying to assess the causal impact of public funding 

(Blume-Kohout 2012, Toole 2007, Jaffe 1986, Adams 1990) by using plausibly exogenous 

sources of variation in funding. (To our knowledge the only paper to do this previously is 

Moretti et al. [2014]).

A research focus on spillovers implicitly assumes that NIH funding raises returns to private 

R&D and thus “crowds-in” private research investments. It is possible, however, that public 

investments may “crowd-out” private-sector efforts.4 This could happen for a variety of 

reasons. Public funds could simply be subsidizing the cost of a firm’s existing research. 

Alternatively, they could lower the costs of entry for competitors, reducing the firm’s ability 

to reap market rewards from its R&D investments. As explained in more detail below, our 

analysis also goes beyond previous work in trying to account for potential crowd-out.

3 Empirical strategy

Our approach makes progress on addressing the key measurement and inference challenges 

faced by the existing literature. Section 3.1 describes how we measure outputs associated 

with NIH funding. Section 3.2 describes our OLS and IV approaches to inference, and 

provides support for our identification strategy.

3.1 Measuring Biomedical Innovation Using Patents

We develop new ways to link public research investments with private patenting outcomes. 

Our main outcome variable is patenting by private sector biopharmaceutical firms (see 

Appendix B for more details on these patents). Patents may appear a surprising choice; 

researchers studying medical innovation have typically focused on outcomes that are more 

immediately welfare-relevant, such as reductions in mortality and morbidity (Manton et al. 

2009), drugs entering clinical trials (Blume-Kohout 2012), or new drug approvals (Toole 

2012). However, these outcomes cannot be readily linked to variation in public research 

expenditures without restrictive assumptions. By contrast, biomedical patents can be linked 

to specific grant expenditures using the bibliographic references they contain. Moreover, 

securing patents is the principal way that biopharmaceutical firms appropriate the returns 

from their R&D investments (Cohen, Nelson, and Walsh 2000).

Our key methodological innovation is in how we link patents to NIH research investments. 

To see this more explicitly, consider an innovation production function in which patenting 

output pντ in a research area ν at time τ is determined by knowledge inputs krt from 

3The practical challenges encountered in order to systematically track and catalog patent-to-publication citation linkages are described 
in Appendix D2.
4This concern is especially salient in the life sciences, since the organization of drug discovery research in the biopharmaceutical 
industry has been greatly transformed to mimic that of academic labs in terms of size, intellectual autonomy granted to researchers, 
and rewards linked to the production of high-impact publications (Henderson 1994). Many biomedical scientists also search for 
positions in academe and industry simultaneously (Stern 2004), and the patterns of mobility between the private and the public sector 
have been extensively documented (Zucker, Darby, and Torero 2002).
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research areas r, at times t. In theory, output pντ could be a function of inputs from many 

different research areas r ≠ ν and many different times t ≠ τ. In practice, however, previous 

work generally places strong restrictions on the nature of the relationship between inputs rt 
and outputs ντ: that investments in one area only impact outputs in that same area (r = ν) 

and with a fixed lag structure.5 Our approach differs in that we use bibliometric data to trace 

the impact of a given investment krt on patenting in a range of areas ν and time periods τ. 

This framework is formalized in Appendix H.

Using this approach, we construct two measures of patenting outcomes, which we describe 

now. Figure 1 provides an overview of this process and Appendix G provides a detailed 

description.

Patents citing NIH-funded research.—We first link NIH grants to the publications they 

support using grant acknowledgement data.6 Second, extending bibliometric approaches 

surveyed in previous section, we link those publications to patents that build on their 

findings (Figure 1, second column).7

Taking the acknowledgment and citation data together, we define Patents
dst

 as the set of 

patents that cite publications that in turn acknowledge funding from that DST. These patents 

need not target the same disease as the original source of NIH funding with which they are 

linked. For example, if a patent related to cardiovascular stents cites research funded with 

money allocated to diabetes, we would associate this cardiovascular patent with diabetes 

funding. We also do not make ex ante assumptions about the nature of time lags between the 

date of the original grant and the date of the linked patent. A 2005 patent can be linked to a 

2004 and 1994 grant if those grants produce publications cited by that patent.

This approach has two important drawbacks. First, relying on direct publication-to-patent 

citations limits the type of intellectual influences we can account for. We would not, for 

instance, credit NIH funding if it led to patenting through more complicated citation patterns 

(e.g., a patent that cites a publication that cites a publication that acknowledges the NIH), 

informal interactions (e.g., two researchers meet and exchange ideas at a conference 

supported by NIH funding), or the hiring of NIH-funded trainees by private-sector firms. 

Omitting these channels may lead us to underestimate the impact of NIH funding.

Second, by accounting only for patents that explicitly cite NIH-funded research, this 

measure treats patents that do not exist and patents that do exist but which cite only 

privately-funded research in the same way—neither are linked to a DST. As a result, if 

increased DST funding led to an additional linked patent, we could not tell whether this 

5One notable exception is Bloom, Schankerman, and Van Reenen, who consider spillovers associated with private R&D investments.
6This is relatively straightforward because PubMed started capturing this information systematically starting in 1980. Appendix D1 
provides more detail, and discusses the issues that may arise in our design if researchers inflate their publication accomplishments to 
improve their odds of getting a grant renewed.
7In previous work, Sampat and Lichtenberg (2011) looked at marketed drugs citing NIH publications, finding that over 40 percent of 
the drugs approved between 1988 and 2005 cite an NIH-funded publication. This paper builds on the strategy of linking drugs to 
patents to publications to grants, but extends it in several ways. Most importantly, rather than a retrospective approach examining what 
share of drug development can be linked back to NIH funding, our analysis is prospective, examining how variation in NIH funding 
relates to subsequent innovation. This approach allows for “failure” (grants that do not generate any innovation), and is relevant for 
policy makers considering changes to NIH funding.
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patent would otherwise have existed or not, i.e., whether private firms would have funded 

the necessary research instead. In other words, this first measure asks whether NIH-funded 

research is useful to private firms. While informative, this is not the same as asking whether 

NIH funding increases total private-sector innovation in a research area.

Patents related to NIH-funded research.—Our second outcome identifies all patents 

in the intellectual vicinity of an NIH funding area, whether or not these patents actually cite 

NIH-funded research. This allows us to account for a richer set of channels through which 

NIH funding may impact private-sector patenting. These patents, hereafter referred to as 

simply “related patents,” may be linked to NIH funding via a longer citation chain or belong 

to NIH-trained scientists who join private-sector firms. Crucially, these related patents may 

also be the result of private sector investments in related research areas; they need not be 

financially dependent on NIH at all.

Capturing the total number of private sector patents in an intellectual area is also important 

because it allows us to address another issue complicating previous attempts to assess the 

impact of science: the possibility of crowd-out. If all NIH funding did was crowd-out private 

research, we would not expect NIH funds to increase the total number of patents in a given 

research area; it would simply change the funding source for those patents. If, instead, NIH 

funding led to the development of patents that would not have otherwise been developed, 

then we should see an increase in the total amount of innovation in a research area. The 

impact of NIH funding on total innovation in a research area thus captures the net effect of 

potential crowd-in and crowd-out.

To construct this measure, we define a patent to be related to an NIH research area if it cites 

research similar to research that is actually funded by that area. In particular, we match each 

NIH grant in our sample to publications that acknowledge its support and then link these 

publications to a set of intellectually similar publications using a keyword-based similarity 

measure developed by the National Library of Medicine.8 The final step in our matching 

process is to identify the set of patents that cite this broader set of publications (see Figure 

1). The set of patents linked to a DST in this way can be thought of as “related,” in the sense 

that they are part of the same intellectual area as that DST. Again, this approach does not 

require that “related” patents be in the same research area or issued at the same time as the 

original NIH disease/science area.

3.2 Estimating equation and identification

In our empirical implementation, we define a research area r at time t to be a disease/

science/time combination, or DST. This is a finer-grained level of analysis than is customary 

in the literature, which tends to aggregate the data up to the disease level (e.g., Toole 

[2012]). In turn, a DST is intended to identify projects that share a similar disease 

application and benefit from an understanding of similar scientific methods and mechanisms 

at a given point in time.9 Given this unit of analysis, we estimate the following:

8The PubMed Related Article (PMRA) algorithm analyzes keywords and keyword combinations that are assigned to all life-science 
publications by the National Library of Medicine and defines similarity on the basis of how many of these keywords overlap. This is 
discussed in detail in Appendix E.
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Patents
dst

= α0 + α1Fundingdst + Controlsdst + εdst

(1)

The main explanatory variable, Fundingdst, is the amount of funding allocated to grants that 

fall in a particular disease/science/year combination. Our outcome variable, Patents
dst

, is the 

full set of private-sector patents that rely on Fundingdst as an input, even if they do not 

directly relate to the same disease or science area, and regardless of the lags involved.10

We address the potential endogeneity of public investments in R&D in two ways.

