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Abstract

Intraoperative tissue deformation, known as brain shift, decreases the benefit of using preoperative 

images to guide neurosurgery. Non-rigid registration of preoperative magnetic resonance (MR) to 

intraoperative ultrasound (US) has been proposed as a means to compensate for brain shift. We 

present a new method that builds on previous work for addressing the need for accuracy and 

generality in multi-site clinical datasets. We use high-dimensional texture attributes instead of 

image intensities for image registration. We propose replacing the standard difference-based 

attribute matching with correlation-based attribute matching and present a strategy that deals 

explicitly with the large field-of-view mismatch between MR and US images. We optimize key 

parameters across independent MR-US brain tumor datasets acquired at three institutions, with a 
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total of 43 tumor patients and 758 reference landmarks for evaluating accuracy. Despite 

differences in imaging protocols, patient demographics and landmark distributions, our algorithm 

was able to reduce landmark errors prior to registration in three data sets (5.37±4.27, 4.18±1.97 

and 6.18±3.38 mm, respectively) to a consistently low level (2.28±0.71, 2.08±0.37 and 2.24±0.78 

mm, respectively). Our method is competitive with the state-of-the-art on multiple datasets. It was 

tested with 15 other methods. We show that our method has one of the lowest errors in all datasets 

(accuracy), and this is achieved while sticking to a fixed set of parameters for multi-site data 

(generality). In contrast, other algorithms/tools of similar performance need per-dataset parameter 

tuning (high accuracy but lower generality), and those that stick to fixed parameters have larger 

errors or inconsistent performance (generality but not the top accuracy). We further characterized 

landmark errors by brain regions and tumor types, which is so far missing in the literature. We 

found that landmark errors were higher in high-grade than low-grade glioma patients, and higher 

in tumor regions than in other brain regions.
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1. Introduction

The proximity of many tumors to critical areas of the brain coupled with the difficulty of 

differentiating tumor tissue from normal brain parenchyma based on visual inspection 

renders complete tumor removal a very challenging task (Dimaio et al., 2006). Surgical 

navigation allows for the use of preoperative images as a map to guide surgery (Golby, 

2015). However, when the brain has shifted, MR images may not serve as an accurate guide 

(Gerard et al., 2017). To compensate for brain shift, non-invasive, high-resolution, but time-

consuming MR image acquisitions can be registered to near-real-time intraoperative 

ultrasound (US) images (Unsgaard et al., 2005)(Rygh et al., 2008)(Miller, Benes, & Sure, 

2011)(Coupé, Hellier, Morandi, & Barillot, 2007). In this paper, we focus on the deformable 

registration of preoperative MR and intraoperative US (prior to the tumor resection).

The primary focus of our work is the accuracy of MR-US image registration. We propose 

using a new correlation-based similarity measure on a rich set of attributes extracted at each 

voxel to increase the accuracy in aligning MR-US images. It is different from feature-based 

methods that attempt to identify and match key features in the images such as landmarks in 

tumor boundaries, sulci, ventricles or blood vessels (Porter et al., 2001)(Reinertsen, 

Lindseth, Unsgaard, & Collins, 2007)(Farnia et al., 2018)(Coupé, Hellier, Morandi, & 

Barillot, 2012). Our method utilizes all voxels in the images because localizing key features 

itself is difficult and may be subject to errors, also because features existing in one image 

may not always appear in another image, and features are not always close to the regions of 

clinical interest (e.g., tumor and surroundings) (Sotiras, Davatzikos, & Paragios, 2013). 

Among voxel-wise methods, approaches either use single scalar intensities or high-

dimensional attributes at voxels to find across-image correspondences. Intensity-based 

methods use similarity measures such as Mutual Information (MI), Correlation Coefficient 

(CC) and Correlation Ratio (CR) for MR-US registration (Rivaz, Karimaghaloo, & Collins, 
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2014)(Hartov, Roberts, & Paulsen, 2008)(Roche et al., 2000)(Letteboer, Viergever, & 

Niessen, 2003)(Ji, Wu, Hartov, Roberts, & Paulsen, 2008)(Rivaz, Chen, & Collins, 2015)

(Rivaz & Collins, 2015)(Myronenko & Song, 2010)(Fuerst, Wein, Müller, & Navab, 2014). 

Intensities of MR and US images do not always follow a consistent or even linear 

relationship.

An example is in Figure 1, where we note corresponding structures in MR and US images 

and number them from 1 to 9. Bright regions in MR can correspond to bright intensities in 

the US image, e.g., regions 2 and 5; similarly, dark regions corresponding to dark intensities, 

e.g., regions 7 and 8., However, bright regions can also correspond to dark intensities, e.g., 

regions 1, 4, 6 and 9, or, grey regions correspond to dark intensities, e.g., region 3. The 

inconsistent intensity relationship and the measurement of voxel-wise similarity on high-

dimensional attributes in patches centered at those voxels have been studied, e.g., (Shen & 

Davatzikos, 2002)(Ou, Akbari, Bilello, Da, & Davatzikos, 2014)(Toews & Wells, 2013)

(Wachinger & Navab, 2013)(Wu, Yap, Kim, & Shen, 2010)(Toews & Arbel, 2003). Self-

Similarity Correlation (SSC) (Heinrich, Jenkinson, Papiez, Brady, & Schnabel, 2013) and 

Linear Correlation of Linear Combination (LC2) methods (Wein et al., 2013) showed 

increased accuracy in MR-US registration tasks.

We recently developed an attribute-based method, Deformable Registration via Attribute 

Matching and Mutual-Saliency Weighting (DRAMMS) (Ou, Sotiras, Paragios, & 

Davatzikos, 2011) that has been validated in multi-site clinical images of brain MRI to MRI 

registrations across subjects and across time (Diez et al., 2014)(Zhan & Shen, 2006). In 

contrast to SSC and LC2, which extract attributes from a patch at single scale, DRAMMS 

uses multi-scale and multi-orientation textures as attributes, arguing that voxels at different 

brain regions may be distinctive at different scales and orientations. The current study 

proposes to use the Normalized Correlation Coefficient (aNCC) and Correlation Ratio (aCR) 

on attribute vectors instead of the original DRAMMS version’s Sum of Squared Differences 

(aSSD) of attribute vectors. aNCC can model linear relationship of attributes and aCR can 

handle non-linear correlation of attributes. Both are correlation-based similarity measures 

previously used on image intensities (Roche, Malandain, Pennec, & Ayache, 2006)(Heinrich 

et al., 2012) but not on attribute vectors. Therefore, we refer to the modified version as 

correlation-DRAMMS or cDRAMMS.

In addition to using a new similarity measure, we propose a transformation strategy to 

explicitly handle the field-of-view (FOV) mismatch between the two images. As the dashed 

yellow circles in Figure 1 show, a large proportion of the content in MR is not included in 

the US image. We mask the MR image based on the FOV of the US image plus a buffer 

zone. Recent MR-US registration studies advocate masking the MR image (Rivaz & Collins, 

2015)(Heinrich et al., 2013)(Rivaz, Karimaghaloo, Fonov, & Collins, 2014)(Jiang, Shi, Yao, 

Wang, & Song, 2016), one suggesting a 3 mm radius buffer zone (Drobny, Vercauteren, 

Ourselin, & Modat, 2018). Our study involves greater detail of the effects of MR masking, 

the optimal radius of the buffer zone, and the applicability of these approaches when 

working with multi-site data.
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Our second focus is on the generality of the proposed method. Our goal is to achieve 

consistently high accuracies in multi-site data, without per-dataset parameter tuning. We 

propose three strategies for this. First, we inherit the use of multi-scale and multi-orientation 

attributes in the original DRAMMS framework. Single-scale and single-orientation attributes 

may not always generalize well to other datasets (Wein, 2018)(Heinrich, 2018). Second, we 

skip ad-hoc pre-processing. Pre-processing is needed in many MR-US registration studies. 

