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Abstract

Quantitative susceptibility mapping (QSM) estimates the underlying tissue magnetic susceptibility 

from MRI gradient-echo phase signal and typically requires several processing steps. These steps 

involve phase unwrapping, brain volume extraction, background phase removal and solving an ill-

posed inverse problem relating the tissue phase to the underlying susceptibility distribution. The 

resulting susceptibility map is known to suffer from inaccuracy near the edges of the brain tissues, 

in part due to imperfect brain extraction, edge erosion of the brain tissue and the lack of phase 

measurement outside the brain. This inaccuracy has thus hindered the application of QSM for 

measuring susceptibility of tissues near the brain edges, e.g., quantifying cortical layers and 

generating superficial venography. To address these challenges, we propose a learning-based QSM 

reconstruction method that directly estimates the magnetic susceptibility from total phase images 

without the need for brain extraction and background phase removal, referred to as autoQSM. The 

neural network has a modified U-net structure and is trained using QSM maps computed by a two-
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step QSM method. 209 healthy subjects with ages ranging from 11 to 82 years were employed for 

patch-wise network training. The network was validated on data dissimilar to the training data, 

e.g., in vivo mouse brain data and brains with lesions, which suggests that the network generalized 

and learned the underlying mathematical relationship between magnetic field perturbation and 

magnetic susceptibility. Quantitative and qualitative comparisons were performed between 

autoQSM and other two-step QSM methods. AutoQSM was able to recover magnetic 

susceptibility of anatomical structures near the edges of the brain including the veins covering the 

cortical surface, spinal cord and nerve tracts near the mouse brain boundaries. The advantages of 

high-quality maps, no need for brain volume extraction, and high reconstruction speed 

demonstrate autoQSM’s potential for future applications.

Keywords

MRI – magnetic resonance imaging; QSM – quantitative susceptibility mapping; deep learning; 
neural network

Introduction

Quantitative susceptibility mapping (QSM) is a relatively new MRI technique that measures 

the spatial distribution of magnetic susceptibility within an object (Acosta-Cabronero et al., 

2016; Bilgic et al., 2012; Haacke et al., 2015; Li et al., 2016; Liu et al., 2015a; Liu et al., 

2015b; Schweser et al., 2013; Shmueli et al., 2009; Wang and Liu, 2015; Wharton and 

Bowtell, 2010). QSM computes the susceptibility from the phase signal of gradient-recalled 

echoes (GRE) and typically requires several processing steps. These steps involve phase 

unwrapping, tissue volume (e.g., brain) extraction, background phase removal and solving 

an inverse problem relating the tissue phase to the underlying susceptibility distribution. 

Phase unwrapping can easily be performed using path-based (Jenkinson, 2003) or 

Laplacian-based (Li et al., 2011; Schofield and Zhu, 2003; Sun and Wilman, 2013) 

algorithms. The widely-used automatic Brain Extraction Tools (BET) are typically model-

based (Smith, 2002) or learning-based (Iglesias et al., 2011). Removal of background fields 

may be performed using a number of algorithms, including projection onto dipole fields (Liu 

et al., 2011a), SHARP processing and its variants (Schweser et al., 2011; Wu et al., 2012) 

and HARPERELLA (Li et al., 2013). However, estimating the susceptibility map from a 

local tissue field map is more complex. To account for regions where the amplitude of dipole 

kernel is small and its inverse is undefined, some algorithms use threshold-based masking or 

dipole kernel modification (Schweser et al., 2013; Wharton et al., 2010). These algorithms 

are efficient and easy to implement; however, they contain severe streaking artifacts and bias 

susceptibility values due to the information loss through the masking process, and a 

compromise must be made between noise amplification and the reduction of streaking 

artifacts. Streaking in the focal areas of objects with large susceptibility values, e.g., blood 

vessels, may be reduced by estimating the missing data using iterative (Sun et al., 2016; 

Tang et al., 2013; Wei et al., 2015) or compressed sensing (Wu et al., 2012) algorithms. 

However, these iterative methods are considerably slower than direct inverse via 

thresholding, and care must be taken on the assumptions made when selecting spatial priors 
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to avoid over-regularization and the reduction of image contrast (Liu et al., 2012b; Liu et al., 

2011b; Wharton and Bowtell, 2010).

A new class of QSM algorithms that directly relate the GRE phase signal to the unknown 

susceptibility distribution has been proposed recently (Chatnuntawech et al., 2017; Liu et al., 

2017; Sun et al., 2018). By performing background phase removal and dipole inversion in a 

single step, these algorithms prevent potential error propagation across successive 

operations. For example, to eliminate the background phase removal step, one study 

proposed a single-step QSM reconstruction technique which combined single-kernel 

spherical mean value (SMV) filtering with dipole inversion using the Laplacian operator 

(Chatnuntawech et al., 2017). Others used total generalized variation (TGV) regularization 

to develop a single-step QSM model (SS-TGV-QSM) that mitigated the artifacts observed in 

total variation (TV)-based reconstructions (Chatnuntawech et al., 2017; Langkammer et al., 

2015). These Laplacian-based QSM methods implicitly eliminate the background field. 

