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Abstract

Background

Global warming is predicted to indirectly result in more undernutrition by threatening crop

production. Whether temperature rise could affect undernutrition directly is unknown. We

aim to quantify the relationship between short-term heat exposure and risk of hospitalization

due to undernutrition in Brazil.

Methods and findings

We collected hospitalization and weather data for the hot season (the 4 adjacent hottest

months for each city) from 1,814 Brazilian cities during 1 January 2000−31 December 2015.

We used a time-stratified case-crossover design to quantify the association between heat

exposure and hospitalization due to undernutrition. Region-specific odds ratios (ORs) were

used to calculate the attributable fractions (AFs). A total of 238,320 hospitalizations for

undernutrition were recorded during the 2000−2015 hot seasons. Every 1˚C increase in

daily mean temperature was associated with a 2.5% (OR 1.025, 95% CI 1.020−1.030, p <
0.001) increase in hospitalizations for undernutrition across lag 0–7 days. The association

was greatest for individuals aged�80 years (OR 1.046, 95% CI 1.034−1.059, p < 0.001),

0–4 years (OR 1.039, 95% CI 1.024–1.055, p < 0.001), and 5–19 years (OR 1.042, 95% CI

1.015–1.069, p = 0.002). Assuming a causal relationship, we estimate that 15.6% of under-

nutrition hospitalizations could be attributed to heat exposure during the study period. The

AF grew from 14.1% to 17.5% with a 1.1˚C increase in mean temperature from 2000 to

2015. The main limitations of this study are misclassification of different types of undernutri-

tion, lack of individual temperature exposure data, and being unable to adjust for relative

humidity.
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Conclusions

Our study suggests that global warming might directly increase undernutrition morbidity, by

a route other than by threatening food security. This short-term effect is increasingly impor-

tant with global warming. Global strategies addressing the syndemic of climate change and

undernutrition should focus not only on food systems, but also on the prevention of heat

exposure.

Author summary

Why was this study done?

• It has been well documented that global warming will indirectly result in more under-

nourished people by threatening crop production in the long term.

• However, no study has yet evaluated the short-term and direct effect of heat exposure

on morbidity related to undernutrition.

What did the researchers do and find?

• With daily hospitalization data covering nearly 80% of the Brazilian population during

2000−2015, we used a time-stratified case-crossover design to quantify the association

between heat exposure and hospitalization for undernutrition. We also estimated the

heat-related hospitalization burden.

• There was a 2.5% increase in undernutrition hospitalizations following every 1˚C

increase in daily mean temperature during the hot season. The young (0–19 years) and

elderly people (�80 years) with undernutrition were more vulnerable to heat exposure

than other age groups.

• Heat exposure was responsible for 15.6% of the undernutrition hospitalizations during

the study period, corresponding to 37,129 cases. The attributable fraction increased

from 14.1% in 2000 to 17.5% in 2015, paralleling a 1.1˚C increase in average

temperature.

What do these findings mean?

• Rising temperature might impact undernutrition morbidity directly and more rapidly

than through threatening food security alone.

• The possible pathways of this direct impact of heat might include reducing undernour-

ished people’s food intake, impairing their digestion and absorption function, and caus-

ing fluid and electrolyte disturbances.

• This direct, short-term effect will be increasingly important with global warming, as

illustrated by what happened in Brazil over 2000−2015.
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• Global strategies addressing the syndemic of climate change and undernutrition should

focus not only on food systems, but also on the prevention of heat exposure, especially

among the young and elderly.

Introduction

Undernutrition means inadequate intake of energy and nutrients to meet an individual’s

needs to maintain good health [1]. Despite huge nutritional improvement in recent decades,

undernutrition remains a big global public health concern, especially in low- and middle-

income countries (LMICs). In 2016, about 420 million adults aged 20 years or above and 192

million children and adolescents aged 5–19 years worldwide were underweight, and nearly

90% of them resided in LMICs [2]. There were 150.8 million children under 5 years old who

were stunted and 51 million who were wasted in 2017 [3]. Around 45% of deaths among chil-

dren under 5 years old are associated with undernutrition [4].