Some methods require skull stripping (Farnia, Ahmadian, Shabanian, Serej, & Alirezaie, 

2014)(Farnia, Makkiabadi, Ahmadian, & Alirezaie, 2016) or tissue segmentation (Hong & 

Park, 2018)(Morin et al., 2017)(Palombi et al., 2018)(Reinertsen, Lindseth, Askeland, 

Iversen, & Unsgård, 2014) of MR images, or segmentation and removal of bright strips in 

skin surfaces (Wein, 2018)(Shams, Boucher, & Kadoury, 2018). These pre-processing steps 

are non-trivial, error-prone, and often require case-specific human intervention in tumor-

bearing MR images (Drobny et al., 2018)(Farnia et al., 2014)(Farnia et al., 2016). Third, we 

optimize the key parameters, seeking a fixed set of parameter settings that is overall optimal 

in multi-site data.

A third contribution of our work is thorough evaluation. Most existing methods have been 

evaluated with only single-site data (Farnia et al., 2014)(Farnia et al., 2016)(Lindseth et al., 

2003)(Farnia, Ahmadian, Shabanian, Serej, & Alirezaie, 2015), or up to two datasets but 

resulted in inconsistent levels of accuracy (Hong et al., 2018)(Shams, Boucher, & Kadoury, 

2018)(Zhong et al., 2018), or used dataset-specific parameters (Wein, 2018)(Heinrich, 

2018). We used three datasets, so far the most comprehensive multi-site data, to evaluate 

MR-US registration. The three datasets are: BITE (Brain Images of Tumors for Evaluation, 

released in 2012) (Mercier et al., 2012), RESECT (REtroSpective Evolution of Cerebral 

Tumors, released in 2017) (Xiao, Fortin, Unsgärd, Rivaz, & Reinertsen, 2017), and MIBS 

(Multimodal Imaging of Brain Shift, a proprietary dataset) (Machado et al., 2018). They 

included a total of 43 patients and 758 reference landmarks for accuracy evaluation. Table 1 

displays the multi-site data covering a wide variety of imaging protocols (e.g., scanner 

vendor, field-of-strength, resolution, contrast), patient demographics (age, gender, tumor 

type, grade, location, extent, scope) evaluation references (varying landmark locations and 

distributions), and levels of brain shift (0 to 21 mm). The diversity in data helps characterize 

the generality and accuracy of totally sixteen methods – the largest number of methods ever 

being evaluated for registering MR-US images of brain tumor patients.

In addition to evaluating on multi-site data, we provide the first quantitative evaluation of 

registration error according to brain regions and tumor types. A radiologist physician, with 

3.5 years of experience in ultrasound, reviewed the 758 reference landmark pairs one by one, 

and assigned them to five regions: (i) sulci/gyri, (ii) ventricles, (iii) falx and tentorium, (iv) 

tumor boundary and (v) others, including vessels, mid brain, pons, bone, white matter and 

interpeduncular cistern, where landmarks appear less frequently. We found that registration 

errors increased in this order among the first four regions, and the trend is consistent across 

datasets. We also found that registration errors are roughly the same in patients with low-

grade gliomas and patients with metastatic brain tumors, but larger in patients with high-

grade gliomas. Errors by regions and tumor types provide quantitative reference for 

neurosurgeons.
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This study is an extension of our previous workshop version (Machado et al., 2018), with a 

more detailed algorithm description, additional algorithm optimization, comprehensive 

validation in multi-site data, and quantification of errors according to brain regions and 

tumor types.

2. Multi-Site Data

Table 1 shows the three datasets used in this study: BITE (Mercier et al., 2012), RESECT 

(Xiao et al., 2017), and MIBS (Machado et al., 2018)(Luo et al., 2018)(Tempany et al., 

2015). As can be seen in the table, there is a wide variety of (a) imaging sites, (b) patient 

demographics, (c) MRI and US protocols, and (d) landmark distributions.

From the landmark pairs in these datasets, a radiologist (E.G.) with a total of 4 years of 

experience and 1 year with intraoperative ultrasound of the brain, visually examined 

landmarks one by one and assigned them into five regions (sulci/gyri, tumor Boundary, falx 

and tentorium, and others). The assignment is in the last five rows of Table 1. It allows us to 

quantify registration accuracy by regions.

3. Methods

Section 3.1 presents a summary of the original DRAMMS framework. Sections 3.1, 3.2 and 

3.3 present the three key components in our algorithm: 3.2, the new similarity measure; 3.3, 

the new transformation strategy; and 3.4, the parameter optimization for generality in multi-

site data.

3.1 Original DRAMMS Framework Revisited

The original DRAMMS pipeline is shown in Figure 2. Given two images I1:Ω1 → ℝ and 

I2:Ω2 → ℝ in 3D image domains Ωi (i = 1,2) ⊂ ℝ3, DRAMMS seeks a transformation T 
that maps every voxel u ∈ Ω1 to its corresponding point T(u) ∈ Ω2, by minimizing a cost 

function E(T),

minT E(T) = ∫
u ∈ Ω1

ms(u, T(u))
Mutual‐Saliency

⋅ sim A1*(u), A2*(T(u)) du
Attribute Matching

+ λR(T), (1)

where Ai*(u) (i = 1, 2) is an attribute vector that reflects the geometric texture of voxel u at 

multiple scales and orientations (four scales: at 3, 5, 9, 17mm neighborhoods (Ou et al., 

2011) and six orientations, equally sampling 0 to π in three orthogonal planes at a voxel); 

sim (·,·) measures the similarity of two voxels based on their attribute vectors. The default is 

the sum of squared differences of attributes (aSSD), which we modify in this paper.

The term ms(u, T(u)) is a continuously-valued mutual-saliency weight quantifying the 

confidence of two voxels u ∈ Ω1 and T(u) ∈ Ω2 being a correspondence. Voxels with 

ambiguous or inexistent correspondence (e.g., outlier regions) are assigned with a smaller 

mutual-saliency weight and thus down weighted in registration optimization, thereby 

reducing the impact of missing correspondences. The term R(T) is a smoothness/

regularization term using the Laplacian operator (square of Laplacian), also known as the 
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bending energy, of the deformation field T (Bookstein, 1989). The weight, λ (default at 0.2 

(Ou et al., 2011)), is greater if a smoother deformation is needed. We evaluate the sensitivity 

of this parameter (λ) in Section 5.2.3.

The original DRAMMS framework uses the diffeomorphic Free Form Deformation (FFD) 

(Rueckert, 1999)(Heckemann et al., 2006) as its transformation model and the discrete 

optimization (Komodakis, Tziritas, & Paragios, 2008)(Glocker et al., 2008) strategy to 

optimize the deformation in the FFD model.

We follow the original DRAMMS framework (Ou et al., 2011) for attribute extraction, 

normalization and selection. Briefly, attributes are extracted as described above under 

Equation 1. Attributes are then normalized into [0, 256] by linearly mapping from attribute 

values from the minimum and maximum Gabor responses throughout the image across 

scales and orientations. Given a similarity metric (regardless of the original or the proposed 

similarities), attributes are automatically selected by maximizing similarity and reliability of 

matching (mutual-saliency) using forward-inclusion-and-backward-elimination (FIBE) 

feature selection algorithm (Fan et al., 2007)(Ou et al., 2009). Overall, attribute extraction, 

normalization and selection are outside the scope of this paper, but we refer the readers to 

(Ou et al., 2011) for more details.