However, the practical implementation of the Laplacian requires a tradeoff between 

robustness to error amplification and the integrity of the cortical brain tissue 

(Chatnuntawech et al., 2017; Langkammer et al., 2015). Recently, total field inversion (TFI) 

and least square norm (LN-QSM) methods were proposed to directly perform dipole 

inversion on the total field (Liu et al., 2017; Sun et al., 2018). However, these methods still 

need a mask to aid QSM reconstruction. Moreover, automatically generating an optimal 

mask is challenging, especially near the brain boundary, where large air-tissue or tissue-bone 

susceptibility differences can cause substantial signal loss on the magnitude images used to 

define the mask. Using a mask that is too big can include noisy phase information and lead 

to streaking artifacts, while a mask that is too small results in loss of brain tissue in the final 

image. In particular, erosion of the brain mask can prevent visualization of important 

structures at the brain boundaries, e.g., human brain cortical vessels, the spinal cord and 

nerve tracts of mouse brain.

Deep neural networks have been applied to iterative methods for solving variety of inverse 

problems (Oktem, 2017; Qin et al., 2018). Over the last few years, deep learning methods 

have been shown to outperform previous state-of-the-art machine learning techniques in 

several fields, computer vision being one of the most prominent cases. Deep networks have 

been also applied to medical image reconstruction, e.g., PET, CT and MRI (Han et al., 2018; 

Leynes et al., 2018; Zhu et al., 2018). Recently, Yoon et al. trained a neural network to 

predict high-quality COSMOS (Calculation of Susceptibility through Multiple Orientation 

Sampling) (Liu et al., 2009) QSM from single-head-orientation data (Yoon et al., 2018). 

However, this trained model for COSMOS QSM does not describe magnetic susceptibility 

anisotropy. Another study proposed a deep convolutional network that utilizes real-world 

single-orientation phase to solve the inverse problem from simulated phase to magnetic 

susceptibility (Rasmussen et al., 2018).

In this study, we propose to train a deep neural network that reconstructs QSM directly from 

the field map while maintaining the contrast resulting from brain tissue’s magnetic 

susceptibility anisotropy. The proposed method, referred to as autoQSM, is iteration-free, 

skipping skull stripping and thus enabling efficient reconstruction. The model is trained on 

subjects with ages ranging from 11 to 82 years old, and the ground truth is the reconstruction 
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by the established two-step STAR-QSM method (Wei et al., 2015). We investigate the 

capability of the trained neural network to directly reconstruct QSM from the measured 

magnetic field shift. We demonstrate the feasibility of autoQSM for fast and high-quality 

QSM reconstruction without skull stripping and show that it preserves more tissues at the 

brain boundaries, e.g., blood vessels and the spinal cord. Moreover, we validate the network 

by generating QSM maps of the in vivo mouse brain which has dissimilar tissue contrast to 

the human brain training data, suggesting that the network generalized and was able to learn 

the underlying mathematical relationship between magnetic field shift and magnetic 

susceptibility. The advantages of high-quality maps, no need for brain volume extraction, 

high reconstruction speed and recovering more cortical blood vessels demonstrate 

autoQSM’s potential for future applications.

Methods

MRI data acquisition and processing

A total of 209 healthy subjects with ages ranging from 11 to 82 years old were included for 

training. The subjects were scanned at the Brain Imaging and Analysis Center (BIAC) at 

Duke University using a 3T scanner (MR 750, GE Healthcare, Milwaukee, WI) equipped 

with an 8-channel head coil. Imaging was carried out with the approval of the institutional 

review board (IRB) and informed consent from the adult subjects or from the legal guardians 

of the teenage subjects. The 21 teenage (ages 11–20, 10M/11F) subjects were scanned using 

a 3D GRE sequence with field of view (FOV) = 22×22 cm2, matrix size = 256×256, flip 

angle (FA) = 20°, TR = 41 ms, TE1/spacing/TE8 = 4/2.82/29.4 ms, spatial resolution = 

0.86×0.86×2 mm3, number of slice = 64, and reconstruction spatial resolution = 

0.86×0.86×1 mm3, SENSE factor = 2, total imaging acquisition time = 5.7 min. The 188 

adult (ages 21–82) subjects were scanned with the following parameters: FOV = 22×22 cm2, 

matrix size = 256×256, FA = 20°, TR = 34.6 ms, TE1/spacing/TE8 = 5.468/3/26.5 ms, 

spatial resolution = 0.86×0.86×1 mm3. SENSE factor = 2, number of slice = 136, total 

imaging acquisition time = 9.7 min. Detailed information about the subjects at each age 

interval is shown in Fig. S1 in the supplemental material.

QSM reconstruction of the training dataset for the neural network was performed in STI 

Suite (https://people.eecs.berkeley.edu/~chunlei.liu/software.html). The sum of squares of 

GRE magnitude images across echo times ( i = 1
n magi

2), where n is the number of echoes, 

was used to mask and extract the brain tissue using the brain extraction tool (BET) in FSL 

(Smith et al., 2004). The raw phase was unwrapped using Laplacian-based phase 

unwrapping (Schofield and Zhu, 2003). The normalized total phase ψ was calculated as: 

ψ = i = 1
n ωi

γμ0H0 i = 1
n TEi

 where ω is the unwrapped phase. The normalized background phase 

was removed with the SMV method (Wu et al., 2012). The variable radius of the SMV filter 

increased from 1 pixel at the brain boundary to 25 towards the center of the brain with 

singular value decomposition truncated at 0.05 for the SMV filter during the deconvolution 

process (Wu, Li et al. 2012). Lastly, susceptibility maps were computed by inverting the 

filtered phase using the STAR-QSM algorithm (Wei et al., 2015; Wei et al., 2016).
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Deep network architecture

Our network architecture is modified from an established architecture (U-net) (Ronneberger 

et al., 2015). The overall network architecture used in this study is summarized in Fig. 1. It 

consists of repetitive applications of 1) 3×3×3 convolutional layer, 2) batch normalization 

layer, 3) rectified linear unit (ReLU), 4) 2×2×2 convolution with stride 2, 5) 2×2×2 

deconvolution with stride 2, 6) identity mapping layer that adds the left-side feature layer to 

the right side, and 7) a 1×1×1 convolution kernel as the last layer. The architecture can be 

divided into a contracting section and an expanding section. The left half of the architecture 

aims to compress the input path layer by layer, acting as an encoder, while the right half 

expands the path, acting as a decoder. The network has 15 convolutional layers in total and 

the largest feature size is 128. The network parameters including the depth of the layers were 

empirically optimized.