Recently, there has been an increasing interest in the “syndemic” (synergy of epidemics) of

climate change and undernutrition [5–7]. It is anticipated that global climate change, with

increasing temperature and more extreme rainfall, will reduce future crop yields and threaten

food security, thus potentially resulting in more undernutrition [8–10]. Some researchers have

estimated that climate change will lead to a 1%–29% increase in moderate stunting and a 23%–

62% increase in severe stunting by 2050 [8]. However, current studies all focus on the long-

term, indirect impact of climate change on undernutrition. No previous study, to our knowl-

edge, has evaluated the short-term, direct effect of climate factors—specifically temperature

rise—on undernutrition morbidity [5–7,9,10].

In this study, we characterize the association between short-term heat exposure and risk of

hospitalization due to undernutrition, using a national hospitalization dataset spanning 2000–

2015 in Brazil. Specifically, this study examines the impact of heat exposure on the hospitaliza-

tion of individuals with existing malnutrition, rather than the heat causing malnutrition de

novo over very short time frames. Further, we explore whether the association is consistent

across types of undernutrition and across subgroups of the population based on age, sex, and

region. Finally, assuming a causal relationship, we estimate the fraction of all hospitalizations

for undernutrition that were attributable to heat exposure.

Methods

This time-stratified case-crossover study is reported following the REporting of studies Con-

ducted using Observational Routinely-collected health Data (RECORD) statement (S1

RECORD Checklist) [11]. We performed the data analyses for this study according to a pro-

spective analysis plan (S1 Text). Modifications to the analysis plan are also described in S1

Text.

Data collection

We collected hospital admission data from Brazilian Unified Health System (BUHS) from 1

January 2000 to 31 December 2015. The authors had access to the full hospitalization data

recorded by BUHS during the study period. The full dataset covered 5,570 cities. However, to

minimize the effects of missing values, we only included data from the 1,814 cities with com-

plete hospitalization records over the 16 years. These cities comprised 78.4% of the national
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population, and were distributed in 5 regions of Brazil (North, Northeast, Central West, South-

east, and South) (Fig 1) [12,13]. Information such as date of admission, primary diagnosis, sex,

and age for each hospital admission was recorded by BUHS. The primary diagnosis was coded

according to the International Classification of Diseases–10th revision (ICD-10). We extracted

hospitalization data with ICD-10 codes for undernutrition (E40–E46; see https://icd.who.int/

browse10/2016/en). As a result, we only analyzed hospitalizations whose primary cause was

undernutrition. To assist subgroup analyses, we classified undernutrition into 5 categories:

severe protein–energy malnutrition (PEM) (ICD-10 code E40–E43), moderate PEM (E44.0),

mild PEM (E44.1), retarded development following PEM (E45), and unspecified PEM (E46).

Ethics approval was not required for our analysis of aggregate anonymized data from the

BUHS.

We obtained the daily minimum and maximum temperatures from a national meteorologi-

cal dataset (0.25˚ × 0.25˚ resolution) developed by Xavier et al. [14]. The dataset was interpo-

lated by inverse distance weighting using data from 735 weather stations in Brazil. We used

the weather of the city center to represent each city. In this study, daily mean temperature (as

approximated by the average of the daily minimum and maximum temperatures) during the

hot season was used to represent heat exposure [13]. Daily weather data were linked to hospi-

talization cases according to city and date.

We also collected daily relative humidity recorded from city-specific weather stations by

the Brazilian National Institute of Meteorology. Unfortunately, humidity data were available

only for 193 cities and only during 2000−2012. Because most Brazilian cities do not have air

quality monitoring stations, we were unable to get sufficient data on air pollution for

modeling.