3.2 Similarity Measure: Correlation-based Attribute Matching

Figure 3 shows an example of multi-scale and multi-orientation Gabor attributes extracted 

from (a) preoperative MR and (b) intraoperative US images. Regions 1, 2 and 3 show that 

attributes follow a relatively more consistent relationship than image intensities. High 

frequency attributes capture more localized fine-scale edges, whereas low frequency 

attributes capture more regional and coarse-scale edges. Attributes from π/2 highlight more 

vertical edges whereas attributes from π highlight horizontal edges. Overall, attributes at 

different scales (frequencies) and different orientations extracts a rich set of texture 

information at each voxel.

The original DRAMMS uses Sum of Squared Differences of attributes (aSSD) as the 

similarity measure,

simaSSD A1
⋆(u), A2

⋆(T(u)) = 1
1 + 1

D A1
⋆(u) − A2

⋆(T(u)) 2 ∈ [0, 1],
(2)

where D is the dimension of the attribute vector. aSSD prefers identical attributes that may 

not always be the case in multi-modal image data. Instead, we use Normalized Correlation 

Coefficient of attributes (aNCC) and Correlation Ratio of attributes (aCR). The two 

measures have been used for intensity matching but, to the best of our knowledge, not for 

matching attributes.
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simaNCC A1
⋆(u), A2

⋆(T(u)) =

d∑i = 1
d A1i

⋆(u)A2i
⋆(T(u)) − ∑i = 1

d A1i
⋆(u) ∑i = 1

d A2i
⋆(T(u))

d∑i = 1
d A1i

⋆(u) 2 − ∑i = 1
d A1i

⋆(u) 2 d∑i = 1
d A2i

⋆(T(u)) 2 − ∑i = 1
d A2i

⋆(T(u)) 2

(3)

where A1i
⋆(u) and A2i

⋆(T(u)) are d-dimensional attributes selected during the optimization 

process (within the end-to-end DRAMMS framework), and the index i, next to 1 and 2 in the 

subscription, denotes the i-th dimension element in the attribute vector.

In a similar notational manner, aCR is defined as

simaCR A1
⋆(u), A2

⋆(T(u)) = 1 − 1
dσ2 ∑

k = 1

K
dkσk

2
(4)

where

σ2 = 1
d ∑

i = 1

d
A2i

⋆(T(u)) 2 − m2, m = 1
d ∑

i = 1

d
A2i

⋆(T(u)) (5)

σk
2 = 1

dk
∑

i ∈ Sk

A2i
⋆(T(u)) 2 − mk

2, mk = 1
dk

∑
i ∈ Sk

A2i
⋆(T(u)) (6)

Sk = i ∈ 1, …d , A1i
⋆(u) ∈ max A1

⋆(u) ⋅ k − 1
K , k

K and dk = Sk (7)

i.e., the attribute elements of a voxel u in image I1 are divided into totally K disjoint bins 

{Sk} for k = {1, …, K} with cardinality dk, and the aCR measures the functional dependence 

between the attribute vectors of two voxels. K is set at 32 in our algorithm.

Similar to aSSD (simaSSD), aNCC (simaNCC) is symmetric with respect to the two images 

and has values between zero (no linear dependency between the attribute vectors of two 

voxels) and one (linearly dependent). Although aCR (simaCR) is not symmetric, it also takes 

value of zero (no functional dependency of the target voxel’s attribute vector given the 

source voxel’s attribute vector) to one (purely deterministic dependency) as is shown in the 

following simulated experiment.

Understanding aNCC and aCR in a Simulated Experiment—We simulated 

variables of linear relationship (y0 = x), non-linear but monotonic relationship (y1 = x2) and 

non-linear but non-monotonic relationship (y2 = sin(2πx), shown in Figure 4 as blue, black, 

and gray curves, respectively. The similarity values of aSSD, aNCC and aCR are shown in 

the table at the bottom of Figure 4. Each cell in the table (below Figure 4) corresponds to the 

similarity value with 0%, 5%, 10% and 20%, respectively, of noise added to the y-axis 
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(corresponding to the curves in Figure 4, panel a–d). This experiment demonstrates the 

following:

i. aCR can better capture all three relationships (linear, non-linear but monotonic; 

non-linear and non-monotonic). All aCR values are close to 1. In contrast, aNCC 

can capture both linear relationship and non-linear but monotonic relationship 

(values close to 1); but it does not well capture the non-linear and non-monotonic 

relationship (values only at 0.75–0.76). aSSD is suitable when two variables 

follow an identical or linear relationship, but almost completely misses the non-

linear relationships (regardless of whether it is monotonic).

ii. aNCC is not as sensitive to non-linear non-monotonic relationships i.e., 

inconsistent relationships, as aCR. However, aNCC is more stable (0.77➔0.76) 

than aCR, which quickly drops from 1.0 to 0.94 when noise is present.

Therefore, both aNCC and aCR can likely improve over aSSD for multi-modal MR-US 

registration. aCR is more sensitive and aNCC is more stable. Comparison of the experiments 

in real MR-US registration is shown in the Results Section.

3.3. Transformation Strategy to Explicitly Handle MR-US FOV Mismatch

We used an automated transformation strategy to deal with the FOV mismatch between MR 

and US images. Without explicit skull stripping or other frequently-used semi-automated 

initialization, we began from rigid registration of raw MR and US images, i.e., with the 

original FOVs. The robust rigid module in DRAMMS is used (please see Appendix for 

details, the “−a 4” argument in the software command). It has an improved robustness in the 

presence of large FOV mismatch by measuring similarity in the overlap instead of union of 

two images’ FOVs (Ou et al., 2018).

In the second step, following the rigid transformation of MR into US space, we dilated the 

foreground boundary of the US image by a radius of r and used the dilated binary US mask 

to mask out regions in the rigidly-transformed MR image as shown in Figure 5. Dilation 

ensures that following masking, the rigidly-transformed MR image has an FOV similar to 

the US image, leaving the remaining transformation to the third step, the deformable process 

We call this three-step strategy the “rigid + masking + deformable” strategy and compare it 

to “rigid only”, and rigid followed by deformable without explicit masking, “rigid

+deformable”.

Similar strategies were used (Drobny et al., 2018)(Hong et al., 2018), in which the dilation 

radius r was set at 0 and 15 voxels (equivalent to 3mm), respectively for the RESECT 

dataset. The parameter r was set at 0 for the BITE dataset in other studies (Rivaz & Collins, 

2015)(Heinrich et al., 2013)(Rivaz et al., 2014)(Jiang et al., 2016). The following sub-

section describes experiments for finding the optimal r and generality in multi-site data.

3.4 Parameter Optimization for Generality and Consistent Accuracy in Multi-Site Data

Our goal is to find a fixed set of parameters that are consistent and highly accurate for multi-

site data. The key parameters in our framework are:

Machado et al. Page 8

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



i. Similarity measure: we compare aSSD in the original DRAMMS framework and 

the proposed aNCC and aCR;

ii. Transformation strategy: we compare “rigid only”, rigid followed by deformable 

registration (“rigid+deformable”), and the proposed rigid, dilation, masking, and 

then deformable registration (“rigid+masking+deformable”).

iii. Dilation margin r in the proposed “rigid+masking+deformable” transformation 

strategy. We vary r from 1mm to 6mm to compensate for any registration errors 

that may arise from rigid registration, which, as experiments show, are typically 

less than 6mm (Zimmer, González Ballester, & Piella, 2019).

iv. Smoothness weight λ in Equation (1). We vary λ from 0.6, 1, 1.2, 1.8, 2, 2.3 to 

2.5 -- smaller λ, typically 0.1 – 0.8, leads to a more aggressive inter-subject 

deformation (Ou et al., 2014), whereas larger λ, 1 to 2.5, corresponds to 

smoother intra-subject registration.

