
A deconvolution algorithm for multi-echo functional MRI: Multi-
echo Sparse Paradigm Free Mapping

César Caballero-Gaudes*,1, Stefano Moia1, Puja Panwar2, Peter A. Bandettini2,3, Javier 
Gonzalez-Castillo*,2

1Basque Center on Cognition, Brain and Language, San Sebastian, Spain.

2Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of 
Mental Health, National Institutes of Health, Bethesda, MD.

3Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, 
MD.

Abstract

This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI 

data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of 

the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized 

least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the 

apparent transverse relaxation (ΔR2*) without prior knowledge of the timings of individual BOLD 

events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 

3 Tesla demonstrate that the maps of R2* changes obtained with ME-SPFM at the times of the 

stimulus trials show high spatial and temporal concordance with the activation maps and BOLD 

signals obtained with standard model-based analysis. This method yields estimates of ΔR2* having 

physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also 

enables us to map ΔR2* associated with spontaneous, transient BOLD responses occurring between 

trials. This framework is a step towards deciphering the dynamic nature of brain activity in 

naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD 

events.
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INTRODUCTION

Task-based functional magnetic resonance imaging (fMRI) data is typically analyzed 

through the use of linear regression of BOLD signal change models on voxel time series. 

These regressors are defined assuming a linear model of the BOLD response as the 

convolution of a known activity with the hemodynamic response function (HRF). Recently, 

there has been an increasing interest in methods that enable to extract activation information 

without prior information of the timing of the BOLD events. Such methods can provide 

useful information about brain function in cases when insufficient knowledge about the 

neuronal activity driving the BOLD events is available, including naturalistic paradigms, 

resting state, and clinical conditions. In the absence of timing information, a potential 

approach is to estimate the activity-inducing signal underlying the BOLD responses; a 

process also known as deconvolution. Deconvolution allows detecting individual BOLD 

events (i.e. single trials) (Gaudes et al., 2011; Caballero-Gaudes et al., 2013), minimizing 

hemodynamic confounds in measures of functional connectivity (Gitelman et al., 2003; 

McLaren et al., 2012; Rangaprakash et al., 2018) and exploring time-varying activity of 

resting state fluctuations (Keilholz et al. 2017; Petridou et al., 2013; Karahanoğlu and Van 

de Ville, 2015, 2017). Note that in this work deconvolution refers to estimate the processes 

underlying the BOLD responses, rather than to extract the pattern of even-related 

hemodynamic responses when using a known timing (for example see Buckner et al., 1996; 

Goutte et al., 2000; Ciuciu et al., 2003; Chaari et al., 2013).

Deconvolution can also be understood as solving an inverse problem where the forward 

model is defined from the assumed hemodynamic model. If the deconvolution is performed 

with least squares estimation, estimates will exhibit large variability due to the high 

collinearity of the model. To overcome this, some type of regularization or prior information 

must be applied to the estimates of the activity-inducing signal. Initially, the deconvolution 

was done via empirical Bayesian estimators with Gaussian priors (Gitelman et al., 2003) or 

regularized least-squares estimators where the regularization term penalized the Euclidean 

norm (i.e. L2-norm) of the estimates (i.e. ridge regression) (Gaudes et al., 2011). Other 

approaches have employed sparsity-promoting regularized estimators based on the L1-norm 

or L2,1-norm of the estimates to improve the interpretability of the estimates, such as the 

Dantzig Selector, the Least Absolute Selection and Shrinkage Operator (LASSO) 

(Caballero-Gaudes et al., 2013, Khalidov et al., 2011) and a non-negative version of the 

fused LASSO (Hernandez-Garcia and Ulfarsson, 2011). The method of Total Activation 

incorporated spatio-temporal regularization terms based on generalized total variation and 

structured mixed L2,1-norms to improve the robustness of the deconvolution across 

neighboring voxels (Farouj et al., 2017; Karaganoglu et al., 2015). Structured mixed-norm 

regularization terms can also be used to account for variability in the shape of the assumed 

hemodynamic model (Gaudes et al., 2012). A nonparametric deconvolution method based 

on homomorphic filtering was proposed in Sreenivasan et al. (2015). Nonlinear regression 

methods using logistic functions have also been proposed to avoid assuming a linear model 

for the BOLD response (Bush and Cisler, 2013; Bush et al., 2015). Approaches using 

nonlinear state-space models (Riera et al., 2004), dynamic expectation maximization 

(Friston et al., 2018), generalized filtering (Friston et al., 2010) and its adaptation to a 
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cubature Kalman filtering (Havlicek et al., 2011) have also been implemented to estimate the 

hidden activity-inducing signal and physiological parameters of the Balloon model of the 

BOLD response, which operate at a regional level to gain signal-to-noise ratio due to their 

higher complexity.