The normalized 3D total phase images, ψ, were used as the input of the neural network and 

STAR-QSM images were used as the label. Out of the 209 healthy datasets, 42 subjects (6 

subjects with 3F/3M from each age interval of 10 years) were used as a validation set. The 

size of 3D patch for training and testing is 64×64×64. The patch was generated with an 

overlapping scheme of 2/3 overlap between adjacent patches. 100 patches were randomly 

extracted from each dataset for training. Mean squared error (MSE) within the brain tissue 

between the reconstruction from the autoQSM and the label data served as the cost function 

for the optimizer, and it was minimized using the alternating direction method of multipliers 

(ADAM) optimizer (Kingma and Ba, 2015). The learning rate decay was exponential with a 

factor of 10−4 every 600 steps until it reached 10−7. The batch size was set to 8 and the 

network converged after 100 epochs. To avoid overfitting, dropout was used to randomly 

turn off neurons with a rate of 10% (Srivastava et al., 2014). The proposed network structure 

was implemented using Python 3.6.2 and Tensorflow v1.4.1 using NVIDIA 1080TI GPU. 

The total training time was approximately 24 hours.

Evaluation of autoQSM

To test the network’s ability to reconstruct QSM directly from total phase images, different 

datasets acquired at different sites were used as test datasets. These datasets had different 

acquisition parameters from the training data, so the following experiments would test 

autoQSM’s ability to learn the underlying physical principle of the QSM reconstruction 

rather than simply the anatomy.

Experiment 1: A numerical brain phantom was built according to a previous QSM study 

with a matrix size of 192×256×150 and a spatial resolution of 1mm3 isotropic 

(Chatnuntawech et al., 2017). The phantom was generated with the following susceptibility 

values (SI units): hippocampus, 0.05ppm; hypothalamus, 0.05 ppm; medulla oblongata, 0.05 

ppm; white matter, – 0.03 ppm; cerebellum, –0.0065 ppm; pons, –0.0065 ppm; thalamus, –

0.0065 ppm; midbrain, – 0.0065 ppm; cerebrospinal fluid (CSF), 0 ppm; skull, –2.1 ppm. 

The magnetic susceptibility sources at 0.6 ppm were included to resemble subcutaneous fat 

without the chemical shift effect. The magnetic susceptibility sources at 9.2 ppm were 

included within the head to mimic internal air in the nasal cavity. The skull, fat and air act as 

the background susceptibility sources compared to brain tissues. The resulting phantom was 
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convolved with the dipole kernel to generate the total phase. The total phase defined within 

the brain mask was used as the input of the trained neural network and the result was 

compared to those computed by the truncated k-space division (TKD) (Wharton and 

Bowtell, 2010) and the improved sparse linear equation and least-squares (iLSQR)-

algorithm (Li et al., 2015).

Experiment 2: Six subjects were scanned using a 3D GRE sequence on a GE 3T Hdxt 

scanner equipped with an 8-channel head coil with the following parameters: FOV = 

25.6×25.6 cm2, matrix size = 256×256, FA = 20°, TR = 41 ms, TE1/spacing/TE16 = 

3.2/2.2/36.2 ms, spatial resolution = 1×1×1 mm3, number of slice = 144. The same scans 

were repeated at three additional head orientations with respect to the B0 field, SENSE 

factor = 2, total imaging acquisition time = 13 min per orientation. The four orientations 

were used to perform COSMOS QSM reconstruction. In addition, TKD and iLSQR QSM 

images were generated from the filtered phase for comparison. For the TKD method, the 

threshold was 0.2 as suggested in the literature (Shmueli et al., 2009). For the iLSQR 

method, the parameters were set as suggested in the original paper (Li et al., 2015). To 

assess its performance, the results of autoQSM were compared with STAR-QSM, TKD, 

iLSQR and the gold-standard COSMOS QSM. We used several quantitative metrics 

assessed by the 2016 QSM Reconstruction Challenge to evaluate the reconstruction quality 

of these QSM algorithms. The metrics were normalized root-mean-squared error (RMSE), 

high-frequency error norm (HFEN), and structure similarity index (SSIM) (Langkammer et 

al., 2018). For example, RMSE (%) was calculated as norm(χ(:) - χ_true(:))/

norm(χ_true(:)). χ denotes the calculated susceptibility map while χ_true is the COSMOS 

QSM. Norm denotes the normalization, defined as i = 1
n ai

2 in matlab, where ai is the ith 

element of the vector χ. Note that all the metrics were assessed within the brain tissue mask. 

To further quantify the accuracy and consistency of the QSM maps, region-of-interest (ROI) 

analysis was performed. ROIs were extracted by registering a QSM atlas (Zhang et al., 

2018) to the reconstructed QSM images. The QSM dataset was treated as the target brain 

and the QSM atlas was registered using large deformation diffeomorphic mapping 

(LDDMM) (Beg et al., 2005). Deep gray matter (DGM) ROIs, including caudate nucleus 

(CN), putamen (PUT), globus pallidus (GP), red nucleus (RN), substantia nigra (SN), and 

representative white matter (WM) ROIs, including internal capsule (IC), corpus callosum 

(CC), optic radiation (OR), were defined using the QSM atlas. The mean and standard 

deviation for each ROI was calculated for the QSM maps reconstructed by different 

methods. One-way analysis of variance with repeated measurement was performed for each 

ROI and corrected for multiple comparisons using SPSS (SPSS Inc., Chicago, IL). 