3.2.1 Fixed Effects Estimation—Our benchmark OLS specification is:

Patents
dst

= α0 + α1Fundingdst + β′Xdst + δds + γdt + νst + εdst

(2)

Equation (2) includes pairwise disease/science, disease/year, and science/year fixed effects 

that account for many common sources of endogeneity. For example, diseases that affect 

more people may receive more public and private interest. Further, some research topics may 

be more tractable than others; the genetics of breast cancer, for instance, can be studied 

using a variety of animal models, whereas the same is not true for the genetics of 

schizophrenia (Nestler and Hyman 2010). To account for time-invariant differences in 

innovative potential among disease/science areas, we include disease/science fixed effects 

(δds). The innovative or commercial potential of disease and science areas may of course 

also change over time. We include disease/year fixed effects γdt to control for potential 

confounders such as shifting disease burden or public perceptions of disease salience.11 NIH 

funding may also respond to scientific advances. The introduction of new DNA-sequencing 

technologies in the late 1990s, for instance, may have increased both public and private 

research funding for diseases with a genetic component. We include science/year fixed 

effects, νst, to control for this type of variation. Finally, in our most detailed specification, 

we also include fixed effects for the number of applications that a DST receives. These 

indicator variables proxy for time-varying interest in a particular research area that may not 

be captured by our other controls. In our main specifications, this regression is weighted by 

the average size of a DST, that is, the average yearly number of grants in a disease/science 

9We discuss the practical details involved in assigning grants to particular DSTs in Section 4.1.
10An alternative approach would be to define a research area narrowly, for example at the level of the individual grant. In Appendix C, 
we explain why we believe that exploiting grant-level variation in the funding process is less useful to shed light on the main questions 
of policy interest.
11For instance, Congress may allocate more money to the National Cancer Institute in order to fight the “war on cancer” (Mukherjee 
2010), and the private sector may make similar investments, suggesting a causal relationship that may in fact be spurious.
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area.12 To account for serial correlation, standard errors are double-clustered at the disease 

and science levels (Cameron and Miller 2015).

The remaining funding variation in equation (2) comes from within-disease/year or within-

science/year changes. Why is it, for instance, that cancer/cell signaling may receive more 

funding in 1995 than cancer/tumor physiology? After saturating our specifications with fixed 

effects, our identifying assumption is that NIH funding for a specific DST is not correlated 

with changes in the innovative or commercial potential for specific disease/science 

combinations.

This assumption would be violated if either Congress or NIH administrators allocated 

funding to DSTs on the basis of their potential. In response to the success of Gleevec, for 

example, the National Cancer Institute may have decided to devote a greater proportion of 

its budget toward the study of cell signaling or gene expression, scientific topics that are 

particularly relevant for targeted cancer therapies. If private firms were behaving similarly, 

then equation (2) would not be able to identify the impact of public funding, because we 

would expect changes in patenting for this area even in the absence of additional funds.

In practice it is difficult for the NIH to direct funding to DSTs on the basis of their evolving 

potential. As discussed in Section 3, applications are funded in order of their science ranks. 

This means that if cell signaling was a particularly “hot topic in a given year, the NCI could 

not decide to fund the top 20 cancer-related cell-signaling applications without first funding 

the top 19 cancer-related applications in all other science areas. Most likely, it would not 

have the budget to do so.13 The rigidity of this system was cited in an NIH-commissioned 

report from 2000, urging reform:

“…Researchers perceive that…applications describing some of the most 

productive, highest impact work may be assigned to too few study sections, causing 

too much of the ‘best science’ to compete with itself; that the scope of some study 

sections is restricted to research with relatively low impact, resulting in undeserved 

‘entitlements’…”14

3.2.2 Instrumental Variables Estimation—Even if the NIH cannot direct funding to 

specific DSTs, Fundingdst could still be endogenous if study section reviewers assigned 

better scores to applications from DSTs with more potential. If, for instance, the cell-

signaling study section decides to give better scores to cancer-related applications after the 

discovery of Gleevec, then the resulting funding allocation for the cancer/cell signaling DST 

would reflect this unobserved enthusiasm.

To address this source of endogeneity, we construct an instrument for DST funding that is 

not correlated with a DST’s potential. Our instrument works by isolating variation in DST 

12Unweighted results are presented in Appendix K, Table K1.
13The main way that ICs get around these rules is to either fund an application out of scoring order or to issue a request for proposals 
(RFPs) or applications (RFAs) on a specific topic. RFPs and RFAs account for only a small portion of NIH grant spending. Grants 
responding to these are evaluated in specially empaneled study sections, which we exclude from our analysis. See Appendix J for a 
discussion of out-of-order grant funding.
14“Recommendations for Change at The NIH Center For Scientific Review,” Final Phase 1 Report, Jan 14, 2000.
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funding coming from procedural rigidities in the NIH funding process that can lead equally 

meritorious grant applications to have different funding outcomes. These differences in 

grant-level funding then translate into differences in DST-level funding.

To understand how this instrument works, and the type of variation it relies on, we first 

consider a stylized example with two disease areas and two science areas. Having discussed 

how our instrument works in this setting, we then define it more generally for our entire 

sample.

Stylized example.: Figure 2 illustrates our identifying variation. We focus on the National 

Cancer Institute (NCI) and label grants assigned to other disease areas as “Other.” The NCI 

is responsible for funding grant applications from two study sections: Cell Signaling and 

Tumor Physiology. We focus on the following two DSTs: Cancer/Cell Signaling and Cancer/

Tumor Physiology (the time dimension is fixed in a given year and suppressed for 

expositional convenience).

The top two panels of Figure 2 describe the scores of grant applications to study sections. 

Each row represents a grant application. Study sections are science-based evaluation 

committees that score grant applications, potentially from many disease areas. In the top left 

panel, the cell signaling study section reviews applications related to cancer and other 

disease areas. In the top right panel, the tumor physiology study section reviews cancer and 

other applications as well.

Recall from Section 2.2 that the NIH implicity assigns three scores to each grant application: 

(i) a cardinal raw score directly given by peer evaluators in a science-based study section; 

(ii) an ordinal science rank, which describes how an application’s raw score compares to 

other applications evaluated in the same science-based study section; and (iii) another 

ordinal “rank of ranks” that describes how an application’s science rank comes to the 

science ranks other applications evaluated by different study sections but which share the 

same disease area. The top left panel of Figure 2 lists raw scores and science ranks for all 15 

applications evaluated by the cell signaling study section. Similarly, the top right panel does 

so for applications evaluated by the tumor physiology study section. For completeness, we 

have also included the dollar amount requested by each grant, which we assume for 

simplicity is $2 million for all grants (requested funding amounts do not impact an 

application’s score).

Study sections score grant applications within science areas, but do not fund them. Funding 

is provided by NIH Institutes at the disease area. The bottom panel of Figure 2 illustrates 

funding allocations for cancer-related grant applications. In order to decide which 

applications to fund, the NCI ranks grant applications on the basis of their “rank of rank.” 

For example, G1-G5 have the five highest science ranks of all cancer applications, so in this 

example the five top cancer applications come from cell signaling. The cancer application 

with the next highest science rank is G21, a tumor physiology application with a science 

rank of 6. Next, both G7 and G22 have science ranks of 7; we list G7 first then G22, using 

their raw score as a tiebreaker. Application G8 has the next highest science rank, 8, so it 

receives the next best priority rank, 9. The bottom left panel of this Figure illustrates the 
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completed rankings for all 16 cancer applications across both the cell signaling and tumor 

physiology study sections.

Such a priority ranking of applications is created for each NIH Institute and funding is 

allocated based on this ranking. In our example, we assume that the NCI has enough 

resources to fund the top 9 applications only. The bottom right section of this figure 

illustrates statistics for the grant applications associated with our two DSTs of interest: 

cancer-cell signaling and cancer-tumor physiology. Overall, research in the cancer-cell 

signaling DST is designed to potentially be of higher quality: there are more applications, 

perhaps signaling more interest and on average these applications receive both better raw 

scores and better within-study section science ranks. As a result, the cancer-cell signaling 

DST receives more total funding: $14 million compared to $4 million.

In general, this funding difference could be correlated with unobserved scientific potential or 

other factors that may also impact follow on private-sector patenting: cancer-cell signaling 

might have more scientific potential, which leads to both more total DST funding and, 

independently, more patenting.

We address this by using variation in DST funding within a tight window around an IC’s 

payline, rather than using variation in total DST funding. In this example, we consider the 5 

grant window above and below the NCI’s payline: these are shaded darkly in Figure 2. 

Within this window, the grant applications associated with cancer-cell signaling and cancer-

tumor physiology appear similar in quality: both DSTs have the same number of 

applications within this window, and those applications receive the same average raw score 

and have the same average science rank. Nonetheless, however, even within this window, our 

DSTs receive different amounts funding. Cancer-cell signaling receives funding associated 

with G5, G7, and G8 for a total of $6 million while cancer-tumor physiology receives 

funding for G21 and G22, for a total of $4 million.

This difference of $2 million comes from differences not in raw scores or rank scores (both 

of which might plausibly be thought of as reasonable measures of application quality), but in 

“rank of ranks” score. Holding constant average raw scores and rank scores as we do in this 

example, the remaining variation in rank of ranks is driven by the relative quality of 

applications in other disease areas. For example, the cancer-tumor physiology application, 

G24, is not funded because the cancer-cell signaling application G8 has a higher science 

rank. This happens not because of the quality of G24 relative to G8 (in fact, G24 receives a 

higher raw score), but because G8 faces weaker competition from cell-signaling applications 

in other disease areas (for example, G9-G11, G13, and G15).