The Similarity measure and Transformation strategy are the most important parameters and 

they are interleaved. Therefore, we explore an exhaustive combination of these two 

parameters, test a range of r and λ values, and plot accuracy as a function of those 

parameters in all datasets.

4. Comprehensive Evaluation

4.1 Accuracy Metric

All three datasets include expert-annotated corresponding landmarks in the MR and US 

images (see Table 1). Similar to other studies that evaluated MR-US registration accuracy 

(Heinrich et al., 2013)(Wein et al., 2013)(Masoumi, Xiao, & Rivaz, 2018a), we use the mean 

target registration error (mTRE), which is the average distance between corresponding 

landmarks after registration of all landmarks in each patient. Let xi and xi
′ represent expert-

annotated corresponding landmark locations in the MR and US images, respectively, 

indexed by i=1,2,…,N, for a patient, and T the computed deformation by an algorithm. The 

mTRE of a registration solution is:

mTRE = 1
N ∑

i

N
T xi − xi′ . (8)

4.2 Fifteen Other MR-US registration algorithms

Table 2 lists fifteen MR-US registration algorithms. They use a wide variety of image 

similarity measures, transformation models, and optimization strategies, some of which are 

also based on machine learning approaches (Zhong et al., 2018)(Sun & Zhang, 2018). The 

algorithms in Table 2 are noted by an asterisk (*) if they have been validated with self-

reported accuracies, or a (#) if they have participated in an international competition in 2018 

for third-party independently evaluated accuracies (please see sub-section 4.3).
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Two MR-US registration tools, SSC and NiftyReg, are publicly and freely available 

(Heinrich et al., 2013)(Drobny et al., 2018). SSC uses two different sets of parameters to 

register MR and US images: from RESECT, set of parameters #1, and BITE, set of 

parameters #2. We ran every set of parameters in all three datasets. We validated NiftyReg 

on the RESECT dataset. We ran NiftyReg on both BITE and MIBS. LC2 (Wein et al., 2013) 

reports a different set of parameters for the two datasets BITE and RESECT, as summarized 

in Table 3. Unfortunately, LC2 is not freely available.

4.3 Participation in Open Challenges held by Third-Parties

The Correction of Brain shift with Intra-Operative Ultrasound (CuRIOUS) 2018 Challenge 

(http://curious2018.grand-challenge.org) was held in conjunction with the Medical Image 

Computing and Computer Assisted Intervention (MICCAI) conference (Xiao et al., 2019). 

This Challenge included two phases. In Phase I, the training phase, participating teams had 

access to both MR and US images and reference landmarks for 22 brain tumor patients. 

They trained their algorithms and reported their own mTRE for each clinical case. In Phase 

II, the testing phase, participating teams had access to a new set of 10 image pairs (testing 

dataset), but only the landmark locations in the MR images. They computed the deformed 

MR landmark locations in the US space, and submitted the locations to the organizers for 

independent evaluation. The goal of the challenge was to test the accuracy and generality of 

the algorithm for a cohort of different patients in the RESECT dataset.

4.4 Analysis of Registration Results for Clinical Utility

Tumor type information (low or high-grade gliomas or metastatic brain tumors) is available 

for each patient in all three datasets (see Table 1). A radiologist (E.G.) with 5 years of 

experience visually checked the locations of 758 landmark pairs one by one, and assign 

them into five regions: (i) sulci/gyri, (ii) ventricles, (iii) falx and tentorium, (iv) tumor 

boundary and (v) others, including vessels, mid brain, pons, bone, white matter and 

interpeduncular cistern, where landmarks appear less frequently. The information allows us 

to quantify registration errors by tumor types and by brain regions, which is so far missing in 

the literature but important for neurosurgeon’s references.

5. Results

Section 5.1 reports the computational time. Section 5.2 presents the results for optimizing 

key parameters. Section 5.3 shows a comparison of sixteen MR-US registration algorithms. 

Section 5.4 presents an analysis of landmark errors in various brain regions and tumor types.

5.1 Computation Time

The cDRAMMS runs in a single thread on a single CPU. It requires 5–15 minutes to register 

a typical pair of MR and US images. We ran cDRAMMS hundreds of times in parallel using 

the Partners Enterprise Research Infrastructure & Services (ERIS) Unix cluster to optimize 

parameter settings across multiple image pairs and multiple patient data sets. It has more 

than 380 compute nodes, 7000 CPU cores, and a total of 56TB RAM memory. Jobs 

submitted to the ERIS cluster were handled by the Load Sharing Facility (LSF) job 

scheduler for high-performance computing in the Unix environment.
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5.2 Optimization of Key Parameters

5.2.1 Similarity Measures and Transformation Strategies—Figure 6 shows the 

landmark errors with various combinations of similarity measures and transformation 

strategies in the three datasets and with all data combined.

The observations below are generally applicable to all three datasets, suggesting the 

consistent performance of cDRAMMS across the multi-site data. Comparing aSSD, aNCC 

and aCR, we found:

i. Regardless of transformation strategies, correlation-based attribute matching 

aNCC and aCR have significantly smaller mTREs than the sum-of-square-based 

attribute matching aSSD.

ii. Between the two different correlation-based attribute matching: aCR leads to 

significantly lower errors than aNCC in the BITE and RESECT dataset, and 

lower, but statistically-equivalent errors, in the MIBS dataset.

iii. The observations above echo results in the simulated data (Figure 4). Relaxing 

the requirement on the equality relationship (aSSD) to a non-linear relationship 

(aNCC and aCR) better models the MR and US image characteristics. aNCC can 

model non-linear consistent relationships of attributes, which is further relaxed to 

aCR that can model a non-linear inconsistent relationships among attributes, 

leading to further a decrease of registration errors.

iv. Comparing transformation strategies, we found that landmark errors decrease 

when moving from “rigid” to “rigid+deformable”, and then to “rigid+masking

+deformable”.

5.2.2. Dilation Radius r—Other studies set r=0 mm (Rivaz & Collins, 2015)(Heinrich 

et al., 2013)(Rivaz et al., 2014)(Jiang et al., 2016) or r=3 mm (Drobny et al., 2018). Figure 7 

shows:

i. Landmark errors are sensitive to the dilation radius r. Therefore, minor FOV 

differences between MR and US images will affect the registration accuracy.

ii. It appears that the observed optimal value appearing at 5mm is related to our 

dilating the US mask mainly to compensate for errors in rigid MR-US 

registration that, on average, are approximately 3mm but can be as large as 4.5–

5.5mm (Nigris et al., 2013).

The parameter r reaches the same optimal value in all datasets, suggesting generality of our 

overall algorithm with multi-site data.

5.2.3 Smoothness Weight λ—The default λ is 0.2 that has been shown to work well 

for aggressive across-patient registration (Ou et al., 2014). We expect λ=1.5~2.5 for 

smoother deformations as MR and US are from the same patient. Figure 8 shows λ=2 is 

observed as optimal. The optimum is the same for all datasets, suggesting consistency of our 

algorithm with multi-site data.
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1.1 5.3 Comparison with Fifteen Additional MR-US Registration Algorithms: Table 4 

summarizes the mTREs pre- and post-registration for sixteen algorithms. Cells in the table 

are empty if the accuracies are not reported and the software is not publicly available.

