Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: Land use policy. 2019 Feb 28;83:505–511. doi: 10.1016/j.landusepol.2019.02.033

Table 3.

Logistic Regression Models for Delinquent Single Family Housing Lots in Dayton, Ohio

Variable Model 1 Model 2
Coefficient Odds R. z Coefficient Odds R. z
# of delinquent lots 0.0008 1.0008*** 4.26
 Commercial lots −3e–5 1.0000 −0.02
 Industrial lots −0.0077 0.9923 −1.22
 Residential lots 0.0011 1.0011*** 4.03
Mean delinquent vear 0.0935 1.0981*** 6.48 0.0831 1.0867*** 5.36
# of active commercial lots −0.0022 0.9978* −2.45
 Apartment lots −0.0116 0.9884*** −3.84
 Retail lots −0.0080 0.9920+ −1.85
 Restaurant lots 0.0023 1.0023 0.30
 Office lots 0.0022 1.0022 0.35
 Parking lots 0.0081 1.0081 0.80
# of active industrial lots 0.0090 1.0091*** 6.55
 Heavy manufacturing lots −0.0159 0.9842 −0.71
 Light manufacturing lots 0.0143 1.0144 0.81
 Small industrial lots 0.0306 1.0311*** 4.21
 Food and drink ind. lots −0.0511 0.9502* −2.07
Lot characteristics
 Value −0.0601 0.9417*** −48.31 −0.0593 0.9424*** −46.24
 (Property tax)0.5 0.1854 1.2036*** 81.39 0.1855 1.2038*** 81.36
 Rental property −0.6475 0.5234*** −15.31 −0.6498 0.5222*** −15.35
 Building age 0.0098 1.0099*** 11.81 0.0100 1.0100*** 11.77
 Floor area −0.5413 0.5820** −2.92 −0.4985 0.6074** −2.68
 (Floor area)2 0.1578 1.1709** 2.62 0.1417 1.1522* 2.34
Neiahborhood characteristics
 % minority 0.0099 1.0099*** 16.44 0.0098 1.0099*** 15.60
 % vacant housing units 0.0008 1.0008 0.56 0.0017 1.0017 1.14
 % housing unit ownership 0.0016 1.0016 1.53 0.0005 1.0005 0.41
 % unemployment −0.0006 0.9994 −0.50 −0.0003 0.9997 −0.23
Constant −4.5175 −23.79 −4.4885 −22.66
N 43,037 43,037
Log Likelihood −15,037 -15,020
Pseudo R-squared
(McFadden’s Adjusted)
0.387 0.388
+

Note: p < .10;

*

p < .05;

**

p < .01;

***

p < .001;

Odds R. Odds Ratio; ind. industrial