We believe that this type of variation is not correlated with underlying innovative potential: 

the additional $2 million that cancer-cell signaling receives in this +/− 5 grant window 

around the NCI’s payline can be thought of as a “windfall” because it is not correlated with 

the quality of applications in this window. Our strategy is to instrument total DST funding 

(the $14 million that cancer-cell signaling receives) with this windfall amount.
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Generalization: Instrument construction for the entire sample.: As in our motivating 

example above, our main IV specification also examines funding for DSTs that have the 

same number and quality of grant applications near an IC’s payline, but which receive 

different amounts of “windfall” funding. Specifically, we estimate:

Patents
dst

= α0 + α1Fundingdst + Υ(# Applicationsdst)
+ Φ(RawScoresdst) + Ψ(ScienceRanksdst) + δds + γdt + νst + εdst

(3)

instrumenting Fundingdst with

WindfallFundingdst = ∑
g ∈ wdt

Fgdst

(4)

WindfallFundingdst is the amount of funding for a DST that comes from the set of grants, 

Wdt, that are within a window around its IC’s payline. In our simple example from the 

previous section, Wdt was the 5-application window on either side of the NCI’s payline. In 

our main specifications, we define Wdt to be the set of 25 grant applications on either side of 

the funding threshold for disease area d in year t; we construct the windfall funding amount 

to be the sum of funding for grants within this set that are actually funded. On average, 

windfall funding accounts for 5.6% of a DST’s total funding in that year. The median IC 

receives 750 applications in a given year (the mean is 1,100), making this a relatively tight 

window. Our results are robust to a variety of other bandwidths.

In general, WindfallFundingdst, as currently defined, may still be endogenous. This is 

because what we call windfall funding is simply the marginal funding that a DST barely 

gets. Better DSTs may have more applications that are highly scored and those DSTs would 

have a greater representation of grants in the set Wdt of applications near an IC’s payline; if 

this were the case, these better DSTs would also be likely to have more funded grants within 

this set. Similarly, even if two DSTs have the same number of grant applications near an 

IC’s payline, applications from better DSTs may justifiably receive better scores and, as a 

result, better DSTs may have a greater number of grants that are actually funded.

To address these concerns, we use WindfallFundingdst as an instrument for Fundingdst only 

after including additional variables controlling for the quality of a DST’s applications. 

Specifically, Equation (3) includes a full set of indicator variables for the number of grant 

applications any given DST has near the threshold set Wdt (i.e., the function ϒ in equation 

(3)), as well as separate cubics in the average raw score and average science ranks of all 

DST applications within the threshold set W (i.e., the functions Φ and Ψ in equation (3)). 

Azoulay et al. Page 14

Rev Econ Stud. Author manuscript; available in PMC 2019 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Controlling for both the raw score and science rank accounts for any differences in quality 

among applications, meaning that the remaining variation comes only from how science 

ranks translate into rank of ranks.15 In our earlier example, we show how it is possible for 

two DSTs to have the same number of applications within a window, for those applications 

to have the same average raw scores and science ranks, and for DSTs to nonetheless receive 

different amounts of windfall funding.

3.2.3 Identification Checks—In this section, we investigate the extent to which DST 

funding may be correlated with other factors that may also impact private sector innovation.

We first show that the NIH does not appear to be as sensitive to the scientific potential of 

research areas as one might expect. If the NIH were directing funding to DSTs on the basis 

of their time-varying scientific potential, we would expect that the amount of funding for 

DSTs that share the same scientific interests should be correlated; for example, if the NIH 

were allocating more money to genetics because of increased potential in that area, then we 

should weakly expect funding for genetics–related research to be positively correlated across 

disease areas. Table 4 tests this by examining the correlation between own-disease funding 

for a science area, Fundingdst, and funding for that same science area from other diseases 

Funding−d,st. Column 1, which includes only year fixed effects, shows a strong negative 

correlation between own and other funding. This, however, is likely due to the mechanical 

relationship between the size of one’s own disease area in a given science area, and the size 

of other disease areas. After controlling for disease by science fixed effects in Columns 2 

and 3, we find no remaining correlation. Columns 4 through 6 repeat this exercise using the 

proportion of a disease area’s funding devoted to a particular science area as the variable of 

interest; we find no correlation in these specifications either.

Our next tests deal with our IV specification in particular. Table 5 tests alternative first 

stages using past or future windfalls as an instrument. If windfall funding for a DST is 

correlated with time-varying observed potential in that disease/science area after 

conditioning on the number of applications around the payline and their raw scores and 

science ranks, then we might expect past or future windfalls to still be predictive of current 

funding; excitement about targeted cancer therapies in the wake of Gleevec might, for 

instance, drive funding for cancer/cell-signaling for several years. The results in Table 5 

show, however, that this is not the case. While current windfalls (Column 2) are strongly 

predictive of total DST funding, past and future windfalls are not.

Figure 3 illustrates this point graphically. The first panel of Figure 3 plots past windfall 

funding on the x-axis against current windfall funding on the y-axis and finds no evidence of 

a relationship. The second panel does the same for current and future windfall funding. The 

final panel examines the relationship between windfall funding and “non-windfall” funding, 

i.e., Fundingdst – WindfallFundingdst. If windfall funding were truly random, then it should 

15Jacob and Lefgren (2011) investigate the impact of receiving NIH funding on the publication output of individual scientists using a 
regression discontinuity design and compare outcomes for grant applications just above and just below an Institute’s payline. We 
cannot use the same design because the running variable—rank of rank—applies to individual grants but not to DSTs. There is no 
DST-level discontinuity. Instead, we compare DSTs with similar quality applications as judged by their raw and science rank scores, 
but which receive different levels of windfall funding.
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not be correlated with the overall quality of the DST as given by the amount of non-marginal 

funding it receives. Again, we find no relationship.

These results show that a DST’s windfall funding, controlling for these variables, is 

uncorrelated with non-windfall funding, previous and future windfall funding, and other 

measures of DST output. Appendix J reports additional specification and robustness checks.

4 Data Construction and Descriptive Statistics

Our analysis combines data from several primary sources: (i) Administrative data on NIH 

grant applications from the IMPAC II database; (ii) publication data from PubMed including 

information on grant acknowledgements; (iii) patent data from the USPTO; and (iv) 

information on patents related to FDA-approved drugs from the FDA’s “Orange Book” and 

IMS-Health. Our final analytic sample captures linkages between the universe of NIH-

funded grants from 1980-2005 at both the individual grant and DST levels, and the universe 

of biomedical patents granted between 1980 and 2012.16

4.1 Grant-level Patent Match

We begin with data on all 153,076 NIH grants from 1980-2005 that were evaluated in 

chartered study sections (those that are associated with a specific science area, rather than 

convened on an ad hoc basis). These grants were evaluated by 624 such study sections and 

funded by 17 Institutes.17 The characteristics of these grants are described in Table 1. In 

total, we have grant-level data that aggregate up to the activities of 14,085 DSTs. This is a 

only a small fraction of the 624 × 17 × 25 = 265, 200 potential DSTs. Many potential DSTs 

do not exist because they do not represent intellectually coherent D-S combinations. 

Appendix F provides details about our disease-science panel dataset and shows that our 

results are robust to restricting to a panel of disease-science areas that receive non-zero 

funding for all years for which it is in existence.

The average award size for grants in our sample is approximately $1.6 million. Seventy four 

percent of grants are R01s—the R01 is a renewable, project-based grant that constitutes the 

majority of NIH’s grant spending—and most (60%) are for new research projects (as 

opposed to renewals of existing projects).

Table 2 describes the patents in our sample and show how they are linked to NIH funding. 

We begin with the universe of 315,982 life-science patents granted by the USPTO between 

1980 and 2012. Of these, 232,276 (74%) are private-sector patents and 83,394 (26%) are 

what we call public-sector patents, meaning those assigned to governments, universities, 

16A patent is part of our universe if (i) it is in a relevant patent class and (ii) cites at least one article indexed by PubMed. The relevant 
patent classes are the 92 classes belonging to categories 1 and 3 in the NBER USPTO database (see Appendix B for a complete list). 
Note that in practice, the second requirement is almost always satisfied for patents in these classes.
17The list of the included Institutes is described in Appendix A, Table A1. Briefly, we exclude three small ICs (the National Institute 
on Minority Health and Health Disparities, the National Institute of Nursing Research, and the National Library of Medicine), as well 
as six NIH centers which serve mainly administrative functions. Our primary analyses do include three ICs that are not oriented 
towards a particular disease: the National Institute of General Medical Sciences (NIGMS), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), and the National Human Genome Research Institute (NHGRI). Note, however, that these 
Institutes review grant applications from several study sections, which is all that our identification strategy requires. In a robustness 
test, we show that our results are robust to excluding ICs that are not primarily devoted to the study of specific diseases or body-
systems (Appendix K, Table K4).
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hospitals, and other institutions (see Appendix B for a description of patent types and 

definitions). Despite the large number of patents we examine, Table 2 shows that only 4,718 

private-sector patents (2%) are associated with advanced drug candidates—drugs and 

biologics in Phase III trials and beyond—and even fewer, 1,999 (<1%) are associated with 

FDA-approved new chemical entities and new biological entities.