Accuracy: SSC, LC2 and cDRAMMS present the lowest mTRE among known results in 

three datasets. Although the initial mTRE ranges from 0–21mm (an average of 4.18–

6.41mm for the three datasets), the top ranking methods can reduce the errors to 

approximately 2mm, and in some datasets, to even as low as 1–5mm. LC2 decreases the 

mTREs to 1.57–1.75mm in RESECT and 2.52 mm in BITE (with a different set of 

parameters). SSC reduces the mTREs to 1.67–1.87mm in RESECT, 2.34 in BITE (with a 

different set of parameters) and 2.91–3.61mm in MIBS. cDRAMMS lowers the mTREs to 

2.08–2.28mm in all three datasets.

Generality: cDRAMMS ranks first in the two datasets, BITE and MIBS, and third in the 

RESECT dataset. This is based on using a fixed set of parameters. Using different 

parameters, SSC ranks second in both RESECT and MIBS and third in BITE. LC2 ranks 

second in RESECT’s training subset, first in RESECT’s testing subset, and fourth in the 

BITE dataset. MLP, a deep learning algorithm, ranks first in RESECT’s training subset, and 

fifth among those results submitted for the unseen testing subset of the RESECT dataset. 

The lowest mTRE averages among the three datasets are 1.57mm for LC2, 1.67mm for SSC, 

and 2.08mm for cDRAMMS. The highest mTRE averages among the three datasets are 

2.52mm for LC2, 3.61mm for SSC, and 2.28mm for cDRAMMS. MLP, a deep learning 

based algorithm, shows a far lower mTRE (1.21±0.55mm) in the RESECT training subset 

but the errors in the RESECT testing subset are 5.72±2.82mm.

5.4 Additional Analysis of Results for Clinical Utility

5.4.1. Qualitative Assessment by Physicians—Figure 9 shows MR-US registration 

results for three randomly selected patients from each of the three datasets. Blue and white 

arrows point out tumor boundaries, yellow arrows the falx, and red arrows the sulci. These 

regions are aligned following cDRAMMS registration (bottom row) compared to those 

before registration (third row).

A neurosurgeon in training (P.U) and an experienced neurosurgeon (W.E.) with two and nine 

years’ of clinical practice, respectively, and each with four years’ intraoperative ultrasound 

experience, visually assessed the results of the cDRAMMS registration in the tumor 

boundary, sulci, vessels, choroid plexus, falx, and ventricles. Table 5 shows their grading of 

no registration as “bad” (grossly visible misregistration) as 49% and 44% of registrations, 

respectively, as “good” (minor visible misalignments), and 51% and 56% of the 

registrations, respectively, as “great” (negligible or nearly undetectable misregistration).

5.4.2 Corrected Brain Shift—Figure 10 compares mTRE for all 43 patients before and 

after cDRAMMS registration. Regardless of datasets, patient cases, and the scale of initial 

brain shift (x-axis, ranging from 0 to 21mm), the results show consistently low mTRE after 

registration at 0 to 4mm, and most patients have an mTRE around 2mm after registration
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5.4.3 Distribution of Registration Errors by Brain Regions—Figure 11 presents 

color code registration errors in various brain regions in nine randomly selected patients, 

three from each of the three datasets. In the selected patients, the errors are smaller in sulci 

and gyri (0.5–1.5mm) than in tumor boundaries (2–3.5mm). This is echoed in Figure 12, 

which shows the statistics for landmark errors before and after registration in all datasets. In 

tumor boundary, the average landmark errors are approximately 2.7mm; in ventricles, 

approximately 2.7mm; in falx and tentorium, approximately 2mm; and in sulci and gyri, 

approximately 1.4mm.

5.4.4 Distribution of Errors by Type of Tumor—High-grade gliomas have higher 

landmark errors, averaging 3.1–3.3mm, than low-grade gliomas averaging approximately 

1.25mm. Figure 13 shows and highlights the challenge in registering images in patients with 

HGG. The registration errors for metastatic brain tumor, averaging approximately 2.1mm, 

are between the errors for HGG and LGG.

6. Discussion

Accuracy and generality are two major issues in registering preoperative MR and 

intraoperative US images for neurosurgical guidance. This study demonstrates that using 

correlation-based attribute matching, aNCC and aCR, to replace difference-based attribute 

matching, improves the accuracy for the non-rigid MR-US registration tasks. aNCC and 

aCR are now publicly available in the DRAMMS software (https://www.nitrc.org/projects/

dramms). Explicitly normalizing the FOVs further improves registration accuracy. The 

recent availability of multi-site data allows us to optimize key parameters and test generality 

of the proposed algorithm. We show that a fixed set of thoroughly optimized parameters can 

have relatively consistent performance with multi-site data. We found that landmark errors 

are larger in tumor boundary or tentorium regions than in sulci and gyri regions, larger in 

patients with high-grade gliomas than in those with metastatic tumors and low-grade 

gliomas. This suggests the need for future work to further improve accuracy as discussed 

below.

Our results with both simulated and real data show that Correlation Ratio of attributes (aCR) 

can match regions with inconsistent attribute values. Normalized Correlation Coefficient of 

attributes (aNCC) can match attributes of both linear and non-linear relationships so long as 

the relationship is consistent or monotonic.

Attribute-matching based algorithms, including LC2, SSC and cDRAMMS, are among the 

top accurate and general methods. This highlights the merit of using the high-dimensional 

texture attributes other than one-dimensional intensity of a voxel for matching. Texture 

attributes render each voxel more distinctive than the intensity information. The framework 

is open to other attributes. Other example attributes include, but are not limited to, moments 

(Shen & Davatzikos, 2002), local histogram analysis (Shen, 2007), local entropy and 

Laplacian attributes (Wachinger & Navab, 2012), rotationally invariant difference-of-

Gaussian filter responses (Toews & Arbel, 2009), uniform spherical region descriptor (Liao 

& Chung, 2012), rotation-invariant attributes based on alpha stable filter banks (Liao & 

Chung, 2010), and so on.

Machado et al. Page 13

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/dramms
https://www.nitrc.org/projects/dramms


In order to normalize the MR image FOV to that of the US image, we dilated the binary 

mask of US images to compensate for errors in the initial rigid alignment of MR and US 

images. Errors in MR-US rigid registration are approximately 3mm, but can be as much as 

4.5–5.5mm or even higher (Nigris et al., 2013). We believe this explains our observation that 

the optimal dilation of the FOV of the US image should be approximately 5mm in the 

datasets studied here.

There is ongoing debate as to whether MR-US (mostly pre-section US) registration should 

be rigid (Coupé et al., 2012)(Letteboer et al., 2003)(Nigris et al., 2013), affine (Masoumi et 

al., 2018a)(Masoumi et al., 2018b), or deformable (Rivaz et al., 2015)(Wein, 2018)

( Heinrich, 2018). Our results show that predurotomy brain shift is a largely rigid plus highly 

regularized (smooth) non-rigid process.

Generality remains a major issue in multi-site data. As Table 4 shows, LC2 is highly 

accurate for the RESECT dataset – the average mTREs across RESECT training and testing 

patients are 1.57±0.62 and 1.75±0.55mm, respectively. It uses a second set of parameters to 

maintain a high level of accuracy in the BITE dataset, 2.52±0.87mm. SSC achieves a mTRE 

of 2.18±0.37mm (the third lowest errors) on the BITE dataset, and 1.67±0.54mm or 

1.87±0.51mm (the second lowest errors) on the RESECT training and testing datasets. 