Statistical analyses

Assessing the temperature–hospitalization association. Because this study focused on

the effect of heat exposure, or high temperature, the analyses were restricted to the hot season

(defined as the 4 adjacent hottest months for each city) [13]. We used a time-stratified case-

crossover design with conditional logistic regression models to evaluate the association

between hospitalization for undernutrition and heat exposure [15,16]. For each hospital

admission, the daily mean temperatures during the risk period (i.e., for the admission date and

1 to 7 days before admission according to our preliminary analysis) were compared with those

during control periods in the same city. For each case, the same days of the week in the same

calendar month were selected as controls. In this design, each case had 3 or 4 control periods.

This method for matching case and control is effective to control for time-dependent con-

founders (long-term trend, seasonality, and the effect of day of the week) and time-constant

confounders (e.g., age, sex, income, and lifestyle) [17–19]. The time-stratified referent selection

strategy has been proved to be the most efficient and unbiased strategy in a case-crossover

design [17,20].

We used conditional logistic regression to fit the relationship between ambient temperature

and risk of hospitalization, with the following equation [21,22]:

logit ðPðcase ¼ 1 in stratum ijTemp;HolidayÞÞ ¼ astratum i þ cbðTempÞ þ b�Holiday ð1Þ

In this equation, a stratum consists of 1 case (case = 1) and its 3 or 4 controls (case = 0), the

total number of strata is equal to the number of hospitalizations for undernutrition; P(case = 1

in stratum i|Temp, Holiday) is the conditional probability of being a case in the ith stratum

given the 2 independent variables Temp and Holiday; astratum i represents the constant or

intercept of stratum i (each stratum has an intercept); Holiday is a binary variable indicating

Heat exposure and hospitalization for undernutrition
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whether the date was a public holiday, and its coefficient β accounts for any changes in hospital

use during public holidays; and cb(Temp) is a matrix produced by a cross-basis function for

daily mean temperature modeled by a distributed lag linear or nonlinear model. A cross-basis

function was used to model both the exposure–response relationship and the lag–response

Fig 1. Location of the included 1,814 cities in Brazil and their daily mean temperature in the hot season during 2000−2015. The base map of this figure was

downloaded from the Brazilian Institute of Geography and Statistics (https://www.ibge.gov.br/); the base map was free and open-access.

https://doi.org/10.1371/journal.pmed.1002950.g001
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relationship at the same time. In each dimension, a specific smoothing function (e.g., linear

function, natural cubic spline) can be used to define the shape of relationship [23,24]. To make

the equation clear, we show it applied to example data in S1 Table.

We initially compared the model performance using a nonlinear model (natural cubic

spline with 3 degrees of freedom [df]) and a linear model (linear function) in the exposure–

response dimension. We found that the Bayesian information criterion (BIC) value of the lin-

ear model was lower than the BIC value of the nonlinear model (679604.2 versus 679640.4),

and the relationship between temperature and hospitalization tended to be linear when using

the nonlinear model (S1 Fig). This meant the linear model performed better than the nonlin-

ear model for the exposure–response dimension [25]. Therefore, for the cb(Temp) of the final

model, we used a linear function in the exposure–response dimension. We used a natural

cubic spline with 3 df in the lag–response dimension (lag 0–7 days) in accordance with our

previous study [13].

The heat exposure–hospitalization associations are presented as the odds ratio (OR) with

95% confidence interval (CI) of hospitalization for undernutrition associated with every 1˚C

increase in daily mean temperature. We performed stratified analyses by sex, age group (0–4,

5–19, 20–39, 40–59, 60–79, and�80 years), region, and type of undernutrition. We used ran-

dom effect meta-regression fitted by the maximum likelihood method to check the statistical

differences in the ORs between subgroups. Apart from 2 hospitalization cases that had missing

values for sex, there were no other missing values in the hospitalization or weather dataset.