Table 2 also shows that NIH funding is relevant for organizations seeking patents. Forty-four 

percent of life-science patents in our sample directly cite NIH-funded research. Among the 

subset of private-sector patents, this figure is 39%. For public-sector patents, this figure is 

57%. We further document a greater role of NIH-funded research in the development of high 

value patents: 50% of patents associated with advanced drug candidates—those that have 

entered clinical trials—cite NIH-funded research (Sampat and Lichtenberg 2011).

Table 2 also shows that the vast majority of patents—265,741 patents or about 84% of the 

universe—cite research that is similar to research funded by an NIH DST. This is true, 

moreover, for private- and public-sector patents, as well as high value patents, and those 

from both large and small firms.

According to Table 1, 66,085 or 43% of the NIH grants in our sample produce a publication 

that is directly cited by a patent. This figure is a lower bound because our publication and 

patent data are truncated in 2012. Figures 4, 5, 6 and 7 describe the lag times between NIH 

funding and follow-on patenting. Each figure displays a curve graphing the cumulative 

probability that a grant is linked to follow on patenting, over time. At a given point t on the 

x-axis, we plot the proportion of t year old grants that have produced a publication that is 

cited by a patent. The curve is generally increasing because a grant’s likelihood of being 

linked to a patent increases with age. In some cases, these curves turn downward in later 

years because of changes in cohort composition: to compute the proportion of grants linked 

to a patent at t, we exclude grants that are not yet t years old, meaning that our calculations 

for higher t do not include more recent grants. This provides a graphical way to examine the 

diffusion of knowledge stemming from NIH expenditures, and how this diffusion process 

varies over time and across diseases.

Figure 4 documents substantial variation in the relevance of NIH funding for patenting 

across diseases. Approximately 15 years after funding, over 60% of grants funded by the 

National Institutes for Allergy and Infectious Diseases have produced research that has been 

cited by a patent. By contrast, this is true of only 20% of grants funded by the National 

Institutes of Mental Health. We caution that these differences should not be interpreted as 

comparisons of the efficacy of NIH funds, as they also reflect differences in the ease of 

biomedical innovation across disease areas and the types of research funded by different 

Institutes.

Figure 5, meanwhile, shows that time-to-patent has been decreasing over time. Only 20% of 

grants awarded between 1980 and 1985 produced research that is relevant for a patent in the 

ten years following. For grants awarded between 1991 and 1995, this figure is on track to be 

almost 40%. One interpretation of this finding is that NIH efforts to encourage “translational 

research” have been successful. An alternative view is that patentability has steadily moved 
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upstream along the biopharmaceutical R&D value chain (Eisenberg and Nelson 2002; 

Jensen and Murray 2005).

Figure 6 underscores the fact that although 43% of grants are associated with patents, 

“important” patents—those pertaining to advanced drug candidates, or to FDA-approved 

treatments—are still relatively rare. Even twenty years after approval, less than 5% of NIH 

grants produce research cited by a patent associated with an FDA-approved drug; this figure 

is only slightly higher for advanced drug candidates, those at or beyond Phase 3 clinical 

trials.

Finally, Figure 7 shows that a grant is just as likely to produce research relevant for patents 

primarily associated with other disease areas as it is for patents associated with its own 

disease area. Our matching process allows a patent to be associated with more than one 

Institute (conditional on being linked to a DST, the average patent is linked to 7 different 

ICs). For each patent, we define its primary disease area as the IC responsible for funding 

the plurality of the publications that it cites. Then we categorize each patent-to-grant linkage 

as being for the same disease or for a different disease, where the reference disease is simply 

given by the funding IC for the focal grant. Figure 7 also shows that both private- and 

public-sector entities take advantage of NIH-funded research.

From here on, we focus on the impact of NIH funding on private-sector patents. This 

designation excludes patents to universities, governments, hospitals, and other non-profit 

institutions. Appendix Table K5 reports our main results with public-sector patents instead. 

Appendix N presents results that circumvents the use of publication data by restricting the 

patent data to the set of “Bayh-Dole” patents, i.e., patents held by the PIs of NIH grants and 

reported to NIH as products of these grants. OLS estimates imply an elasticity only 

approximately half as large as that observed in Table 7. The corresponding IV estimates are 

negative and imprecisely estimated. To summarize, despite its prominence in policy 

discussion, academic entrepreneurship (as proxied by academic patenting) corresponds to 

only a small fraction of the impact of NIH-funded research on patenting more generally.

4.2 DST-level Patent Match

Recall that our analysis is at the DST level: each observation is an Institute-study section 

pairing at a point in time, and we are interested in how funding for this DST relates to later 

patenting. Table 3 describes the characteristics of the DSTs in our sample. The average DST 

supports 11 grants totaling $47 million in funding (weighted by DST size). Table 3 also 

indicates that 13,027 or over 80% of DSTs produce research that is potentially relevant for 

patenting. In contrast, 8,886 DSTs (63%) can be linked to patents through a direct citation 

link.

The correct attribution of patents to DSTs depends on the innovation production function 

and the degree to which any particular piece of knowledge is instrumental in generating the 

patent. If DSTs are pure substitutes in the production of patents and if a patent is linked to N 
DSTs, then each DST should receive credit for 1/Nth of that patent. Table 3 shows that the 

average DST in our sample produces research that is directly cited by 12.8 private-sector 

patents and is intellectually related to a total of 24.8 patents, using this “fractional” patent 
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count. If, instead, the contributions of various DSTs are complements, then a patent should 

count for more than 1
N ; in the extreme, support from each DST is critical such that 

production is Leontief. In this case, DSTs should receive full credit for each patent it is 

linked to, which we designate as a “unit” patent count. Applying this assumption to our data, 

we find that the average DST is directly cited by 102 unit patents. The distribution of patent 

counts at the DST level exhibits skewness, as can be observed in the histograms displayed in 

Figure 8.

5 Main Results

Tables 6 and 7 present the fixed effects estimates of the impact of NIH funding on our two 

measures of patent outcomes. The top panel of Table 6 describes the impact of NIH funding 

on the number of patents that cite NIH-funded work, using fractional patent counts. Without 

any controls, we find that a $10 million increase in funding for a research area (DST) is 

associated with 2.6 more patents. Adding fixed effects for research areas (disease/science 

groupings) reduces this coefficient to 2.3. We add increasingly detailed fixed effects in each 

successive column; interestingly, our estimates remain relatively stable. One explanation for 

this is consistency is that, at the time it makes funding decisions, the NIH may not be able to 

anticipate which DSTs have greater future innovative potential. In this case, the amount of 

funding that a DST receives may be relatively uncorrelated with its future patent output. 

With our full set of controls, we estimate that a $10 million increase in funding contributes 

to 2.5 additional patents. With an average grant size of $1.6 million, this is equivalent to 

about one patent for every 2 to 3 NIH grants.

The bottom panel presents an equivalent set of results using unit patent counts. Here, we 

estimate that $10 million leads to 18.4 more patents in the specification that is saturated with 

fixed effects (column 5). The difference in estimates between the top and bottom panels of 

Table 6 are substantial and arise because using unit count assumes that publications are 

perfect complements in patent production, as discussed in Section 4.2. Yet, the 

corresponding elasticities are very similar in both cases. Since patents can cite many 

publications (14 on average), it may not be reasonable to assume that all publications are 

required to produce a given patent. As such, in the remainder of the manuscript we focus on 

the smaller and more conservative fractional counts as our preferred outcome variable.

The estimates in Table 6 would not reflect the true value of NIH funding if public support 

for science either crowds out private investment or if it spurs patenting in ways that cannot 

be captured by a direct grant-publication-patent link. The top panel of Table 7 reports the 

impact of NIH expenditures on the total amount of private-sector patenting in areas related 

to a DST, whether or not these patents directly cite NIH-funded research. This specification 

is designed to assess the net impact of NIH funding on private-sector innovation in an area, 

accounting for both the possibility of crowd-out and the possibility that not all patents 

spurred by NIH funding can be linked via direct citations. Column 5 of Table 7 finds that a 

$10 million increase in DST funding results in a 3.2 net increase in the number of related 

private-sector patents, or about one patent for every two NIH grants.
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If NIH funding fully crowded out industry investments, we would expect the coefficients 

reported in Table 7 to be zero. In fact, the magnitude of the impact of NIH funding on total 

patenting is slightly larger than its effect on patenting that can be directly linked to NIH 

funds (see Table 6). This is consistent with the absence of crowd-out. Alternatively, even if 

NIH funding crowds out some private investment, it is offset by increases in the number of 

patents related to NIH funding through indirect citation channels, or by increases in the 

productivity of private R&D investments.18

The bottom panel of Table 7 reports these results with fractional patent counts, yielding 

effect sizes that are an order of magnitude larger. These results, however, are unlikely to 

reflect the true effect of NIH funding. Recall that this final outcome measure is designed to 

capture the influence that NIH funding may have on patenting that does not require a direct 

citation linkage between funding and patents. In this measure, patents are linked to study 

sections through shared intellectual foci, reflecting the notion that public funding in a 

particular area produces knowledge that enhances productivity of others working in that 

area. Each DST is associated with many more patents in this way, thus driving a large wedge 

between fractional and unit impacts. Unlike the direct method which connect patents to a 

small number of study sections, our indirect method often yields connections to hundreds of 

study sections in related intellectual realms. While all linkages may be important, it is harder 

to imagine that each unit of knowledge is instrumental, and thus we favor the more 

conservative fractional approach in this case. Going forward, we will discuss estimates of 

the effect of funding on overall patent production using only the more conservative 

fractional counts.