However, the same parameters lead to a larger mTRE, at 3.61±0.82mm for the MIBS 

dataset. Changing to another set of parameters allows SSC to achieve a lower mTRE 

(2.91±0.88mm), which ranks the second lowest errors in the MIBS dataset. In contrast, 

cDRAMMS scores relatively consistently in all three datasets while using a fixed set of 

parameters. The average mTRE equals 2.08mm in BITE (lowest errors among methods), 

2.19–2.28mm in RESECT (training and testing, respectively, third lowest errors among 

methods), and 2.24mm in MIBS (lowest errors among methods). The standard deviation is 

0.37mm, 0.71–0.87mm, and 0.78mm, respectively in those datasets, which shows the 

stability across all patients. It was further demonstrated in Figure 10 that the patient mTRE 

following cDRAMMS registration is stable within a narrow range (1–3.5mm) across patients 

and datasets, irrespective of landmark distribution, tumor grade, and the initial mTRE 

(sometimes as great as approximately 20mm).

Besides efforts in algorithm development aiming for accuracy and generality, the evaluation 

of sixteen algorithms in three datasets is the most comprehensive so far in the MR-US 

registration tasks. CuRIOUS in 2018 marks so-far the first independent evaluation of MR-

US registration algorithms in a well-organized open platform that consists of training and 

testing data (Xiao et al., 2019). Our work uses results from the CuRIOUS 2018 Challenge 

(Table 4, results for the RESECT dataset). The extensions are: (a) we used two additional 

datasets to make it multi-site evaluation (details in Table 1); therefore, not only the accuracy 

but also the generality of sixteen algorithms (Table 2, compared to six algorithms included 

in (Xiao et al., 2019), some with multiple sets of parameter configurations (Table 3), can be 

further evaluated in multi-site datasets (Table 4 for accuracy and generality); and (b) we 

further annotated the regions of the landmark pairs, which led to the first report of the 

registration accuracy by the extent of brain shift that can be corrected (Figure 10), and the 

registration accuracy by brain regions (Figures 11 and 12) and by tumor grades (Figures 13).
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Our detailed statistics (Section 5.4) found that landmark errors are larger in tumor boundary 

and tentorium regions than in sulci/gyri (Figure 12), and larger in patient with high-grade 

glioma than in patient with low-grade gliomas or metastatic tumor (Figure 13) suggesting 

the need for future work to further improve accuracy. Toward a higher accuracy, the deep 

learning based MLP algorithm shows great promise in the RESECT training subset (N=22). 

The MLP algorithm reduced landmark errors to an average of 1.21mm per patient (Zhong et 

al., 2018), much lower than the − 2mm, and even up to 5.6mm, for other algorithms. One 

may suspect that this is overfitting because, in the RESECT testing subset (N=10), MLP’s 

errors increased to 5.72mm in unseen, and probably more challenging, cases. It leaves the 

question open as to whether with refined network designs and the greater availability of 

training data, the accuracy of deep learning-based algorithms will stabilize for this task as 

has been observed in other across subject healthy brain image registration tasks (Yang, 

Kwitt, Styner, & Niethammer, 2017)(Wang, Kim, Wu, & Shen, 2017)(De Vos, Berendsen, 

Viergever, Staring, & Išgum, 2017). This future direction requires not only algorithm 

development, but also multi-site collaboration for releasing more MR-US data. When large-

scale multi-site data is available, it becomes difficult for experts to annotate thousands of 

landmarks. The proposed cDRAMMS algorithm can offer voxel-wise correspondences at a 

consistent level of accuracy for hundreds of thousands of voxels. Therefore, future deep 

learning algorithms can first learn the large number of voxel-wise correspondences found by 

highly accurate algorithm, and then fine tune the deep learning neural network on expert-

annotated, a smaller number of landmark pairs.

Speed is an additional factor in considering the clinical utility of an algorithm. cDRAMMS 

takes tens of minutes (single-thread single-CPU desktop) whereas several other algorithms 

may require only two to five minutes (Masoumi et al., 2018a), one to two minutes (Shams, 

R., Boucher, M. A. and Kadoury, 2018), or even tens of seconds (Heinrich, 2018)(Zhong et 

al., 2018). cDRAMMS uses cubic B-spline-based free form deformation and discrete 

optimization. Recent studies have shown that the same components can be optimized such 

that the overall computation time is reduced to only a few seconds (Jiang et al., 2016)

(Heinrich, 2018). This is an additional area for future research.

A further limitation and subject for future work is how to best evaluate registration accuracy. 

This study, similar to most MR-US brain tumor registration studies (Table 2 and Table 4), 

use manually annotated landmark correspondences. However, expert landmarks are subject 

to human error, are non-uniformly distributed in the image, and may, in extreme cases, not 

be representative of errors in a clinical target such as the tumor edges (Wein, 2018)

(Fitzpatrick, 2009). A more rigorous validation would be the exploration of the Dice overlap 

on the actual segmentation of the tumor and surrounding key regions (Wein, 2018), and the 

properties of the deformation field (Fitzpatrick, 2009)(Rohlfing, 2012). The three datasets in 

our study, as of now, do not contain regional segmentations in both MR and US image space. 

This is another future direction toward thoroughly evaluating clinical utility.

Recent progress has been made toward clinical utility. A representative direction is the 

filling of the gap between the laboratory-based algorithm development and actual clinical 

bedside navigation system. CustusX (Askeland et al., 2016), published in 2016, represents a 

step in this direction. In a 2018 study (Iversen et al., 2018), the authors of CustusX teamed 
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up with authors of the LC2 algorithm, and tested the performance of a commercial MR-US 

registration software, ImFusion GmbH (Munich, Germany), on the CustusX platform. They 

reported a mean landmark error mTRE=4.47mm (median at 2.72mm) (Iversen et al., 2018). 

Future work includes disseminating laboratory-developed software into clinical platforms 

for further evaluations and improvement in clinical settings.

7. Conclusions

We present a correlation-based attribute matching algorithm for registration of MR-US 

images in neurosurgery and show its generality and accuracy in multi-site data. Our work 

suggests that by using multi-scale, multi-orientation attributes, coupled with correlation-

based robust similarity measures on attributes and explicit handling of field of view 

differences, and by thoroughly optimizing key parameters, it is possible that an algorithm 

with a fixed set of parameters can be applied to multi-site data and achieve consistent 

accuracies. This brings us a step closer to the clinical use of registration for neurosurgery 

assistance. It motivates the continuing development of GPU-powered, faster, more 

sophisticated learning-based algorithms for use with larger-scale multi-site data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
MR-US registration challenges. Each row corresponds to a different clinical case (a patient). 

The left, middle and right columns are the preoperative MR, intraoperative US and the 

superposition of the two images, respectively. Dashed blue circles show the different fields-

of-view of the two modalities. MR and US images of corresponding structures are numbered 

from 1 to 9. Bright regions in MR can correspond to bright intensities in US, e.g., regions 2 

and 5; similarly, dark regions of MR can correspond to dark intensities of US, e.g., regions 7 

and 8. However bright regions of MR can also correspond to dark intensities of US, e.g., 
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regions 1, 4, 6 and 9, or grey regions of MR can correspond to dark intensities of US, e.g., 

region 3.
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Figure 2: 
The original DRAMMS framework (sketch of the framework in (Ou et al., 2011)).
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Figure 3: 
Multi-scale and multi-orientation Gabor attributes in a patient’s MR image (left panel) and 

US image (right panel) visualizing the benefit of using attributes over intensities for image 

matching. Regions 1–3 show the inconsistent relationship of MR and US image intensities 

disqualifying the use of NCC or CR directly on image intensities. Multi-scale and multi-

orientation Gabor attributes are extracted from (a) preoperative MR and (b) intraoperative 