Because the case-crossover design does not need to adjust for sex, the 2 cases with missing sex

were kept in the model analyses, except for the subgroup analyses by sex.

Sensitivity analyses. Sensitivity analyses were conducted to check the robustness of our

results. First, we changed the maximum number of lag days (from 7 days to 4, 5, 6, 8, 9, or 10

days) or the df of lag days (from 3 to 4) in the cross-basis function (see S2 Table). Second, we

tried several models adjusting for the average relative humidity with lag 0–7 days using the

dataset of 193 cities with data on relative humidity (see S3 Table). Third, we redefined the hot

season to include the city-specific 5 or 6 adjacent hottest months (see S4 Table). Finally, we

repeated our main model analyses in the cold months (city-specific 4 coldest months) and

moderate months (city-specific months other than the cold months and hot season) (see S5

Table). The effect estimates from sensitivity analyses were compared to the effect estimates

from our primary models. For the first 3 sensitivity analyses, we used fixed effect meta-regres-

sions with no statistical adjustment to check whether the differences in effect estimates from

different models were statistically significant, because those models were based on the same or

overlapping samples [26]. For the fourth sensitivity analysis, we used random effect meta-

regression fitted by the maximum likelihood method to compare the effect estimates, because

results in different seasons were based on different samples.

Calculating the attributable burden of hospitalization for undernutrition resulting

from heat exposure. Assuming a causal association, we estimated the attributable burden of

hospitalization for undernutrition due to heat exposure. In each city, we applied the following

equation [27,28]:

ACi ¼ Ci � ðRRi � 1Þ=RRi ð2Þ

where i represents 1 day; Ci is the city-specific 8-day average (from day i to day i + 7) number

of undernutrition hospitalization cases; RRi is the city-specific cumulative relative risk during

lag days 0–7 associated with the increase in temperature above the city-specific reference tem-

perature for day i. The city-specific minimum daily mean temperature in the hot season was

used as the reference temperature for that city, as our preliminary analyses had shown that the
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association between temperature and undernutrition hospitalization was linear. RRi was calcu-

lated by the following equation:

RRi ¼ OR
bðTi� Tref Þ
every 1�C increase ð3Þ

where Ti is the city-specific daily mean temperature on day i; Tref is the city-specific reference

temperature; and ORevery 1˚C increase is the region-specific effect estimate from case-crossover

analyses in the region where the city is located [27,28]. The 95% CI of ACi was calculated using

the same equations, only replacing ORevery 1˚C increase with its 95% CI. We generated the total

attributable cases (AC) and their 95% CIs by summing the ACi values and their 95% CIs for all

days in all included cities. The corresponding attributable fractions (AFs) and their 95% CIs

were calculated by dividing the total AC values and their 95% CIs by total undernutrition hos-

pitalization cases. Region-year-specific AF was calculated by dividing region-year-specific AC

by region-year-specific total undernutrition hospitalization cases.

We used linear mixed effect regression models to test for a secular linear trend of the AFs

and mean temperature during the hot season. In these regression models, region-year-specific

AF (or average daily mean temperature during the hot season) was the dependent variable,

and year (continuous variable) was the independent variable, adjusting for the random effect

of region. We also fitted the relationship between region-year-specific AFs and mean tempera-

tures (average daily mean temperature during the hot season) using a linear mixed effect

model, only adjusting for the random effect of region.

We used R software (version 3.3.2) to perform all data analyses. The packages dlnm, sur-
vival, and mvmeta were used to fit a distributed lag linear or nonlinear model, conditional

logistic regression, and meta-regression, respectively [24]. The package nlme was used to fit

linear mixed effect models. A 2-sided p-value less than 0.05 was considered statistically

significant.