Table 8 displays IV estimates using our instrumental variable for funding. Column 1 reports 

the first stage estimate of the relationship between total DST funding and windfall DST 

funding, controlling flexibly for raw scores and science ranks, as well as the number of 

applications that a disease/science paring has in a 25-grant window surrounding that IC’s 

funding threshold for that year. Because our IV strategy requires that we control for these 

additional variables, which we do not use in Tables 6 and 7, we report both our IV estimates 

as well as OLS estimates using the same set of first stage controls. Table 8 also reports tests 

of the strength of our windfall funding instrument. We obtain a Cragg-Donald Wald F-

statistic of 478 and a Kleibergen-Paap Wald F-statistic of 37.5; both reject the null 

hypothesis that our instrument is weak. Comparing OLS and 2SLS specifications, we find 

similar effects of NIH funding on the number of directly cited patents (2.5 vs. 2.0) and a 

slightly smaller effect for the total number of patents related to an NIH research area (3.6 vs. 

2.3). We take the 2.3 figure in Column 5 as our preferred estimate of the impact of NIH 

funding on private-sector patenting. Appendix Table J2 reports reduced-form estimates using 

windfall funding as the explanatory variable; we find similar, or even slightly larger results.

Finally, we note that although we take our slightly smaller IV estimates as our preferred 

specification, our OLS fixed effect and IV approaches should be considered complementary 

18This may occur, inter alia, because researchers trained with NIH funds find jobs in the private sector where they go on to patent in 
the same area, or because NIH investments clarify the scientific potential of different research areas, allowing biopharmaceutical firms 
to target their investments more efficiently. In both cases, total private patenting in an area may still increase even if overall private 
investment decreases.
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because they identify slightly different sources of funding variation. In particular, our OLS 

estimates will capture the impact of both anticipated and unanticipated changes in NIH 

funding. Increases in funding for a research area may lead to more total patenting in this area 

both by providing support for existing research ideas that would not have been funded 

otherwise, or by encouraging scientists to enter or extend their research in this area. The 

latter effect depends on scientists being aware of funding changes in advance. Our OLS 

estimates allow us to capture both these effects, especially in specifications that control for 

fewer fixed effects. The downside of these estimates is that such variation is also potentially 

endogenous to scientific potential although, in practice, our estimates are not very sensitive 

to the inclusion of more fixed effects, suggesting that the impact we estimate in the OLS is 

less likely to be purely driven by endogenous factors correlated with our fixed effects.

Our IV estimates, on the other hand, are driven by differences in windfall funding coming as 

a result of the relative ranking of grant applications that have already been submitted. As 

such, they only capture the impact of unanticipated increases in NIH funding for a given 

research area. Such variation is more likely to be exogenous, but the tradeoff is that we 

identify a less comprehensive source of variation. This may be another potential reason we 

find a slightly smaller impact of funding using our instrument.

5.1 Patents related to NIH-funded research: stable keyword approach

In Table 7 and in Columns 4 and 5 of Table 8, we examine the impact of NIH funding on the 

total number of intellectually related patents, whether or not these patents actually cite NIH-

funded research. We define a patent as intellectually related to an NIH DST if that patent 

cites any publications that are intellectually similar (according to keyword overlap) to 

publications funded by that DST (see Appendix E for details). A potential drawback of this 

approach is that our definition of a DST’s “intellectual area” can vary over time. If funding 

allows a disease/science area to expand the set of topics that it supports, then we may 

associate increased funding with more patents simply because higher levels of grant 

expenditures leads us to credit DSTs with patents over a wider slice of technological space.

To ensure that our results are not driven by this phenomenon, we also reestimate our results 

restricting to a definition of intellectual area that is stable for each disease/science (DS) area. 

To do this, we categorize all MeSH keywords associated with a publication funded by a DS 

combination into one of two types: “stable” keywords appear in publications funded by that 

DS across all years in the observation window, whereas “peripheral” keywords appear only 

in a subset of years in the data. We then restrict the set of related publications to those that 

match to a DS on stable keywords only. This fixes the boundaries of an intellectual area over 

time and therefore breaks any mechanical relationship that might exist between funding and 

the number of indirectly linked patents.

Appendix Table L1 examines the impact of NIH funding on the number of intellectually 

related patents, using a variety of ways to standardize the keywords that define a stable 

intellectual area. The details of this approach are discussed in Appendix L. In general, two 

features of the results presented in Appendix Table L1 deserve mention. First, the 

magnitudes of the coefficients are slightly smaller than those observed in Table 8. This is to 

be expected since our “stable” linking strategy shrinks the number of opportunities to 
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associate patents with DSTs. The IV estimates are more imprecisely estimated (statistically 

significant at the 10% level for three out of four specifications). Second, the elasticities are 

comparable in magnitude to those computed in Columns 4 and 5 of Table 8. We believe 

these results provide evidence that our main conclusions are not driven by a potential 

mechanical linkage between DST funding and the size of its related intellectual area.

5.2 Additional Robustness Checks

We probe the robustness of our results using a variety of approaches, described in more 

detail in Appendices F, I, J, and K.

Appendix F discusses the idea of “missing” DSTs, i.e., those DST observations that are 

absent in our sample of 14,085 DSTs. Appendix Table F1 repeats our analysis on a balanced 

panel of 7,966 contiguous DSTs—those DS combinations that receive funding in all years 

between the first and last year in which the DS is observed. Our estimates are almost 

numerically identical. Appendix I compares traditional production function estimation with 

“fixed lags” to the estimates generated by our approach. Appendix J provides additional tests 

of our identifying assumptions. For example, the NIH occasionally funds grant applications 

out of the order in which they are scored. If DSTs that receive more out-of-order funding 

also have unobservably higher innovative potential, then this may bias our estimates. We 

discuss a variety of specification checks that together demonstrate that this threat to 

identification is not a concern empirically. Appendix J also provides evidence for the 

plausibility of the exclusion restriction for the instrument, in addition to the tests already 

presented in Section 3.2.3. We show that WindfallFundingdst is not correlated with past 

patent output in a DS.

Appendix K considers alternative specifications and samples. We show that our results are 

robust to not using weights in our regressions, so that each DST contributes to the same 

extent to the results, regardless of how many grants it supports. We estimate non-linear 

specifications using logs of funding and patenting, as well as a Poisson parametrization. Our 

main results also hold when restricting our sample to NIH Institutes that are the most 

directly identified with disease and body system areas and we also examine the impact of 

NIH funding on public sector patenting. Finally, we also examine the impact of NIH funding 

on “embodied” versus “disembodied linkages by separating the effect of funding on 

patenting by the same research team that receives the grant from its impact on patenting by 

different research teams.

5.3 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine 

which type of patents are most responsive to NIH expenditures. The impact of NIH funding 

on the development of high-value patents need not be similar to its impact on overall 

patenting; if firms direct their resources to the most promising projects, then the marginal 

patent that is created because of NIH funding may be relatively low quality. Conversely, if it 

is unprofitable for firms to invest in risky or early-stage research, then the marginal patent 

supported by the NIH may be of high quality. Column 1 of Table 9 reproduces the estimates 

of the impact of funding on total private-sector patenting from Table 8. Column 2 focuses on 
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“important” patents, those that either pertain to advanced drug candidates or to FDA-

approved biopharmaceuticals (traditional “small molecule” drugs as well as vaccines and 

biologics).

The OLS and IV estimates reported in Column 2 of Table 9 show that a $10 million increase 

in DST funding leads to a net increase of 0.05 to 0.08 patents associated with advanced drug 

candidates (those that have entered clinical trials) and FDA-approved drugs. While this 

figure is small in magnitude, it translates into an elasticity of patenting with respect to 

funding of between 0.4 to 0.6, comparable to the elasticity we estimate for private-sector 

patents in general. We will discuss alternative measures of patent value in the next section, 

when we discuss the economic magnitude of our results.