US to better handle the registration challenges.
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Figure 4: 
Comparison of aSSD, aNCC, and aCR in simulated data. In each panel, blue curves are the 

simulated linear relationship (y0 = x), black curves are the simulated non-linear but 

monotonic relationship (y0 = x2), and the gray curves are the simulated non-linear but non-

monotonic relationship (y2 = sin(2πx). Upper left: no noise; Upper right: 5% noise added on 

the y-axis. Lower left: 10% noise added on the y-axis; Lower right: 20% noise added on the 

y-axis. In the table under the four panels, each cell shows how the similarity values change 

when 0%, 5%, 10%, and 20% noises, respectively, are added to y0, y1 and y2, corresponding 

to figure panels a-d.
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Figure 5: 
Sketch of the “rigid+masking+deformable” transformation strategy. US is the fixed image 

and MR is the moving image throughout the process. The MR image is rigidly aligned to the 

US (Step 1), masked by the foreground binary mask of the US image with a dilation margin 

r (Step 2), and the masked rigidly-transformed MR image patch is then deformed onto the 

US image (Step 3).
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Figure 6. 
Distributions of mTRE for various similarity measures and transformation strategies. Pair-

wise T-test is used to determine statistically significant difference: * : p < 0.05; **: p < 0.01; 

*** : p < 0.001, ****:p < 0.0001 and ns: p > 0.05(not significant).
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Figure 7. 
Registration error (mTRE) as a function of dilation radius r. There are four panels: one for 

each of three datasets and one for all the data combined. We used aCR as the similarity 

measure and “rigid+masking+deformable” as the transformation strategy. Pair-wise T-test is 

used to determine statistically significant difference* : p < 0.05; **: p < 0.01; *** : p < 

0.001, **** : p < 0.0001 and ns: p > 0.05(not significant).
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Figure 8. 
Registration errors (mTRE) at various deformation smoothness levels.
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Figure 9. 
Preoperative MR to intraoperative US registration in three randomly chosen patients: 

RESECT Case #23, BITE Case #6 and MIBS Case #1. Row designations: a) preoperative 

T2-FLAIR MR; b) intraoperative US; c) MR superimposed on US before registration; d) 

MR superimposed on US after registration. Arrows indicate tumor boundaries (blue and 

white) and sulci/falx (red and yellow).
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Figure 10. 
Brain Shift represented by mTREs before and after cDRAMMS registration. Each dot 

represents one patient. Dots in red circles, green triangles, and blue squares represent 

patients in the BITE, MIBS, and RESECT datasets, respectively.
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Figure 11. 
Landmark errors in representative axial MR slices for nine randomly selected patients from 

three datasets. Color encodes the magnitude of errors: blue for small (0−1 mm) and red for 

large errors (3mm or above).
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Figure 12: 
Landmark errors in various brain regions. Different colors indicate different brain regions, 

with dark and light color for the same type of before and after registrations.
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Figure 13. 
Landmark errors in different tumor types before and after registration.

Machado et al. Page 35

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Machado et al. Page 36

Table 1.

Detailed information for three datasets used in this study. They cover a wide variety of patient demographics, 

MRI and US protocols, and landmark distributions.

RESECT BITE MIBS

Imaging Site (a)
St. Olavs University 
Hospital, Trondheim, 
Norway

Montreal Neurological 
Institute, Montreal, 
Canada

Brigham and 
Women’s Hospital, 
Boston, USA

Patient and 
Tumor 

Demographics (b)

No. of Patients (No. Male) 22
1 13 (9 males) 8 (5 males)

Ages (years): Mean±SD (ranges) >18
1 52.77±18.16 (23–76) 46.37±15.08 (27–69)

Tumor volume
2
 (cm3): Mean±SD 

(range)
40.0±44.09 (1.4–165.9) 
(Munkvold et al.,2017) 34.65±23.62 (0.2–79.2) 21.93±17.90 (3.1–57)

Tumor Diagnosis:
Astrocytoma (32.6%)
Oligodendroglioma (34.9%)
Oligoastrocytoma (4.7%)
Glioblastoma (25.6%)
Metastatic Brain Tumor (2.3%)

Astrocytoma (10)
Oligodendroglioma (10)
Oligoastrocytoma (2)

Astrocytoma (3)
Oligodendroglioma (3)
Glioblastoma (7)

Astrocytoma (1)
Metastasis (1)
Oligodendroglioma (2)
Glioblastoma (4)

Tumor Type
3

LGG (67.4%)
HGG (30.2%)
MET (2.3%)

LGG (22) LGG (4), HGG (9) LGG (3), HGG (4), 
MET (1)

Tumor Location:
Left Hemisphere (51.2%)
Right Hemisphere (48.8%)
Frontal lobe (51.2%)
Temporal lobe (20.9%)
Insular lobe (9.3%)
Parietal lobe (7%)
Parietoccipital lobe (4.7%)
Frontoparietal lobe (4.7%)
Temporoparietal lobe (2.3%)

Right brain:
- Frontal (5),
- Temporal (3),
- Insular (2),
- Frontoparietal (1)
Left brain:
- Temporal (3)
- Frontoparietal (1)
- Insular (2)
- Frontal (5)

Right brain:
- Frontal (2),
- Temporal (1),
- Parietal (2)
Left brain:
- Parietoccipital (1)
- Frontal (6),
- Temporal (1)

Right brain:
- Frontal (4),
- Temporal (1)
Left brain:
- Parietal (1),
- Parietoccipital (1),
- Temporoparietal (1)

MRI Protocol (c)

MRI Machine 1.5T Siemens 
Magnetom Avanto 1.5T GE Signa 3T Siemens Magnetom 

Verio

MRI Sequences T2-FLAIR T2 and T1w gadolinium 
enhanced MR T1 and T2-FLAIR

Date of Acquisition 1 day before the surgery
avg. 17 days pre-
surgery (range = 1–72 
days)

avg. 18 days pre-
surgery (range = 1–77 
days)

Time of Echo and Repetition 388ms and 5000ms 8ms and 23ms 232ms and 2000ms

Flip Angle 120° 20° 120°

Voxel Size 1.0 × 1.0 × 1.0 mm3 1.0 × 1.0 × 1.0 mm3 1.0 × 1.0 × 1.0 mm3

US Protocol (c)

US Frequency Range 5 – 15 MHz 4 – 7 MHz 3.8 – 10 MHz

No. of Frames 200 to 400 200 to 600 100 to 300

Resolution of US Reconstruction
0.14 × 0.14 × 0.14 mm3 

to 0.24 × 0.24 × 0.24 
mm3

0.3 × 0.3 × 0.3 
mm3(Mercier et al., 
2011)

0.5 × 0.5 × 0.5 mm3

Landmark 
Distribution (d)

Landmark pairs/patient 15–16 19–40 5–10

No. Landmark pairs 338 355 65

Dispersion of landmarks
4 336.25±155.38 828.28±237.56 529.43±194.96

Landmark 
Locations

Sulci/Gyri 206 198 25
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RESECT BITE MIBS

Imaging Site (a)
St. Olavs University 
Hospital, Trondheim, 
Norway

Montreal Neurological 
Institute, Montreal, 
Canada

Brigham and 
Women’s Hospital, 
Boston, USA

Tumor 
Boundary 123 35 26

Falx and 
Tentorium 8 47 14

Ventricles 1 62 –

Others
5 – 13 –

1
RESECT does not provide detailed age and gender information (Xiao et al., 2017).

2
Tumor volume is based on manually drawn boundaries in MR images.

3
Tumor type is categorized in low-grade glioma (LGG), high-grade glioma (HGG) or metastasis (MET)

4
The spatial dispersion of the 3D point cloud is measured by the trace of the covariance matrix of the coordinates of points where higher traces 

correspond to higher degrees of dispersion (Hladuvka, 2003)(Rizzini & Caselli, 2007).