Differences were considered statistically significant when P<0.05. To demonstrate the 

preserved susceptibility anisotropy of autoQSM, the autoQSM’s results were compared 

against those of QSMnet (Yoon et al., 2018).

Experiment 3: AutoQSM was also tested using the data provided by the 2016 QSM 

Reconstruction Challenge (Langkammer et al., 2018). RMSE, HFSN, SSIM, and ROI error 

were calculated with respect to the susceptibility tensor component χ33.
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Experiment 4: This experiment aimed to test autoQSM’s performance on infant and child 

brain datasets, which exhibit lower iron deposition and less myelination compared to the 

adult brain thus significantly different contrast. Imaging was carried out with approval of 

IRB and parental consent for babies and children. Ten 2-years-old infant subjects were 

scanned with the following parameters: FOV = 220×220 mm2, matrix size = 220×220, TR = 

40 ms, TE1/spacing/TE16 = 2.9/2.9/46.4 ms, and spatial resolution = 1×1×1 mm3, number of 

slices = 128, SENSE factor = 2, total imaging acquisition time = 11 min. Infant earmuffs 

were used for hearing protection, and possible motion artifacts were mitigated by 

immobilization with a cotton pillow. An experienced neonatologist and a neuroradiologist 

were in attendance throughout the imaging process. Fifteen children (ages 5–7) were 

scanned with the following parameters: FOV = 220×220 mm2, matrix size = 384×384, TR = 

42 ms, TE1/spacing/TE7 = 4.35/4.76/32.91 ms, and spatial resolution = 0.58×0.58×1 mm3, 

number of slices = 128, SENSE factor = 2, total imaging acquisition time = 12 min.

Experiment 5: The fifth experiment attempted to explore the clinical applicability of 

autoQSM to data from patients with brain lesions, which were not present in the subjects 

seen by the network during training. Fifteen multiple sclerosis (MS) patients were scanned 

with the following parameters: FOV = 220×220 mm2, matrix size = 256×256, TR = 44 ms, 

TE1/spacing/TE8 = 3/4.18/32.3 ms, and spatial resolution = 0.86×0.86×1 mm3, number of 

slices = 136, SENSE factor = 2, total imaging acquisition time = 13.5 min. Fifteen patients 

with brain hemorrhage was scanned with the following parameters: FOV = 220×220 mm2, 

matrix size = 256×256, TR = 41 ms, TE1/spacing/TE8 = 3.16/4.85/37.1 ms, and spatial 

resolution = 0.86×0.86×1 mm3, number of slices = 136, SENSE factor = 2, total imaging 

acquisition time = 12 min.

Experiment 6: We also applied the trained network to total phase maps of fifteen in vivo 
mouse brains that were scanned using a 7T 20-cm-bore magnet (Bruker BioSpec 70/20 

USR, (Dibb et al., 2015; Dibb et al., 2017; Liu, 2010a; Xie et al., 2015), Billerica, MA, 

USA) interfaced to an Avance III system. A high-sensitivity cryogenic radiofrequency coil 

was used for transmission and reception (Bruker CryoProbe). The mice were scanned using 

a 3D spoiled-gradient-recalled (SPGR) sequence with the following scan parameters: TR = 

250 ms, TE1/∆TE/TE10 = 3.72/5.52/53.4 ms, FA = 35°, FOV = 19.2×14.4×9.6 mm3 with 87 

µm isotropic resolution, number of slices = 110, total imaging acquisition time = 90 min. 

Data acquisition was respiratory gated with two pulse sequence repetitions per respiratory 

cycle.

Experiment 7: Three subjects were scanned using a 3D fast low angle shot (FLASH) 

sequence on a whole body 7T scanner (Magnetom; Siemens Healthcare, Erlangen, 

Germany) equipped with an 32-channel head coil with the following parameters: sagittal 

view, FOV = 19.2×19.2 cm2, matrix size = 320×320, FA = 10°, TR = 30 ms, TE1/

spacing/TE4 = 2.3/6.9/23 ms, spatial resolution = 0.6×0.6×0.6 mm3, number of slices = 320, 

GRAPPA factor = 2, total scan time = 25.6 min. To assess autoQSM’s performance on 

image the magnetic susceptibility of spinal cord, the results of autoQSM were compared 

with STAR-QSM’s results.
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Results

Fig. 2 shows the testing results on numerical phantom susceptibility model using different 

methods. The difference map between the results of autoQSM and true susceptibility shows 

substantially smaller differences related to brain tissues. Compared to TKD and iLSQR, 

autoQSM delivers substantially lower error level with RMSE of 83%, 76% and 58% 

respectively.

Fig. 3 shows the three orthogonal views of total phase and QSM images on one 

representative healthy subject using the five methods. It is clear from Fig. 3 that autoQSM 

can effectively recover the cortical tissues, such as vessels. In contrast, TKD-QSM and 

iLSQR showed a substantially noisy susceptibility contrast between the cortical gray and 

white matter. The predicted QSM is similar to that of STAR-QSM, with slightly lower 

susceptibility contrast compared to COSMOS visually. The quantitative metrics, e.g., 

RMSE, HFEN, and SSIM of the five reconstruction methods are summarized in Table 1. 