Our next set of results consider the impact of spillovers from funding in one disease area on 

innovation in others. Many studies document cases in which existing medical treatments 

have been successfully used to treat new conditions (Gelijns et al. 1998; Wurtman and 

Bettiker 1994). Similarly, drug development efforts often build on research originally 

intended for other diseases, reflecting the importance of knowledge spillovers across 

diseases (Henderson and Cockburn 1996). Our results provide evidence on the magnitude of 

these cross-disease knowledge spillovers. To measure spillovers, we assign a primary disease 

affiliation to each patent in our data by finding the NIH Institute that is responsible for 

funding the plurality of publications cited by that patent. We find that NIH funding directed 

toward one disease area is as likely—if not more likely—to translate into patents that are 

primarily affiliated with other disease areas as it is to translate into patents affiliated with its 

own. The IV estimate in Column 4 of Table 9 indicates that a $10 million increase in 

funding for a DST generates 1.20 additional patents with the same primary disease 

affiliation. Column 5, however, shows that this same funding also generates 1.89 additional 

patents with a different primary disease affiliation. Part of the reason for such large cross-

disease funding spillovers may be due to the fact that much of the research that the NIH 

supports centers on scientific questions that are relevant to many disease areas. The National 

Cancer Institute may, for instance, fund a study of cell division in frog embryos; this 

research may also be relevant for the study of tissue regeneration and aging-related 

disorders. These findings highlight the importance of using a patent-linking strategy that 

does not assume that funding only impacts innovation in its intended area. Had we made this 

assumption, we would have failed to account for over half of the relevant innovative outputs.

Finally, Table 9 also shows that NIH investments increase patenting for both large and small 

assignees. While larger assignees produce a larger number of patents in response to 

increases in NIH funding, the response of small assignees is equally elastic. This finding is 

consistent with our summary statistics in Table 2, which show that a greater proportion of 

patents assigned to small firms cite NIH-funded research.

5.4 Valuing the Impacts of NIH Investments

Our results suggest that a $10 million increase in NIH funding leads to a net increase of 2.3 

weighted private-sector patents. Putting a dollar value on these patents is difficult, for several 

reasons. It is well known that patent value distributions are highly skewed (Harhoff, Scherer, 

and Vopel 2003). Moreover, only the private value of patents is typically calculated, and the 
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social value can be much larger. As such, we utilize a variety of approaches to monetize this 

return.

One approach to valuing the returns to NIH funding in dollars, rather than patents, is to rely 

on estimates for the market value of patents taken from the literature. Bessen (2009) 

quantifies the effect of patent stocks on Tobin’s q, and uses these estimates to derive the 

market value of a patent across sectors of the economy. In the biopharmaceutical sector, his 

estimates imply that an additional patent is valued by the stock market at about $11.2 million 

(2010 dollars). Combined with our estimate in Table 6, Column 5, a back-of-the-envelope 

calculation indicate that a $10 million dollar increase in NIH funding would yield $34.7 

million in firm market value. As Bessen (2009) notes, a problem with this approach is that 

patents may be picking up the effects of other factors correlated with market value; 

accordingly this figure probably represents an upper bound.

A different approach is to focus on patents associated with marketed drugs. Very few of the 

patents in our sample are for drugs, let alone marketed drugs. However, for this set we have 

another measure of private value, drug sales. DiMasi, Grabowski, and Vernon (2004) report 

that the mean present discounted value (PDV) of lifetime sales for new drugs approved by 

the FDA between 1990 and 1994 was approximately $3.47 billion (2010 dollars). More 

recent research (Berndt et al. 2015) shows similar orders of magnitude, although the returns 

appear to have been declining over time.

Table 10 presents implied drug valuation estimates of our results based on the DiMasi et al. 

figure reported above. Column 1 reproduces our findings from Table 9 with respect to all 

advanced drug candidates. Another variation is to restrict the outcome to patents associated 

with FDA-approved drugs. Column 2 reports OLS and IV estimates using only these patents 

to construct the outcome variables at the DST level and finds that a $10 million dollar 

increase in funding results in approximately 0.034 more such patents. In this definition, we 

include all patents we can link to a drug (including those listed in the Orange Book, as well 

as additional patents from IMS Patent Focus); there are approximately eight patents 

associated with every FDA-approved drug on average (see Appendix B). If the inventions 

associated which each of these eight patents are essential to the development of the 

corresponding drug, then we should fully credit each with the value of that drug. In this case, 

we would expect $10 million dollar increase in funding to generate an expected PDV of 

0.034 × $3.47 billion = $149.2 million dollars in sales.

If we instead assumed that the invention underlying each patent contributes equally to the 

drug, we would expect this funding amount to translate into 0.034/8 = 0.004 drugs, with an 

expected PDV of 0.004 × $3.47 billion = $14.7 million.

However, even within drug, there may be heterogeneity in patent importance.19 Many 

“secondary” Orange Book patents are not even filed until well after the product is launched 

19The active ingredient patent is typically thought to be more important than other Orange Book-listed patents (on average there is a 
single active ingredient patent per drug, and three total Orange Book patents). As an illustration of this, generics typically are able to 
enter after the expiration of the active ingredient patent: later Orange Book patents are often found to be irrelevant or invalid 
(Hemphill and Sampat 2012).
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(Kapcynski et al. 2012; Hemphill and Sampat 2013); IMS patents may be even more 

peripheral.20 Attributing the same share of product sales to these patents as to the “main 

patent” associated with that drug may lead to overstating the effect of NIH funding. To 

explore this heterogeneity, we ran several additional models. The first looks only at “pre-

approval” patents (from the Orange Book and/or IMS), those filed before drug approval (on 

average, there are five such patents per drug). In Column 4, we are more conservative, 

limiting the outcome variable to the first patent associated with a marketed drug, on the 

assumption that this is the main patent. (No scaling is required in this case since we are only 

looking at one patent per drug.) Finally, Column 5 examines drug level outcomes: in this 

case, we match the number of discrete drugs associated with a DST, rather than the number 

of patents. In all three of these columns, the OLS estimates are statically significant and 

similar in magnitude to those reported for FDA approved drugs, from Column 2, but the IV 

estimates are smaller and statistically insignificant.21

There exists a vast literature estimating the rate of return to private R&D. These estimates 

are highly variable, ranging between 0 and 100% (see Hall, Mairesse, and Mohnen (2001) 

for a comprehensive summary). Two caveats must be kept in mind when comparing our 

results with those previously reported. First, the level of analysis employed in our study (the 

research area) is very different from that typically encountered in the literature, which tends 

to analyze data collected at the industry-, firm-, or plant-level. Second, we focus on a single 

industry, the biopharmaceutical industry, rather than a wide cross-section of industries. That 

said, our implied rate of return (based on the $14.7 million implied drug value of a $10 

million investment seen in Table 10, column 2) is quite similar to the middle of the range of 

estimates reported in the literature.

Assigning value to individual patents is notoriously difficult, and the different approaches 

above yield different magnitudes for the effects of NIH funding. Accordingly, beyond 

presenting a range of implied drug valuations, we are not in a position to report a specific 

rate of return. Any such estimate would only capture the private (rather than social) value of 

the patented technologies.22 Finally, as we will emphasize in the conclusion, there are many 

effects of NIH funding that do not result in patentable research at all.

6 Conclusion

Modern growth theory highlights the importance of knowledge spillovers for long-run 

economic growth. These spillovers mean that private firms will under-invest in the 

production of knowledge. Two types of policies aim to ameliorate this “market failure”: 

patent policy and public funding of research. While there is now a significant body of 

20On average, 5 of the 8 patents for each drug were in IMS only. These were patents that did not meet the FDA’s standards for being 
relevant to the marketed drugs. Nevertheless, as discussed in Appendix B, we include IMS patents since the Orange Book has very 
limited coverage for biologic drugs, even though it does introduce many peripheral patents for traditional, “small molecule” drugs.
21In our data, there are only 332 drugs and 270 “main” patents that can be matched to NIH grants over the course of our 25 year 
sample. Because the IV estimates rely on limited variation around an IC’s funding payline, there may not be enough data to obtain 
reliable IV estimates when these extremely rare patents are used to construct outcome variables at the DST level.
22For biopharmaceuticals, some estimates suggest that the social value of an innovation can exceed its private value by a factor 
ranging from 4 to 20 (Lakdawalla et al. 2010; Philipson and Jena 2005, Goldman et al. 2010). Other authors strike a more skeptical 
note, emphasizing that the enormous costs of adopting certain medical technologies can sometimes drive social benefits far below the 
level of the surplus captured by their manufacturers (Murphy and Topel 2003; Chandra and Skinner 2012).
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empirical research on the former, the effects of public funding, and public funding of science 

in particular, have received less attention.

One reason for this paucity of evidence on the impacts of public research investments is that 

it is difficult to measure the effects of knowledge that is both non-rival and difficult to 

appropriate (Griliches 1992). While the idea that public science has large effects is central to 

U.S. policy—going back to Vannevar Bush’s 1945 assertion that basic research is “the 

pacemaker of technological progress”—economists emphasize that evidence in support of 

this claim is rather limited (Garber and Romer 1996; Cockburn and Henderson 1998).

In this paper, we examine the effects of public science on private sector innovation in the life 

sciences, focusing on funding by the largest funder of research in the world, the National 

Institutes of Health. Our results show that NIH investments in a research area increase 

subsequent private-sector patenting in that area; a $10 million increase in funding for an area 

leads to 2.3 additional patents or, equivalently, we expect one private-sector patent generated 

for every two to three NIH-funded grants. This result holds across a variety of OLS and IV 

specifications. This positive impact, moreover, does not appear to be associated with lower 

private investments in other research areas. We cannot perform a formal rate of return 

calculation since our analysis focuses on only one aspect of the effect of NIH funding, that 

of sales associated with patented drugs. One rough calculation suggests that $1 dollar in NIH 

funding generates around $1.40 in drug sales.