Results

The median daily mean temperature was 25.7˚C (inter quartile range [IQR]: 23.9–27.5˚C) dur-

ing the hot season in all cities included, ranging from 28.0˚C (IQR: 27.0–28.8˚C) in the North

region to 23.9˚C (IQR: 22.1–25.5˚C) in the South region during 2000−2015. Overall, there was

a total of 238,320 (44.5% female) hospitalizations for undernutrition, with a median patient

age of 57.9 years (IQR: 34.9–75.1 years). Among hospitalizations with a specific primary diag-

nosis, severe PEM was most frequent (accounted for 52.3%; 44.6% female; median age 50.7

years), followed by moderate PEM (32.3%; 46.1% female; median age 55.2 years). However, a

large proportion of the included hospitalizations were associated with unspecified PEM

(63.1%; 44.1% female; median age 60.2 years) (Table 1).

Association between temperature and hospitalization for undernutrition

The association between temperature and hospitalization for undernutrition was linear (S1

Fig). The effects of heat exposure on hospitalization were acute, but followed by temporal dis-

placement, or harvesting effect, until the third day. In other words, some undernutrition hos-

pitalizations that might have been expected on lag days 3–6 happened in advance, on lag days

0–2 due to heat exposure on lag day 0 (Fig 2).

Fig 3 shows that every 1˚C increase in daily mean temperature was associated with a 2.5%

(OR 1.025, 95% CI 1.020–1.030, p< 0.001) greater risk of hospitalization for undernutrition

for lag days 0–7 at the national level. The estimate of the effect was as strong in males as in

females. However, the association was significantly modified by age. The effect size increased

Heat exposure and hospitalization for undernutrition
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across successive age groups 40 years and older, and was maximal in those aged�80 years

(OR 1.046, 95% CI 1.034–1.059, p< 0.001). Children and adolescents aged 0–4 years (OR

1.039, 95% CI 1.024–1.055, p< 0.001) and 5–19 years (OR 1.042, 95% CI 1.015–1.069, p =
0.002) also showed a stronger effect size compared to those aged 20–39 years (Fig 3).

Table 1. Summary of hospitalizations for undernutrition, and daily mean temperature by region, in 1,814 Brazilian cities during the 2000−2015 hot seasons.

Characteristic Number of

cities

Population

coverage (%)

Cases of different types of undernutrition Daily mean temperature

(˚C), median (IQR)Severe

PEM

Moderate

PEM

Mild

PEM

Retarded development

following PEM

Unspecified

PEM

Total

Total 1,814 78.4 46,100 28,433 12,266 1,202 150,319 238,320 25.7 (23.9–27.5)

Region

North 28 26.3 610 289 178 7 1,676 2,760 26.5 (25.1–27.9)

Northeast 662 78.0 13,545 10,852 3,191 427 58,513 86,528 28.0 (27.0–28.8)

Central West 128 80.7 2,673 1,389 563 126 7,288 12,039 27.4 (26.1–28.8)

Southeast 622 87.0 21,754 10,790 6,321 482 64,341 103,688 23.9 (22.1–25.5)

South 374 83.2 7,518 5,113 2,013 160 18,501 33,305 24.6 (23.2–25.9)

Female, percent — — 44.6 46.1 43.7 48.6 44.1 44.5 —

Age, median

(IQR)

— — 50.7

(4.1–

72.1)

55.2

(23.5–74.3)

57.9

(37.7–

75.0)

46.0

(1.1–71.3)

60.2

(40.5–75.8)

57.9

(34.9–

75.1)

—

IQR, interquartile range; PEM, protein–energy malnutrition.

https://doi.org/10.1371/journal.pmed.1002950.t001

Fig 2. The association between heat exposure (every 1˚C increase in daily mean temperature during the hot

season) and hospitalization for undernutrition across 0–7 lag days. The shaded area represents the 95% confidence

interval of the odds ratio. The model adjusted for potential changes in hospital use during public holidays, and also

controlled for all potential time-constant confounders (e.g., age, sex, income, and lifestyle) and time-dependent

confounders (e.g., temporal trend and day of the week) by its design.

https://doi.org/10.1371/journal.pmed.1002950.g002
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The strength of the association between temperature and hospitalization for undernutrition

showed no significant variation (p-values for the difference all>0.05) between the regions

North, Northeast, Central West, and Southeast. However, it seemed that the association was

weaker in the South region compared to the other regions. There was no strong evidence that

the association varied by type of undernutrition (p-values for the difference all>0.05). How-

ever, there was a pattern that the effect size strengthened with the severity of undernutrition.