Relevant for the current work, all the aforementioned methods perform the deconvolution of 

fMRI data with one time series per voxel acquired at an echo time (TE). Acquisition at a 

single echo (1E) is commonly used for BOLD fMRI data, where the TE is usually chosen 

close to the average apparent transverse relaxation parameter T2* of the grey matter region of 

interest (Bandettini et al., 1994; Menon et al., 1993) to maximize the contrast-to-noise ratio 

of the signal. However, fMRI data can be alternatively acquired at multiple echo times so 

that a weighted combination of the multiple echo signals can result in an enhancement in 

BOLD sensitivity, mainly in regions close to air-tissue boundaries that are prone to large 

signal dropouts and susceptibility distortions (Gowland and Bowtell, 2007; Poser et al., 

2006; Posse et al., 1999; Posse, 2012). With multi-echo fMRI (ME-fMRI) estimation of T2*

on a per-TR basis and voxel (i.e. a T2*-time series) is feasible, which can be used for 

subsequent analysis of task-related activity (Peltier and Noll, 2002) and functional 

connectivity (Wu et al., 2012, Power et al., 2018). Furthermore, ME-fMRI enables improved 

denoising of artefactual and confounding physiological signal fluctuations with dual-echo 

approaches (Bright and Murphy, 2013; Buur et al., 2009; Ing and Schwarzbauer, 2012) or 

multi-echo independent component analysis (MEICA) (Kundu et al., 2012; 2013; 2017; 

Evans et al., 2015; Gonzalez-Castillo et al., 2016). Other denoising methods based on ME-

fMRI acquisitions are discussed in Caballero-Gaudes and Reynolds (2017).

In this work, we propose a novel method for the temporal deconvolution of ME-fMRI data, 

named multi-echo sparse paradigm free mapping (ME-SPFM). To our knowledge, no 

algorithm has been previously proposed for deconvolution of ME-fMRI data. Although 

previous approaches can be applied on ME-fMRI data after weighted combination of the 

multiple echo signals in a single dataset, the proposed approach directly operates with the 

multiple echo signals without combining them. Assuming a mono-exponential decay model 

of the gradient-echo signal, this method is able to estimate the activity-inducing signal 

associated with single BOLD events without prior information of their timing, which can be 

also related to quantifiable changes in the apparent transverse relaxation rate R2*( = 1/T2*), i.e. 

ΔR2*. Using multi-echo fMRI data acquired on 10 subjects (16 datasets) during an event-

related paradigm including five distinct tasks (Gonzalez-Castillo et al., 2016), we 

demonstrate that the ME-SPFM algorithm considerably improves the accuracy of the 

deconvolution of individual BOLD events compared with its counterpart that operates in a 

single dataset or echo, namely sparse paradigm free mapping (hereafter denoted as 1E-

SPFM) (Caballero-Gaudes et al., 2013). Furthermore, ME-SPFM yields voxel-wise 

quantitative estimates of ΔR2* in interpretable units (s−1), which is relevant for functional 

analysis across different acquisition protocols and field strengths.
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METHODS

Multi-echo signal model

Assuming a mono-exponential decay model, the MR signal of a gradient echo acquisition in 

a voxel x at time t for an echo time TEk can be approximated as

s(x, t, TEk) = S0(x, t)e
−R2*(x, t)TEk + n(x, t), (1)

where S0(x, t) and R2*(x, t) are the signal changes in the net magnetization S0 and the apparent 

transverse relaxation rate R2* of the voxel x at time t, and n(x, t) is a noise term. Hereinafter, 

the noise term and the voxel index x are omitted for simplicity in the notation. Describing 