We find that over half of the patents that result from NIH funding flow across disease areas. 

This has implications for measurement: had we looked only at patents in the same disease 

area, we would have missed half the output. This finding speaks to a long-standing question 

in postwar medical research policy: the feasibility and desirability of targeting research to 

diseases. Claims that scientific research often flows across disease areas have been common 

from NIH Directors since the agency’s founding, especially during Congressional debates 

about whether particular diseases are over/underfunded or in response to advocates lobbying 

for a new Institute for “their” disease (Sampat 2012). Our results support the view that there 

are strong cross-disease spillovers. The organization of the agency around disease-specific 

Institutes, though useful for mobilizing funding, may not reflect the importance of the 

interplay of ideas from different disease areas and fields in shaping biomedical research 

progress.

Throughout the text, we emphasized numerous caveats. We highlight several here. First, we 

are examining only one type of return to NIH funding, those that flow through patented 

innovations. This neglects a number of other socially important benefits of publicly-funded 

medical research, including applied epidemiological and clinical research that changes 

medical practice or health behaviors. Previous research (Cutler and Kadiyala 2003; 

Heidenreich and McClellan 2003) suggests this research has high value. Ignoring these 

outcomes could lead to large underestimates of the value of NIH funding.

A second potential limitation is the assumption that patent-to-publication citations reflect 

real linkages between the cited grant/publications and citing patents. For the goal of 

measuring knowledge spillovers from public research, these citations are much more 
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meaningful than patent-to-patent citations, for reasons already discussed. However, articles 

are cited in patents for legal reasons, to denote “prior art” material to patentability, and 

decisions about how much to cite are influenced by factors including patent importance and 

applicant patent strategy (Sampat 2010). Not all articles cited are crucial for the 

development of the citing patent. Citations that are not real intellectual influences would 

lead to overestimates of the effects of NIH funding. (At the same time there are false 

negatives—not all knowledge firms “build on” must be cited—which would lead to 

underestimates of the effects of NIH funding.)

Third, our implied drug valuations were based on publicly available estimates on the 

distribution of drug sales, and assumptions about how to divide a drug’s value across its 

many patents. There is likely considerable heterogeneity in the private and social value of 

drugs (Garthwaite and Duggan 2012), and individual patents (Hemphill and Sampat 2011), 

which our back-of-the-envelope calculations could not fully incorporate.

Finally, our analysis implicitly assumes a “linear” flow from science to technology, and does 

not account for the complementary investments made by other actors (e.g., the NSF, or 

venture capital firms) in the path from laboratory to marketplace, or the feedbacks from 

technology to the progress of science. This “linear model” of research is well known to be 

an oversimplification, but even its detractors acknowledge that it is more reasonable in the 

life sciences than in other fields, and that alternative models would be far less empirically 

tractable (Balconi et al. 2010).

Despite these limitations, our analysis uses novel data and a new source of identification to 

provide estimates on an important but understudied component of the innovation production 

function: spillovers from public research. In future work, this framework could be extended 

to examine a range of other questions of interest to economists and policymakers, including 

heterogeneity in types of research (whether more or less targeted research has higher impact) 

and how the presence or absence of intellectual property rights affects returns to public 

research investments.
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Figure 1. 
Overview of Data and Construction of Patent Outcome Measures
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Figure 2. 
Example of Windfall DST Funding
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Figure 3. 
Correlation Between Windfall DST Funding and Other DST Funding
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Figure 4. 
Grant-Patent Lags by Disease Area — Top 10 ICs
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Figure 5. 
Grant-Patent Lags by Grant Cohort
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Figure 6. 
Grant-Patent Lags by Patent Quality
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Figure 7. 
Grant-Patent Lags by Patent Type
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Figure 8. 
Outcome Measures by DST
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Table 1:

Grant Characteristics, 1980-2005

Grants Linked to
Private-sector Patents

Full Sample Cited by Patents Related to Patents

Sample Coverage

# Grants 153,076 66,085 123,872

# Disease Areas (Institutes) 17 17 17

# Science Areas (Study Sections) 624 548 598

# DSTs 14,085 9,951 13,092

Grant Characteristics

% R01 equivalent Grants 73.74 77.46 74.33

% Center Grants 3.26 4.79 3.20

% Teaching or Fellowship Grants 11.43 10.12 11.27

% New 59.50 51.08 58.55

Funding Amount (total project allocation, 2010 dollars; mean & s.d.) $1,556,969
(2,198,506)

$1,875,779
(2,783,272)

$1,568,881
(2,215,371)

Number of Acknowledged Publications 1.41
(3.58)

3.27
(4.86)

1.75
(3.91)

Number of Related Publications 84.80
(194.36)

166.10
(271.34)

104.90
(211.24)

# of Patents Citing Grant (weighted counts) 0.43
(2.36)

1.00
(3.51)

0.54
2.62

# of Patents Related to Grant (weighted counts) 0.84
(2.21)

1.60
(3.05)

1.04
(2.41)

Note: Sample is the set of all NIH-funded grants from 1980-2005, excluding NINR, NLM, and NIMHD grants (see Appendix A for a full list of 
ICs in the sample) and evaluated by chartered study sections. The sample is restricted to new and competitive renewal grants so that there is one 
observation per successful grant application cycle. A grant is defined as cited by patents if there exists a patent that cites a publication that 
acknowledges funding from that grant. A grant is matched with a publication if it acknowledges the project number of the grant and is published 
within 5 years of the grant’s funding year. A patent is citation-linked to a grant if it cites a publication that is linked to a grant. A grant is considered 
related to a patent if that grant produces a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a publication 
that is cited by a patent. In this paper, we require that similar publications be published within 5 years of each other. A grant is an R01 equivalent 
(e.g. a large project-based grant) if its NIH funding mechanism is either an R01, R23, R29, or R37. Center grants are those grants whose 
mechanism starts with a “P” (e.g., a P01 grant containing multiple projects). A teaching or fellowship grant is one whose grant mechanism 
designation begins with a “T” or an “F.” New grants are projects that have not previously received NIH funding. Acknowledged publications are the 
unique count of PubMed publications which acknowledge the grant′s main project number and which are published within five years of grant 
receipt. Related publications include directly acknowledged publications, in addition to all publications related to them, according to the PMRA 
algorithm discussed in the text, and published within a 5 year window.
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Table 2:

Patent Characteristics, 1980-2012

Patents Linked to NIH Funding

Full Sample % Citing NIH
Funded Research

% Related to NIH
Funded Research

Sample Coverage

# Patents 315,982 44.00 84.10

Patent Characteristics: General

Private Sector 232,276 39.38 82.33

Public Sector 83,394 56.91 89.07

Patent Characteristics: Private Sector Only

Advanced Drug Candidates 4,718 49.92 88.22

FDA Approved Drugs 1,999 42.47 86.79

Large Asssignee 164,431 36.23 80.37

Small Asssignee 29,183 51.37 87.89

Note: Sample is the set of all USPTO granted patents from 1980-2012 that meet the following criteria: (i) they are either in NBER Patent 
Categories 1 (“Chemicals”) or 3 (“Drugs and Medical”) and (ii) they cite at least one publication in the PubMed database. A patent is defined as 
citing NIH-funded research if it cites a publication that acknowledges the project number of an NIH grant and is published within 5 years of that 
grant’s funding year. A patent is considered related to NIH funding if it cites a publication that is similar (as defined by the PubMed Relatedness 
Matching Algorithm) to a publication that acknowledges NIH funding. We require that similar publications be published within 5 years of each 
other. A patent is labelled “Private Sector” if it is assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus 
foundations, universities, and hospitals). A patent is labelled “Public Sector” if it is assigned to a US or foreign goverment (NBER categories 5 and 
6) or if it is assigned to a foundation, university, or hospital. A patent is labeled an advanced drug candidate if it is associated with a drug or 
biologic in Phase III clinical trials or beyond (these are listed in Orange Book and/or IMS Patent Focus); A patent is associated with an FDA 
approved drug if that patent is associated with a marketed treatment accoding to IMS Health. A patent is associated with a large assignee if its 
assignee employs over 500 employees; it is considered small otherwise.
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Table 3:

NIH Research Area (DST) Characteristics, 1980-2005

DSTs Linked to Patents

Full Sample Cited by Patents Related to Patents

Average # of Grants 10.85
(16.58)

15.60
(19.05)

11.62
(17.01)

Output Characteristics

Funding Amount (DST) $40,631,460
(43,611,800)

$45,556,350
(44,448,260)

$41,397,230
43,683,690

# of Patents Citing NIH-Funded Research (Fractional counts) 12.82
(19.17)

14.71
(19.85)

13.07
(19.28)

# of Patents Citing NIH-Funded Research (Unit counts) 101.7
(153.6)

116.8
(159.1)

103.7
(154.4)

# of Patents Related to NIH-Funded Research (Fractional counts) 24.84
(27.95)

28.33
(28.31)

25.30
(28.00)

# of Patents Related to NIH-Funded Research (Unit counts) 3,520
(3,742)

4,023
(3,755)

3,589
(3,745)

N 14,085 8,886 13,027

Note: Sample is the same as that in Table 1, except aggregated to the NIH Disease/Science/Time level. See the notes to Table 1 for additional 
definitions. The funding and patent variables are weighted by average DST size, i.e., the average yearly number of grants in a Disease/Science 

research area. In fractional patent counts, a patent matched to N distinct DSTs counts as 1/Nth of a patent for each DST. In unit patent counts, a 
single patent matched to N distinct DSTs counts as one patent for each DST. Funding amounts are expressed in 2010 dollars (deflated by the 
Biomedical R&D Producer Price Index).