AutoQSM results achieved the lowest RMSE, lowest HFEN and highest SSIM, suggesting 

better performances based on these criteria than the TKD-QSM and iLSQR methods.

With respect to the mean susceptibility and standard deviation of the representative ROIs as 

shown in Fig. 4a, the autoQSM results show comparable values when compared to STAR-

QSM and slightly lower susceptibility contrast than those on the COSMOS QSM. However, 

no significant difference was found for any deep gray matter region between autoQSM and 

COSMOS, P>0.05.

Fig.5 shows a representative healthy volunteer acquired at four different orientations relative 

to the B0 field to demonstrate the preserved susceptibility anisotropy. The QSM maps 

predicted by autoQSM exhibit strong susceptibility anisotropy of white matters as pointed 

by arrows, is consistent with the orientation-dependent susceptibility measured by STAR-

QSM (Fig. S2 in the supplemental material). However, these regions show more consistent 

contrast on QSMnet’s results across different head orientations (Yoon et al., 2018). The 

comparison of the magnetic susceptibility in internal capsule and optic radiation are 

presented in Table 2. This difference is expected as QSMnet is trained using multi-

orientation COSMOS while autoQSM is trained using single-orientation QSM.

Using data provided from the 2016 Challenge and χ33 as the ground truth, we compared the 

performance metrics between STAR-QSM and autoQSM. AutoQSM returned comparable 

scores to STAR-QSM for RMSE and HFEN metrics, and ROI-level errors equivalent to 

those observed for STAR-QSM and χ33. Qualitatively, we note that autoQSM yielded 

susceptibility values and contrast at brain edges that are lost in STAR-QSM and χ33, as 

shown in Fig. 6d. We also observe checkerboard and ringing artifacts near the cortical 

surface were observed on the autoQSM’s results. These artifacts are due to noisy unwrapped 

phase values with a checkerboard pattern outside of the brain that acquired using a 

simultaneous multiple slice (SMS) sequence. However, these artifacts are not present in the 

data acquired using conventional GRE sequences. The comparison of unwrapped phase 

images acquired using SMS and GRE sequences are shown in Fig. S3 in the supplemental 

material.
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The autoQSM method was applied to the infant, child and adult subjects which were not 

included in the training dataset. The predicted results by autoQSM revealed comparable 

contrasts to those of STAR-QSM. As shown in the difference maps (Fig. 7c), there are 

negligible susceptibility differences related to gray and white matter. The clear differences at 

the edge of the brain were caused by blood vessels that were predicted by the trained neural 

network but lost in STAR-QSM. The observed high signal intensities at the edge of the brain 

on the autoQSM’s results were confirmed as the cortical veins by R2* and unwrapped phase 

maps as pointed by red arrows in Fig. S4 in the supplemental material. Nevertheless, further 

validation by angiography is needed. Similar results were observed when autoQSM was 

applied to the patients with MS lesions and hemorrhage.

It is well known that brain volume extraction from in vivo mouse brain MRI images is more 

complex because the brain is surrounded by tissues that have similar image intensity. In 

addition, the gap between the brain and non-brain tissue is very narrow. At some locations, 

the edges of the brain cannot even be identified at an isotropic spatial resolution of 86 µm, as 

shown in Fig. 8a. Consequently, human brain extraction techniques are error prone when 

applied to mouse brain MRI. For example, the medulla region including nerve tracts as 

shown in Fig. 8d is significantly eroded. Fig. 8c illustrates autoQSM’s remarkable capability 

of preserving the cortical regions of the in vivo mouse brain without skull striping during 

reconstruction. Red arrows pointed to cortical regions with shadowing artifacts that are 

significantly reduced using the trained network. Yellow arrows point to brain erosion that 

can be recovered using autoQSM. For example, we can observe the white matter tracts as 

pointed by black arrows in Fig. 8c, which is completely inaccessible on the STAR-QSM 

images.

Additionally, the trained neural network may have the potential to image the magnetic 

susceptibility of tissues near the neck, e.g., spinal cord. AutoQSM’s images show clear 

susceptibility contrast between gray and white matter. Black arrows pointed to the 

diamagnetic lateral white matter tracts while white arrows pointed to the gray matter regions 

which have relatively paramagnetic susceptibility values. All three healthy subjects show the 

consistent contrast between white matter and gray matters in the zoomed-in regions as 

shown in Fig. 9d. However, these spinal cord regions are significantly eroded during the 

skull stripping procedure as shown by STAR-QSM images. The comparison of magnetic 

susceptibility of spinal cord using autoQSM and STAR-QSM processing is shown in Fig. 9. 

Similar susceptibility contrast was observed in the spinal gray and white matters between 

Fig. 9d and Fig. 9e except that the erosion exists in STAR-QSM due to background phase 

removal procedure.

One main advantage of the autoQSM is the fast reconstruction speed. The average 

reconstruction time was only 5 ± 0.8 s measured in a GPU, which was much fast than 

STAR-QSM (146 ± 16.2 s; with background removal measured in a CPU) and iLSQR (360 

± 32.5 s; with background removal measured in a CPU).
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Discussion

In this study, we constructed a deep neural network that performs QSM reconstruction from 

total phase images without brain volume extraction. One significant advantage is the high 

computational efficiency of the trained neural network achieved by combining two 

techniques: (i) eliminating the need of brain skull stripping during QSM reconstruction, and 

(ii) end-to-end QSM processing computed by GPU. Compared to conventional QSM 

reconstruction methods involving background phase removal followed by dipole field 

inversion, our results show better quality of reconstructed susceptibility maps. In particular, 

skipping the skull stripping for QSM reconstruction significantly improves the robustness of 

QSM reconstruction to brain volume extraction bias. Additionally, the training data used in 

this study covers a wide age range (11 to 82 years old), which is important for high 

reproducibility in longitudinal studies. The preliminary results tested on infant brain data, in 
vivo mouse brain data, and patients with brain lesions suggest that autoQSM can be applied 

to brain data dissimilar to the training data, which suggests that the network has generalized 

the underlying principles of QSM inversion. Finally, the high computational efficiency 

allows for clinical routine QSM reconstruction within a few seconds.