The OR (95% CI) increased from 1.017 (0.996–1.038, p = 0.116) for mild PEM to 1.028 (1.016–

1.039, p< 0.001) for severe PEM. Hospitalization due to retarded development following PEM

revealed a very weak and nonsignificant association with heat exposure, although this is likely

related to the limited sample size (Fig 3).

Fig 3. Association between heat exposure (every 1˚C increase in daily mean temperature during the hot season) and hospitalization for undernutrition over 0–7

lag days. �p-Values for testing the difference between subgroups, estimated by meta-regression. The overall estimate is the effect estimate based on the complete sample,

not the pooled result of any subgroup analyses by meta-analysis. The vertical solid line represents the reference line for odds ratio = 1, helping to compare the effect

estimates with the null hypothesis. The vertical dashed line represents the reference line for the odds ratio equal to the overall effect estimate, helping to compare the

subgroup effect estimates with the overall effect estimate. The horizontal error bars represent 95% CIs. The model adjusted for potential changes in hospital use during

public holidays, and also controlled for all potential time-constant confounders (e.g., age, sex, income, and lifestyle) and time-dependent confounders (e.g., temporal

trend and day of the week) by its design. CI, confidence interval; PEM, protein–energy malnutrition.

https://doi.org/10.1371/journal.pmed.1002950.g003
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Attributable burden of hospitalization for undernutrition due to heat

exposure

Overall, 15.6% (95% CI 9.0%–21.4%) of undernutrition hospitalizations during the hot season

(equivalent to 37,129 [95% CI 21,511–51,032] hospitalization cases) could be attributed to heat

exposure during the study period. This fraction was especially high in the elderly (aged�80

years) and children and adolescents (aged 0–19 years), with over one-quarter of admissions

for undernutrition related to heat exposure (Table 2). Over the 16-year study period, the AF

increased from 14.1% to 17.5% (p for trend = 0.002), paralleling a 1.1˚C increase in daily mean

temperature (p for trend = 0.044) (Fig 4).With every 1˚C increase in region-year-specific aver-

age daily mean temperature during the hot season, the region-year-specific AF was estimated

to increase by 2.5 percentage points on average (p< 0.001) (S2 Fig).

Our results were robust to changing the maximum lag of daily mean temperature and df of

lag days (S2 Table). Effect estimates from models adjusting for relative humidity in a subsam-

ple of 193 cities had no statistically significant difference from effect estimates from the pri-

mary model (S3 Table). The results changed slightly when adding more months to the hot

season (S4 Table). Every 1˚C increase in daily mean temperature was associated with a smaller

increase in hospitalization for undernutrition in the cold months (OR 1.011) and the moderate

months (OR 1.017) compared to the hot season (OR 1.025; p-value for difference < 0.05) (S5

Table).

Discussion

This is the first study to our knowledge to evaluate the association between heat exposure and

risk of hospitalization for undernutrition. Our findings indicate that in the Brazilian popula-

tion, short-term heat exposure during the hot season was significantly associated with a greater

risk of undernutrition hospitalization. Overall, assuming a cause–effect relation, about 15% of

hospitalizations for undernutrition could be attributed to heat exposure. The nature of the

Table 2. The fraction and number of cases of hospitalization for undernutrition attributable to heat exposure

during the hot season from 2000 to 2015 in Brazil.