S0(t) and R2*(t) in terms of relative changes with respect to the average values in the voxel 

(Kundu et al., 2017), i.e. S0(t) = S0 + ΔS0(t) and R2*(t) = R2* + ΔR2*(t), the MR signal can be 

written as

s(t, TEk) = S0 + ΔS0(t) e
− R2* + ΔR2*(t) TEk

= s(TEk) 1 +
ΔS0(t)

S0
e

−ΔR2*(t)TEk
(2)

where the mean of the signal is s(TEk) = S0e
−R2*TEk. Typically, ∆S0(t) and ΔR2*(t) are 

considerably smaller than S0 and R2*, respectively. Hence, the last term in Eq. (2) can be 

approximated using a first-order Taylor approximation as e
−ΔR2*(t)TEk ≈ 1 − ΔR2*(t)TEk. 

Substituting this term into Eq. (2) and defining Δρ(t) = ΔS0(t)/S0, the MR signal can be 

approximated as

s(t, TEk) ≈ s(TEk)(1 + Δρ(t) − ΔR2*(t)TEk), (3)

where the term resulting from the multiplication of small values of ∆S0(t) and ΔR2*(t) is 

neglected. Finally, signal percentage changes with respect to the mean of the signal, i.e. 

y(t, TEk) =def s(t, TEk) − s(TEk) /s(TEk), can be described as

y(t, TEk) ≈ Δρ(t) − ΔR2*(t)TEk . (4)

This signal model can be understood as a linear regression model in which the slope (i.e. 

dependent on the echo time TEk) captures the fluctuations related to ΔR2*(t), whereas the 

intercept captures the fluctuations related to ∆S0(t). In BOLD fMRI, signal changes related 

to ΔR2*(t) are more likely linked to neuronal processes than changes due to ∆S0(t), which are 

normally related to confounding effects such as motion or blood inflow.
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Following the linear convolution model usually adopted in fMRI data analysis, let us also 

assume that changes in R2*(t) generating the BOLD response in the signal can be described as 

ΔR2*(t) = h(t) * Δa(t), where ∆a(t) denotes an activity-inducing signal that is related to 

changes in neuronal activity, and ℎ(t) is the hemodynamic response function (HRF). Without 

lack of generality, we will assume that the shape of ℎ(t) is independent of TE and also 

normalized to a peak amplitude equal to 1 so that estimates of ∆a(t) can be expressed in 

units of the hemodynamic signal changes ΔR2*(t). Substituting in Eq. (4), signal percentage 

changes can then be approximated as

y(t, TEk) ≈ Δρ(t) − TEk h(t) * Δa(t) . (5)

If signal changes related to variations in the net magnetization ∆ρ(t) are reduced during data 

preprocessing, the BOLD component of the signal can then be approximated as

y(t, TEk) ≈ − TEk h(t) * Δa(t) . (6)

The continuous time MR signal is sampled every repetition time (TR), i.e. t = nTR, where n 
= 1, …, N, and N is the number of volumes acquired during the acquisition. In discrete time, 

the previous equations can be reformulated in matrix notation. We can define 

yn
k =def y(nTR, TEk) ≈ − TEk(hn * Δan), where yn

k =def y(nTR, TEk), hn =def h(nTR), and 

Δan =def Δa(nTR). Gathering all time points as a vector, yk = [y1, ⋯ , yN]T, we can write 

yk ≈ − TEkHΔa, where Δa ∈ ℝN is a column vector of length N that represents an activity-

inducing signal that is related to ΔR2*, and H ∈ ℝN × N is a Toeplitz convolution matrix whose 

columns are shifted versions of the hemodynamic response function (HRF) of duration L 
time points at TR temporal resolution, i.e. h = [h1, ⋯ , hL]. If K echoes are acquired at echo 

times TEk, k = 1, …, K, the signal percentage changes of each echo signal can be vectorized 

in a column vector of length NK. Since the activity-inducing signal can be considered 

identical for all echoes, the ME signal model can be written as

y1
⋮

yK

= −
TE1H

⋮
TEKH

Δa (7)

or simply y = − HΔa.