Previously, deep neural networks have shown the ability to reconstruct QSM from simulated 

phase, similarly to any other dipole deconvolution methods (Rasmussen et al., 2018). In this 

study, we reconstructed a neural network to incorporate background phase removal and 

compared the susceptibility reconstructions from autoQSM to the state-of-the-art QSM 

algorithms. Other single-step QSM reconstruction method, e.g., the SS-TGV-QSM method 

combined Laplacian-based background phase removal and local field inversion into a single 

step. However, Laplacian-based methods suffer from brain erosion since it is implemented 

using the finite difference operator or the spherical kernel operator, both require the ROI 

mask to be eroded. The LN-QSM and TFI methods perform dipole inversion directly on the 

total field instead of on the filtered phase and thus avoid the Laplacian operator, but still 

require brain masks to aid QSM reconstruction. Additionally, it was shown that the 

reconstruction speed and the quantification accuracy are both influenced by the choice of the 

preconditioner in TFI and regularization parameters in LN-QSM (Liu et al., 2017; Sun et al., 

2018). In this study, the trained neural network enables end-to-end single-step QSM 

processing and it does not require explicit regularization parameters.

The neural network was trained using the total phase as the input and STAR-QSM as the 

label. Thus, autoQSM’s results is expected to be similar to STAR-QSM. Fig.3 shows that 

autoQSM has lower susceptibility contrast than COSMOS visually, potentially from 

underestimation of high susceptibility values in some brain nuclei or may be caused by the 

limited range of susceptibility values used in training. The latter can be potentially corrected 

with data augmentation that enlarges the dynamic range of the training data.

Brain extraction is required for all the existing QSM reconstruction methods. A number of 

automated brain extraction algorithms have been developed using morphology, morphology 

combined with edge detection (Shattuck and Leahy, 2001), deformable models (Smith, 

2002), graph cuts, watershed and others. Each algorithm has its merits and pitfalls. More 

generally, the accuracy of brain extraction depends on the segmentation algorithms and 
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parameters (Iglesias et al., 2011; Smith, 2002). Each method either keeps some non-brain 

tissue or removes extra brain tissue. Thus, using brain extraction is problematic when 

applying QSM to a large cohort with varying scanning parameters and manual adjustment of 

program parameters and manual editing of extraction results are inevitable. Brain extraction 

is especially problematic for baby brain MRI images because they lack edge information and 

contain ambiguous tissue information. Similarly, the in vivo mouse brain has a narrow gap 

between skull and brain tissue, which hampers the ability of QSM to evaluate the magnetic 

susceptibility of brain tissue. With autoQSM, brain QSM maps without brain extraction is 

possible by direct prediction on the total phase within the whole FOV. Furthermore, 

superficial veins can be recovered by the trained neural network. The recovered magnetic 

susceptibility at the cortical surface may extend potential QSM applications to functional 

QSM imaging (Sun et al., 2017) and quantitative full brain susceptibility venography (Buch 

et al., 2019). In addition, the recovered magnetic susceptibility of spinal cord may extend 

potential QSM applications to investigate the magnetic susceptibility between spinal cord 

lesions and brain lesions for Multiple Sclerosis (MS) patients.

Recently, there was a proposal of using deep neural network (QSMnet) to predict high 

quality COSMOS QSM maps from filtered phase acquired from a single orientation (Yoon 

et al., 2018). This result overcomes the drawback of long scanning time for the multiple 

head orientation acquisitions. Although the QSM maps produced by COSMOS have high 

quality with higher SNR, the disadvantage of the COSMOS model is that it does not account 

for anisotropy of magnetic susceptibility and structural tissue anisotropy. The comparison of 

QSM images reconstructed using QSMnet and autoQSM is shown in Fig. 5. Quantification 

of susceptibility anisotropy in white matter is crucial for investigation of myelin membrane 

lipids (Li et al., 2017; Li and van Zijl, 2014; Li et al., 2012; Liu, 2010b; Liu et al., 2012a). It 

is has been reported that prenatal alcohol exposure significantly reduces susceptibility 

anisotropy of the white matter (Cao et al., 2014). Another study proposed using deep neural 

networks trained to solve the inverse problem from simulated phase to magnetic 

susceptibility (Rasmussen et al., 2018). The input data for training was created by 

convoluting the labeled synthetic real-world data with the dipole kernel following well-

posed forward solutions. The trained network was then used to solve an ill-posed field-to-

susceptibility inversion. However, the quantification accuracy of the trained model using 

simulated data needs further investigation.