5
“Others” means vessels, mid brain, pons, bone, white matter and interpeduncular cistern, where landmarks appear less frequently.
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Table 2:

Major components of sixteen MR-US registration algorithms we evaluated in this paper. An asterisk (*) 

denotes algorithms with self-reported accuracies and # if authors have participated in the CuRIOUS 2018 

challenge for the third-party independently reported accuracies. “_” under the “Publicly Released” column 

means the algorithm is not yet publicly released. Abbreviations: CMA-ES – Covariance matrix adaptation 

evolutionary strategy; FFD – Free Form Deformation based on cubic B-splines; SGD – Stochastic Gradient 

Descent; DO – Discrete Optimization; BOBYQA – Bound Optimization by Quadratic Approximation; CCOD 

– Closest commuting operator distance.

Author, Publication Yr. Algorithm Similarity Measure Deformation Model Optimization 
Strategy

Publicly 
Released

(Nigris, Collins, & Arbel, 
2013)

Gradient orientation 
(*)

Local gradient 
orientation

Rigid
CMA-ES

1 _

(Rivaz, Karimaghaloo, & 
Collins, 2014)

SeSaMI (*) α-MI FFD SGD _

(Rivaz, Karimaghaloo, 
Fonov, et al., 2014)

CoCoMi (*) Contextual 
Conditioned Mutual 
Information

FFD
SGD

1 _

(Rivaz et al., 2015) RaPTOR (*) CR FFD SGD _

(Jiang et al., 2016) miLBP (*) miLBP FFD DO _

(Masoumi, Xiao, & Rivaz, 
2018b)

MARCEL (*) CR Affine SGD _

(Hong et al., 2018) SS+Demons (#) Demons (Vercauteren, Pennec, Perchant, & Ayache, 2007) _

(Drobny et al., 2018) Symmetric Block-Matching Based Approach (NiftyReg) (#) Yes

(Heinrich, 2018) SSC (#) Self-similarity 
context metric

FFD DO Yes

(Wein, 2018) LC2 (#) LC2 Demons BOBYQA
Partially

2

(Shams, Boucher, and 
Kadoury, 2018)

LC2+P (#)
LC2+P

3 FFD BOBYQA _

(Masoumi et al., 2018a) ARENA (*) CR Affine
CMA-ES

1 _

(Zimmer et al., 2019) Laplacian 
Commutators (*)

CCOD FFD SGD _

(Zhong et al., 2018) MLP (#)
Learning-based Approaches

_

(Sun & Zhang, 2018) CNN+STN (#) _

cDRAMMS (#) aNCC and aCR Rigid+Masking
+FFD

DO Yes

1
The authors used a similar version of stochastic gradient descent optimization (please see (Rivaz et al., 2014) for additional details).

2
The similarity calculator is freely released, whereas the whole registration is implemented in the ImFusion SDK platform that is author proprietary 

material.

3
The registration includes a rigid step with LC2 and a non-rigid step with LC2+P where P is a pixel weighting term.
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Table 3:

Publicly-available tools for MR-US registration usually use different parameter settings for different datasets. 

SSC and NiftyReg are fully released, whereas LC2 only has the similarity metric tool released.

Registration Tool (Reference) Variable for BITE Dataset for RESECT Dataset

SSC
(used for BITE in (Heinrich et al., 2013) and for 
RESECT in (Heinrich, 2018))

Number of coarse-to-
fine pyramid levels

3 5

Control point spacing {6, 5, 4}mm in 3 levels {4, 3.5, 3, 2.5, 2}mm in 5 
levels

Search range {12, 5, 2}mm in 3 levels {6.4, 6.125, 6, 4.125, 8}mm 
in 5 levels

Discretization of search 
space

[6, 5, 4] intervals in 3 
levels

[5, 4, 3, 2, 1] intervals in 5 
levels

Patch size 3×3×3 voxels = 
1.5×1.5×1.5mm

3×3×3 voxels = 
1.5×1.5×1.5mm

Weight for regularizer 0.5 1.6

NiftyReg
(used for RESECT in (Drobny et al., 2018))

Coarse-to-fine pyramid 
levels

-- 2

Iterations per level -- 10 (coarse level), 5 (fine 
level)

Block size -- 4×4×4 voxels

% of blocks -- 25% (blocks with highest 
intensity variations)

LC2
(used for BITE in (Wein et al., 2013); for RESECT 
in (Wein, 2018))

Patch size 7×7×7 voxels 7×7×7 voxels

Transformation Free-form Cubic B-Spline Rigid
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Table 4:

Pre- and post-registration errors (mTRE) for sixteen algorithms in three datasets. The top three ranked 

algorithms in each subset are noted in bold text, underlined, and in italics, respectively. Results are mostly 

from publications from the authors of these algorithms, except for SSC (parameter #1) in BITE and MIBS, 

SSC (parameter #2) in RESECT training patients and MIBS, and NiftyReg in BITE and MIBS.

BITE RESECT MIBS

Training Testing

Initial mTRE (mm) 4.18±1.97 (Mercier et al., 2012) 5.37±4.27 (Xiao et al.,2017) 6.41±4.46 (Xiao et al.,
2019)

6.18±3.38

ARENA 2.82±0.71 (Masoumi et al., 2018a) 2.77±1.13 (Masoumi et al., 2018a) - -

CoCoMi 3.22 ±1.70 (Rivaz et al., 2014) - - -

CNN+STN - 3.91±0.53 (Sun & Zhang, 2018) - -

Gradient Orientation 2.57±0.74 (Nigris et al., 2013) - - -

Laplacian Commutators
1 3.01±1.22 (Zimmer et al., 2019) - - -

LC2 (Parameter #1) - 1.75±0.62 (Wein, 2018) 1.57±0.55 -

LC2 (Parameter #2) 2.52±0.87 (Wein et al., 2013) - - -

LC2+P - 4.6±3.4 (Shams et al., 2018) 6.62±2.80 -

MARCEL -
2.32±0.68

2
 (Masoumi et al., 2018b)

- -

RaPTOR
2.65±0.98

3
 (Rivaz et al., 2015)

- - -

miLBP 2.15±1.10 (Jiang et al., 2016) - - -

MLP - 1.21±0.55 (Zhong et al., 2018) 5.72±2.82 -

SeSaMI 2.44±0.40 (Rivaz et al., 2014) - - -

SSC (Parameter #1) 2.18±0.37 1.67±0.54 (Heinrich, 2018) 1.87±0.51 3.61±0.82

SSC (Parameter #2) 2.34±0.52 (Heinrich et al., 2013) 2.52±0.60 - 2.91±0.88

SS+Demons - 5.60±3.94 (Hong et al., 2018) 6.55±4.55 -

NiftyReg 2.67±0.58
2.90

4
 (Drobny et al., 2018)

3.24±3.63 3.18±0.62

Ours (cDRAMMS) 2.08±0.37
2.28±0.71 (Machado et al., 2018)

5 2.19±0.87 2.24±0.78

1
This group uses nine of 13 BITE clinical cases (#2,3,5,6,10–14).

2
MARCEL was validated in five of 22 RESECT cases. They reported an initial mTRE equal to 5.13±2.78 mm (N=5).

3
RaPTOR was validated in a previous version of the BITE dataset in which the mTRE pre-registration was 5.92±3.15 mm and the number of 

landmarks per case ranged from nine to 21.

4
This group reported only the mean mTRE for all patients in the RESECT training subset.

5
An earlier submission was used in (Machado et al., 2018).
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Table 5.

Visual grading of registration accuracy by two neurosurgery fellows of 43 patients from 3 datasets.

Grader Grading

Neurosurgeon Bad Good Great

P.U. 0 21 (49%) 22 (51%)

W.E. 0 19 (44%) 24 (56%)
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