Multi-echo Sparse Paradigm Free Mapping

The deconvolution algorithm of multi-echo sparse paradigm free mapping (ME-SPFM) aims 

to deconvolve the changes in the BOLD ME-fMRI signal related to neuronal activity 

without knowledge of their timings. This involves the estimation of ∆a according to the 

model in Eq. (7). Figure 1 illustrates a schematic of the assumed ME-fMRI signal model and 

the ME-SPFM algorithm. Assuming that after preprocessing, the noise follows an 

uncorrelated Normal distribution, an unbiased estimate of the activity-inducing signal ∆a 
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can be obtained by means of an ordinary least-squares estimator. Nevertheless, in practice, 

the least-squares solution would produce estimates with large variability due to the large 

collinearity between the columns of H. Therefore, it is advisable to incorporate some type of 

regularization term to the least-squares minimization. Following previous algorithms for the 

temporal deconvolution of the BOLD fMRI signal, we propose to estimate ∆a with the 

following L1-norm regularized least-squares estimator

Δa = argminΔa
1
2 y − HΔa 2

2 + λ Δa 1 . (8)

This mathematical optimization problem is known as Basis pursuit denoising (Chen et al., 

1998), which is equivalent to the well-known LASSO (Tibshirani, 1996). The L1-norm 

regularization term encourages sparse estimates with few non-zero coefficients in Δa, 

performing both variable selection and regularization in order to enhance the prediction 

accuracy and the interpretability of the estimates. This implies that Δa will tend to be non-

zero in only the coefficients that explain a large variability of the ME-fMRI signals 

according to the TE-dependent hemodynamic model described previously.

The choice of the regularization parameter λ is critical to obtain an accurate estimate of Δa. 

In this work, instead of selecting a fixed value of λ, we compute the entire regularization 

path by means of the least angle regression (LARS) procedure (Efron et al., 2004). This 

homotopy procedure initializes Δa with zero coefficients and then efficiently estimates the 

entire regularization path for decreasing values of λ where a coefficient of Δa becomes non-

zero or shrinks to zero again. After computing the regularization path, we propose to select 

the estimate of Δa based on the Bayesian Information Criterion (BIC) as follows

ΔaBIC = argmin
λ

NKlog(RSSλ) + log(NK)d f (λ) (9)

where RSS(λ) = y − HΔa(λ) 2
2 and df(λ) are the residual sum of squares and effective 

degrees of freedom for each estimate as a function of λ, respectively. Note that the BIC 

scales with NK, i.e. the number of time points by the number of echoes. Here, the effective 

degrees of freedom is approximately equal to the number of non-zero coefficients of the 

activity-inducing estimate. Besides, the BIC has shown appropriate selection of the 

regularization parameter in LASSO-like problems for variable selection (Tibshirani and 

Taylor, 2011; Zou et al., 2007).

Finally, to compensate for the shrinkage towards zero of the coefficients owing to the L1-

norm regularization term, we propose to perform debiasing of the BIC estimate, known as 

the relaxed LASSO (Meinshausen, 2007). Debiasing is performed as the ordinary least-

squares estimate on the reduced model corresponding to the subset of non-zero coefficients 

of the estimate. More specifically, let 𝒜 denote the support of ΔaBIC, i.e. 

𝒜 = supp(ΔaBIC) = j, ΔaBIC ≠ 0 , the coefficients of the debiased estimate in the support 𝒜

are re-computed as
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ΔaBIC, 𝒜 = (H𝒜
T H𝒜)−1H𝒜

T y, (10)

where H𝒜 is the reduced matrix with the subset of columns of H corresponding to the 

support 𝒜, whereas the coefficients not included in 𝒜 remain as zero.

MRI data acquisition

The evaluation of ME-SPFM was performed on ME-fMRI data acquired in 10 subjects (5 

males, 5 females, mean ± SD age = 25 ± 3 y.o.) using a multi-task rapid event-related 

paradigm. Six subjects performed two functional runs, and 4 subjects only performed 1 run 

due to scanning time constraints (i.e. a total of 16 datasets). All participants gave informed 

consent in compliance with the NIH Combined Neuroscience International Review Board-

approved protocol 93-M-1070 in Bethesda, MD. A complete description of the MRI 

acquisition protocols and experimental tasks in the experimental design can be found in 

Gonzalez-Castillo et al. (2016), and relevant details are given here for completeness.