The measured magnetic susceptibility of cortical surface blood depends on flow velocity, 

oxygenation level of hemoglobin, and the angle between the vessel and B0 field. As shown 

in the current study, the magnetic susceptibility of blood vessels near the edges of the brain 

were recovered by autoQSM. From the difference map (Fig. S5), there were negligible 

susceptibility differences related to brain tissues between autoQSM and STAR-QSM. In 

contrast, clear differences near the brain boundary by the blood vessels do appear in the 

difference maps. These images show that autoQSM produces similar susceptibility values of 

the brain tissue to STAR-QSM while preserving the cortical vessels, suggesting autoQSM’s 

potential to recover the cortical vessels. In the future, quantitative full brain susceptibility 

venography needs to be investigated.
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The test datasets currently used in this study have different spatial resolutions, e.g., 1 mm 

isotropic spatial resolution in Experiment 1; 0.86×0.86×1 mm3 used in Experiment 4, 87 µm 

isotropic resolution used in experiment 5, 0.6 mm isotropic resolution in Experiment 7 and 

0.86×0.86×2 mm3 in Experiment 8 and with different matrix sizes. Different spatial 

resolutions will alter the SNR level of phase images which may bring some error in the 

background. A previous study has reported that the calculated susceptibility values were 

erroneous at low resolution (Karsa et al., 2019). The robustness of the neural network to the 

test datasets with large slice thickness (>3mm) is needed to test in the future. The matrix size 

does not have any effects on the predicted images since the neural network was trained patch 

by patch. We may note to users that the test dataset should not have a large slice thickness 

size (e.g., larger than 3 mm) since the training and prediction patch is 64×64×64. Any matrix 

dimension smaller than 64 will corrupt the currently trained model. Also, the image 

orientation should be consistent between training and test data. In addition, the input 

unwrapped phase images should be normalized both for training and testing. In this study, 

the training datasets have axial orientation as input. Thus, sagittal and coronal input datasets 

should be resliced to the axial orientation in order to align with the B0 field.

We observe the residual susceptibility contrast left outside of the brain. The autoQSM maps 

are not intended to estimated susceptibility of the air outside the head or regions without 

data support, except for special cases such as small air pockets surrounded by tissues. While 

phase unwrapping methods extrapolated phase values outside of the brain tissue resulting in 

the observed susceptibility contrast outside of the brain predicted by the neural network. The 

phase pattern and signal-to-noise ratio (SNR) of the unwrapped phase images also vary at 

different acquisition sites, depending on the phase reconstruction methods (e.g., coil 

combination method), severity of motion artifacts and phase unwrapping algorithms. As 

shown in Fig. S6, the phase pattern has huge difference between different MR sites. The 

neural network cannot distinguish the brain and non-brain regions from the unwrapped 

phase image. Thus, the predicted QSM image keep background contrasts when the 

background has non-zero unwrapped phase values. The mask can be applied afterwards to 

mask out the non-brain tissues only for visualization purpose, as shown in Fig.9 and Fig.S7–

S9 in the supplemental material.

The data of the 2016 QSM reconstruction challenge was acquired using a simultaneous 

multiple slice (SMS) sequence, which has much lower signal-to-noise ratio and some 

residual reconstruction artifacts compared to 3D gradient echo sequences. The blooming 

artifacts near the cortical surface of autoQSM’s results are also present in the total phase, as 

pointed by the red arrow in Fig. S7. These artifacts are due to acceleration in SMS sequence 

and phase unwrapping. Note that the cortical structures on STAR-QSM’s result are eroded 

compared to autoQSM. In this study, the training datasets were acquired using 3D GRE 

sequences, so this noisy phase image acquired using SMS sequence and phase unwrapping 

artifacts may degrade the trained network’s performance. However, these artifacts are not 

present in the QSM images acquired using conventional 3D GRE sequences. In the future, 

more efforts are needed to quantitatively evaluate the effects of noise and reconstruction 

artifacts on the performance of deep neural networks.
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The trained deep neural network performs QSM reconstruction from total phase images 

which functions as the background phase removal method. The autoQSM’s performance for 

background phase removal on the numerical brain phantom experiment was shown in 

Fig.S10 in the supplemental material.

Limitations

The trained neural network has some limitations. One of the biggest challenges of deep 

networks is that they are difficult to characterize conceptually. The design of the autoQSM 

architecture and the training parameters require empirical tuning of the network structure.

The trained neural network was applied to the unwrapped phase image, assuming the phase 

wraps were accurately removed. Further research is necessary to fully explore the capability 

of deep neural network to reconstruct QSM from raw phase with phase wraps. However, the 

location and number of phase wraps are highly dependent on the scan parameters. The phase 

wrap pattern varies significantly if the brain tilts at different angles with respect to the B0 

field. All these factors challenge the performance of deep neural network to reconstruct 

QSM from raw phase images. Alternatively, we can extend the training dataset to a much 

larger scale including datasets acquired at different echo times, different head rotations, and 

at different field strengths. We expect that more research will explore this possibility for 

QSM reconstruction in the future.

It is known that the skull has very short T2* relaxation time and there is no MR signal in air. 

Measuring the magnetic susceptibility values of skull is still challenging based on 3D GRE 

data with echo times of a few milliseconds. The autoQSM maps are not intended to 

accurately estimated susceptibility of the skull in regions without data support. Ultra-short 

echo time (UTE) and zero echo time (ZTE) sequences (Larson et al., 2016; Wei et al., 2018) 

bring higher MR signals from tissues with short T2 decay times, which may be suitable for 

studying the magnetic susceptibility of the skull. Thus, magnetic susceptibility of air and 

skull outside of the brain may not be correctly estimated by autoQSM.

Conclusion

Our results demonstrate a powerful new paradigm for QSM reconstruction without the need 

for brain volume extraction, which is implemented with a deep neural network that learns 

the underlying mathematical relationship between total field and the magnetic susceptibility. 