Subgroup Attributable fraction (95% CI), percent Number of attributable cases (95% CI)

Sex

Female 16.7 (6.8, 25.0) 17,666 (7,161, 26,521)

Male 14.7 (5.5, 22.5) 19,432 (7,283, 29,784)

Age group (years)

0–19 25.1 (9.6, 37.1) 10,772 (4,129, 15,904)

20–39 2.8 (−21.4, 20.6) 740 (−5,607, 5,418)

40–59 6.8 (−11.2, 19.8) 3,844 (−6,317, 11,118)

60–79 12.6 (−0.3, 23.0) 9,142 (−244, 16,669)

�80 26.8 (11.7, 38.1) 10,879 (4,755, 15,429)

Region

North 22.2 (−19.5, 48.2) 612 (−538, 1,329)

Northeast 13.5 (7.4, 19.2) 11,705 (6,409, 16,619)

Central West 21.3 (4.2, 35.0) 2,560 (510, 4,219)

Southeast 17.3 (13.4, 21.1) 17,968 (13,871, 21,860)

South 12.9 (3.8, 21.0) 4,284 (1,258, 7,005)

Overall 15.6 (9.0, 21.4) 37,129 (21,511, 51,032)

CI, confidence interval.

https://doi.org/10.1371/journal.pmed.1002950.t002
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relationship was consistent in women and men, but was stronger among the elderly and chil-

dren and adolescents than among other age groups.

Our previous study reported that every 5˚C increase in daily mean temperature during the

2000–2015 hot seasons in Brazil was associated with a 4.0% increase in all-cause hospitalization

over lag 0–7 days, reflecting a 14% increase in infectious and parasitic hospitalizations, an 11%

increase in endocrine and metabolic hospitalizations, and a less than 8% increase in all other

types of hospitalization (e.g., about a 3% increase in respiratory hospitalizations) [13]. There-

fore, it seems that hospitalization for undernutrition (13% increase associated with every 5˚C

increase in temperature) is more sensitive to heat exposure than hospitalization for other con-

ditions, except for infectious and parasitic hospitalization.

The underlying pathways behind the observed association between heat exposure and

increased risk of hospitalization for undernutrition are not very well understood. We speculate

that there are several possible pathways based on the current knowledge. First, hot weather

may reduce undernourished people’s food intake by reducing their appetites, provoking more

alcohol consumption, or making them unable or lacking motivation to shop and cook [29].

Lack of food intake would exacerbate any undernutrition and may finally result in hospital

admission. Second, hot weather could potentially worsen undernourished people’s already

impaired digestion and absorption by increasing gastrointestinal morbidity, e.g., gastroenteri-

tis [30]. This may also aggravate their undernutrition condition. Third, individuals suffering

from undernutrition have impaired thermoregulation [29,31]. Peripheral nutritional neuropa-

thy may impair both peripheral thermal sensors and efferent responses to temperature changes

[32]. PEM has also been shown to affect central thermoregulatory structures, inducing

Fig 4. The long-term trends of daily mean temperature and fraction of hospitalizations for undernutrition attributable to heat exposure during

the hot season from 2000 to 2015 in Brazil. AF, attributable fraction.

https://doi.org/10.1371/journal.pmed.1002950.g004
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significant abnormalities in central core temperature circadian rhythm [33]. When exposed to

high temperatures, undernourished people are more likely to develop fluid and electrolyte dis-

turbances than well-nourished populations due to a lack of capacity to dissipate heat. Finally,

undernourished people generally come from low socioeconomic communities, which means

they also lack the ability to mitigate heat exposure by using strategies such as staying indoors

with an air conditioner [34].

The greater susceptibility of elderly people and children and adolescents to heat exposure is

consistent with our previous finding [13]. A possible explanation may be the immature or

impaired thermoregulation in these 2 age groups [13]. It is anticipated that the proportion of

people aged 65 years or above in Brazil will rise to about 35% by 2040 [35]. The rapid popula-

tion aging in Brazil is likely to increase the burden of heat-related undernutrition morbidity

even further by producing a more vulnerable population. The observed regional variation in

the association between heat and hospitalization for undernutrition might reflect contribu-

tions by many factors, such as climatic characteristics, population structure, socioeconomic

level, and occupation types (outdoor jobs versus indoor jobs) [12,13,36]. For example, the

South region has the highest literacy rate compared to the other regions in Brazil [37], which

might explain its weaker association between heat and hospitalization for undernutrition.