Rev Econ Stud. Author manuscript; available in PMC 2019 October 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Azoulay et al. Page 43

Table 4:

Relationship Between Own DST Funding and Funding by Other Diseases for the Same Science Area

DST Funding ($10 mln.)

(1) (2) (3)

DST Funding, Other Diseases, Same Science (×$10 mln.) −0.446***
(0.017)

0.009
(0.063)

−0.008
(0.060)

R2 0.134 0.732 0.771

Observations 14,085 14,085 14,085

Year FEs Incl. Incl. Incl.

Disease × Science FEs Incl. Incl.

Disease × Year FEs Incl.

Note: Each cell is a study section/IC/year. Funding is defined by the sum of project-cycle allocations for all Type I and II grants reviewed by that 
study section. See notes to Tables 1 and 2 for additional details about this sample.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 5:

Alternative First Stages, Past and Future Windfalls

Dependent variable: Total DST Funding

Past Windfall Current Windfall Future Windfall

(1) (2) (3)

Windfall Funding 0.067
(0.243)

1.251***
(0.232)

0.085
(0.205)

R2 0.927 0.921 0.927

Observations 9,326 14,085 9,326

Note: This table presents alternative first stages using past and future windfall funding. Current windfall funding is the total amount of funding for 
awarded DST grants within 25 grants of an Institute specific award cutoff in the same year T. Future windfall is this same amount, but defined for 
DS,T+1. Past windfall funding is similarly defined, for DS,T-1. Controls include disease-science and disease-year fixed effects, linear science-year 
time trends, as well as fixed effects for the number of applicants to a DST, the number of applicants within a 25-grant radius window around the IC 
payline, as well as cubics in the average raw and rank scores of applications in the funding window. The outcome variables are fractional patent 
counts.

Standard errors in parentheses, clustered at the disease/science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 6:

Effect of NIH Investments on Follow-On Patenting by Private-Sector Firms

# of Patents Citing NIH-Funded Research

(1) (2) (3) (4) (5)

Fractional Patent Counts: Mean=12.82; SD=19.17

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 2.595***
(0.220)

2.281***
(0.356)

2.242***
(0.359)

2.550***
(0.654)

2.450***
(0.568)

Elasticity 0.822 0.723 0.71 0.808 0.777

R2 0.417 0.600 0.641 0.918 0.933

Unit Patent Counts: Mean= 101.7; SD= 153.6

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 21.830***
(1.731)

17.831***
(2.068)

17.842***
(2.067)

18.626***
(4.308)

18.412***
(3.648)

Elasticity 0.872 0.712 0.713 0.744 0.735

R2 0.447 0.674 0.710 0.944 0.956

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Application Count FEs Incl.

Note: Each observation is Disease/Science/Time (DST) combination. A patent is citation-linked to a DST if it cites research that acknowledges 
funding from that DST. For more details on this sample, see the notes to Tables 1 and 3. Funding is defined by the sum of project-cycle allocations 
for all new and competing renewal grants that are associated with that DST. The patent sample is restricted to those with private sector assignees, 
and weighted by average DST size, i.e., the average yearly number of grants in a Disease/Science research area. See Table 2 for more details. Year 
FEs are fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent diseases and NIH study sections (review 
committees) are taken to represent science areas. Elasticities are evaluated at sample means. Application count FEs are indicator variables for the 
number of applications that a DST receives.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 7:

Effect of NIH Investments on Total Related Private-Sector Patenting

# of Patents Related to NIH-Funded Research

(1) (2) (3) (4) (5)

Fractional Patent Counts: Mean=24.8; SD=28.0

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 4.516***
(0.210)

3.593***
(0.512)

3.590***
(0.537)

3.712***
(0.601)

3.239***
(0.372)

Elasticity 0.738 0.588 0.587 0.607 0.530

R2 0.536 0.759 0.783 0.965 0.974

Unit Patent Counts: Mean=3,969; SD=3,918

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 603.082***
(26.714)

456.685***
(53.002)

453.133***
(56.424)

504.728***
(80.237)

445.983***
(41.404)

Elasticity 0.696 0.527 0.523 0.583 0.515

R2 0.561 0.843 0.861 0.978 0.983

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Application Count FEs Incl.

Note: Each observation is Disease/Science/Time (DST) combination. A patent is considered to be in the same area as an NIH grant if it cites a 
publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to a publication that is linked to a patent. For more details 
on this sample, See the notes to Tables 1 and 2. Funding is defined by the sum of project-cycle allocations for all new and competing renewal grants 
that are associated with that DST. The patent sample is restricted to those with private sector assignees, and weighted by average DST size, i.e., the 
average yearly number of grants in a Disease/Science research area. See Table 2 for more details. Year FEs are fixed effects for the fiscal year 
associated with a DST. NIH Institutes are taken to represent diseases and NIH study sections (review committees) are taken to represent science 
areas. Elasticities are evaluated at sample means. Application count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 8:

Effect of NIH Investments on Private-Sector Patenting Windfall Funding IV

First Stage Citation Linked Total Related

DST Funding
(× $10 mln.) Mean=12.82; SD=19.17 Mean=24.8; SD=28.0

OLS IV OLS IV

(1) (2) (3) (4) (5)

Windfall Funding (×$10 mln.) 1.251***
(0.194)

DST Funding (×$10 mln.) Mean=4.06; 2.478***
(0.658)

2.002*
(1.106)

3.615***
(0.817)

2.329**
(1.159)

Elasticity 0.785 0.634 0.592 0.381

Cragg-Donald Wald F-stat 478

Kleibergen-Paap Wald F-stat 37.51

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Note: See notes to Tables 6 and 7 for details about the sample. The outcome variables are fractional patent counts. The instrument is the total 
amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were within 25 
applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the number of applications that a 
DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-grant window around the relevant IC payline, as 
well as (iii) cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-grant window around the payline. 
Elasticities are evaluated at the sample means.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 10:

Implied Drug Valuation of NIH Investments

Advanced
Drug

Candidates

FDA
Approved Pre-approval Main Drug-level

Mean=0.546;
SD=0.864

Mean=0.316;
SD=0.532

Mean=0.212
SD=0.358

Mean=0.035;
SD=0.084

Mean=0.059;
SD=0.099

(1) (2) (3) (4) (5)

OLS

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 0.081***
(0.015)

0.046***
(0.012)

0.032***
(0.007)

0.005***
(0.001)

0.008***
(0.001)

Elasticity 0.602 0.591 0.613 0.580 0.551

Implied Drug Value ($ mln.) — $20.0 $22.2 $17.4 $27.8

IV

DST Funding (×$10 mln.) Mean=4.06; SD=4.36 0.053
(0.040)

0.034
(0.024)

0.017
(0.019)

0.001
(0.004)

0.004
(0.005)

Elasticity 0.394 0.437 0.326 0.116 0.275

Implied Drug Value ($ mln.) — $14.7 $11.8 $3.5 $13.9

Observations 14,085 14,085 14,085 14,085 14,085

Note: See notes to Tables 6 and 7 for sample details. The outcome variables are fractional patent counts. All specifications include disease-science 
FEs, disease-year FEs, science by year linear time trends, FEs for the number of applications to the DST, cubics in the average raw score and 
average science rank received by applications in the 25-grant radius window around the IC payline, and FEs for number of DST applicants in a 25-
grant window around an IC’s funding cutoff. A patent is labelled “Private Sector” if it is assigned to a domestic US or foreign corporation (NBER 
assignee categories 1 and 2 minus foundations, universities, and hospitals). A patent is labeled an advanced drug candidate if it is included in IMS 
Patent Focus, which contains information on patents on biopharmaceutical candidates in Phase III trials or further. We do not generate an implied 
value for these patents since they are not necessarily associated with an approved drug/biologic. Within this set, patents are labeled as “FDA 
approved” if linked to an approved drug/biologic. A patent is labeled “pre-approval” if it is “FDA approved” and was filed prior to the time at 
which corresponding received marketing approval. A patent is labeled as “main” patent if it is the first patent ever filed associated with a marketed 
drug. Column 5 aggregates results to the drug level, reweighting by the number of unique drugs associated with a DST. Implied drug values are 
calculated assuming a mean lifetime discounted value of $3.47 billion, in 2010 dollars. This figure comes from DiMasi, Grabowski, and Vernon 
(2004). All estimates assume that there is one pivotal patent per drug; FDA approved patents are scaled by 8; pre-approval patents by 5; main 
patents and drug specific outcomes are not scaled. For instance, the OLS estimate in column (2) imply that an additional $10 mln. in NIH funding 
for a DST would result in $22.6 mln. in downstream pharmaceutical sales.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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