Quantitative and qualitative comparisons demonstrate that autoQSM has superior image 

quality compared to other QSM methods. Additionally, the autoQSM maps show its 

potential to explore the magnetic susceptibility of whole brain vasculature, spinal cord and 

cortical nerve tracts of mouse brain. The advantages of high-quality maps, no need for brain 

volume extraction, and high reconstruction speed demonstrate autoQSM’s potential for 

future applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The schematic diagram of the neural network structure of autoQSM. A 3D U-net was 

implemented with 14 convolutional layers with kernel size of 3×3×3, 1 convolutional layer 

with kernel size of 1×1×1, 3 convolutional layers with kernel size of 2×2×2 applied with 

stride 2, 3 deconvolutional layers with kernel size of 2×2×2 applied with stride 2, and 3 

feature concatenations.
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Figure 2. 
Results of autoQSM, TKD and iLSQR for QSM reconstruction on the brain numerical 

phantom susceptibility model as well as the difference with respect to the ground truth. The 

input is the masked total phase map from a simulated background field superimposed onto 

the simulated brain phantom. Compared to TKD and iLSQR, autoQSM delivers 

substantially lower error level. (a) true tissue magnetic susceptibility; (b) simulated total 

phase image; (c-e) reconstructed QSM images using autoQSM, TKD and iLSQR, 

respectively; (f-h) the difference maps of autoQSM, TKD and iLSQR with respect to the 

true magnetic susceptibility map.
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Figure 3. 
Comparison of different QSM reconstruction methods on a healthy subject referenced to 

COSMOS QSM. Arrows pointed to the cortical gray and white matter delineation can be 

visible on autoQSM’s results which hardly seen on TKD and iLSQR QSM images.
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Figure 4. 
ROI analysis of the five different methods. The susceptibility values of the ROIs (CN, PUT, 

GP, SN, RN, IC, CC, OR) are plotted, the autoQSM’s results match well with the gold-

standard COSMOS QSM results. Data are presented as mean ± standard deviation. No 

statistically significantly difference was found in the eight ROIs within the group of subjects.
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Figure 5. 
Axial views of the QSM images from four head orientations. Compared to QSMnet’s 

results, the images predicted using autoQSM show strong orientation-dependent magnetic 

susceptibility within the white matter. The red arrows point to regions where autoQSM 

predicts susceptibility differences across different head orientations, while QSMnet predicts 

the same susceptibilities.
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Figure 6. 
Comparison of Chi_33, STAR-QSM and autoQSM using the 2016 QSM Challenge data. (a) 

total phase, (b) Chi_33, (c) STAR-QSM, (d) autoQSM. Note that the noisy phase values 

with checkerboard pattern outside of the brain in d are due to artifacts on the unwrapped 

phase images, rather than autoQSM reconstruction. The RMSE, HFEN, SSIM are calculated 

within the mask defined based on Chi_33.
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Figure 7. 
Comparison of QSM images computed using STAR-QSM and autoQSM methods. The last 

row shows the clear differences at the edge of the brain were caused by blood vessels that 

were predicted by the trained neural network but lost in STAR-QSM.

Wei et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Representative axial slices of QSM images computed using STAR-QSM and autoQSM 

methods in an in vivo mouse brain. (a) Magnitude images, (b) total phase maps, (c) QSM 

images predicted using trained neural network, (d) QSM image reconstructed using STAR-

QSM. Red arrows point to reduced artifacts by the trained neural network. Yellow arrows 

point to paramagnetic susceptibility of blood vessel preserved near the cortex. Black arrows 

point to the recovered nerve tracts near the edges of the brain revealed by autoQSM while 

eroded by skull stripping.
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Figure 9. 
Comparison of QSM reconstructed by STAR-QSM and autoQSM on three healthy 

volunteers scanned at sagittal view with spinal cord included at 7 T. Black and white arrows 

point to white matter and gray matter in zoomed-in spinal cord respectively. Note that the 

paramagnetic susceptibility of gray matters is surrounded by diamagnetic white matters in 

the spinal cord. (a) magnitude images, (b) total phase images, (c) autoQSM’s results, (d) 

masked autoQSM’s results by applying a masked derived from magnitude images, a 

zoomed-in region of spinal cord is shown for each subject as outlined by the red box, (e) 

STAR-QSM results.
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Table 1.

Quantitative performance metric, RMSE, HFEN, and SSIM from the four different QSM reconstruction 

methods referenced to COSMOS QSM. AutoQSM shows better performances in all criteria than other QSM 

methods.

RMSE (%) HFEN(%) SSIM

TKD 75.6 75.1 0.88

iLSQR 74.5 73.3 0.86

STAR-QSM 72.6 68.8 0.91

autoQSM 72.2 68.8 0.91
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Table 2.

Quantitative comparison of magnetic susceptibility in internal capsule and optic radiation calculated from 

STAR-QSM, autoQSM and QSMnet at four different head orientations. The values are presented as mean± 

standard deviation (ppm).

Internal Capsule

Orientation 1 Orientation 2 Orientation 3 Orientation 4

autoQSM −0.044±0.006 −0.031±0.004 −0.056±0.002 −0.043±0.005

STAR-QSM −0.046±0.004 −0.029±0.006 −0.052±0.003 −0.040±0.004

QSMnet −0.042±0.003 −0.044±0.005 −0.046±0.004 −0.045±0.005

Optic Radiation

Orientation 1 Orientation 2 Orientation 3 Orientation 4

autoQSM −0.029±0.006 −0.024±0.008 −0.045±0.005 −0.034±0.008

STAR-QSM −0.028±0.008 −0.024±0.006 −0.043±0.004 −0.036±0.004

QSMnet −0.043±0.005 −0.044±0.005 −0.045±0.003 −0.042±0.004
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