However, more studies are wanted to reveal the contributing factors for regional variation in

heat vulnerability.

Climate change is one of the biggest threats to the reduction of hunger and undernutrition,

especially in LMICs [5–7]. It has been estimated that climate change will reduce global food

availability by 3.2% and thus cause about 30,000 underweight-related deaths by 2050 [38].

However, this may actually underestimate the real effect of climate change on future undernu-

trition-related morbidity and mortality, because it overlooks the direct and short-term effects

of temperature rise. We estimated that over 15% of undernutrition hospitalizations could have

been attributable to heat exposure in Brazil during the study period. It is plausible to speculate

that climate changes could not only increase the rate of undernutrition in the most affected

areas of the globe, but also, at same time, impair individuals’ capacity to adapt to projected

rises in temperature.

The inadequate climate change mitigation response is putting the world on a high-end

emissions trajectory that will result in a 2.6–4.8˚C temperature rise by the end of this century

[7]. Based on our finding, such a magnitude of temperature rise would make the AF of under-

nutrition hospitalization due to heat exposure rise by 6.6–12.1 percentage points (temperature

rise multiplied by 2.5; see S2 Fig), assuming other factors remained unchanged. Therefore,

short-term heat exposure will be an increasingly important driver of undernutrition morbidity

in the future. Thus, global strategies addressing the syndemic of climate change and undernu-

trition should not only focus on food security [5], but also pay attention to dealing with heat

exposure.

The present study has several strengths. First, to the best of our knowledge, this is the first

study that has evaluated the association between temperature and hospitalization for undernu-

trition. The results are expected to be statistically robust and stable because of our large sample

size. Second, Brazil is a large country with significant diversity in temperatures; thus, our

results, especially our region-specific results, may also apply to other countries with similar cli-

mates. Third, our study represents Brazil well both geographically and temporally via access to

a national dataset covering nearly 80% of the Brazilian population and spanning 16 years. Evi-

dence from one of the biggest middle-income countries may also have implications for other

large middle-income nations (e.g., China and India).

However, several limitations of this study should also be acknowledged. First, the classifica-

tion of undernutrition types was possibly not accurate enough, given the large proportion of
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hospitalized cases due to unspecified undernutrition. Fortunately, the effect estimates varied

little among different types of undernutrition; thus, the bias due to outcome misclassification

should be minimal. Second, we could only get access to city-level temperature data instead of

individual-level data. This measurement error tends to be independent of the true exposure

level, and to be nondifferential (random). Therefore, our analysis may underestimate the tem-

perature–hospitalization association [39,40]. Finally, we were unable to adjust for relative

humidity and air pollution in the main model due to limited access to relevant data. However,

our sensitivity analyses indicated that adjustment for relative humidity in the dataset of 193 cit-

ies that had humidity data had no significant influence on the results.

Some researchers have argued that air pollution should not be adjusted for when evaluating

the health effect of ambient temperature [41]. The main reason is that daily ambient tempera-

ture influences air pollution levels rather than the converse, so air pollution is more likely to be

a mediator rather than a true confounder between temperature and health. Moreover, the

association between temperature and health often changes only minimally after adjustment

for humidity or air pollutants, as suggested by previous studies [42,43].

In conclusion, heat exposure is associated with increased risk of hospitalization for under-

nutrition, especially among the elderly, children, and adolescents. These findings highlight the

short-term and direct impacts of global warming on undernutrition morbidity. This kind of

impact is anticipated to be increasingly important in the future, because of global warming.
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