MRI data was acquired on a General Electric 3 Tesla 750 MRI scanner with a 32-channel 

receive-only head coil (General Electric, Waukesha, WI). Functional scans were acquired 

with a ME gradient-recalled echo-planar imaging (GRE-EPI) sequence (flip angle=70° for 9 

subjects, flip angle=60° for 1 subject, TEs=16.3/32.2/48.1 ms, TR=2 s, 30 axial slices, slice 

thickness=4 mm, in-plane resolution=3×3 mm2, FOV 192 mm, acceleration factor 2, number 

of acquisitions=220). Functional data was acquired with ascending sequential slice 

acquisitions, except in one subject where the acquisitions were interleaved. In addition, high 

resolution T1-weighted MPRAGE and proton density images were acquired per subject for 

anatomical alignment and visualization purposes (176 axial slices, voxel size=1×1×1 mm3, 

image matrix=256×256).

Experimental paradigm

The PsychoPy software (Peirce, 2009) was used for stimulus delivery. Eye tracking data 

were collected to check subject’s performance. Each run included 6 trials of each of the 5 

different tasks (i.e. a total of 30 trials per run). Subjects were instructed on the task types 

prior to the scanning session. The 5 tasks were:

1. Finger tapping (FTAP). Subjects were instructed to press one button of a 

response box with a single finger at a fixed rate of approximately 0.5 Hz for a 

duration of 4 s. Visual cues were shown to help subjects press the button at a 

constant rate. All subjects performed this task with the left hand except two, who 

were inadvertently provided with the response box on their right hand.

2. Biological motion observation (BMOT). Subjects were instructed to observe 4-

second videos of dot patterns resembling biological motion such as walking, 

jumping, dancing, drinking and climbing steps. The videos were shown on only 

one of the two visual hemi-fields (right or left) and their position was 

randomized across trials.
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3. Passive viewing of houses (HOUS). Subjects were instructed to watch a 

succession of pictures of houses shown in the center of the screen. Each trial 

lasted 4 s and contained pictures of 6 different houses. Each house appeared for 

approximately 170 ms with a gap of 500 ms between pictures.

4. Listening to music (MUSI). Subjects were instructed to attentively listen to 4-

seconds recordings of music clips played by a single instrument (violin, piano, or 

drums) and to direct their gaze to one of the three pictures on the screen (one per 

instrument) that represented the instrument being played as soon as they had 

identified it.

5. Sentence reading (READ). Subjects were instructed to covertly read sentences 

presented on the screen one word at a time. For each trial, words were presented 

in one of the two hemifields (right or left) to aid with analysis of eye tracking 

data. All words of a trial appeared on the same hemifield. Each word was 

presented for 250 ms with gaps of 100 ms in between. Sentence length was 

between 10 and 11 words, so each trial lasted either 3400 or 3750 ms.

Onset times for trials were generated with optseq2 in Freesurfer (https://

surfer.nmr.mgh.harvard.edu/optseq). Three different schedules (onset times) were randomly 

used in these experiments. For all three schedules the minimum inter-stimulus interval (ISI) 

was 10 s. Mean and standard deviation ISIs for the three different schedules were: 13 ± 24, 

13 ± 18 and 13 ± 15 s.

FMRI data preprocessing

Each ME-fMRI dataset was preprocessed through four different pipelines implemented in 

AFNI (Cox et al., 1996) resulting in the following datasets:

A. Individually preprocessed echoes (E01, E02 and E03): (1) removal of the initial 

10 s to achieve steady-state magnetization, (2) slice timing correction, (3) 

volume realignment, registration to anatomical image, and warping to MNI 

template, and computation of the combined spatial transformation, (4) spatial 

normalization of each echo dataset to the MNI template at 2 mm isotropic voxel 

size with a single spatial transformation, (5) nuisance regression (Legendre 

polynomials up to 5th order, realignment parameters and their 1st temporal 

derivatives, and 5 largest principal components of voxels within the lateral 

ventricles), (6) spatial smoothing with a 3D Gaussian kernel with Full Width 

Half Maximum of 6 mm, and (7) calculation of signal percentage change as 

described in Eq. (4). The preprocessed E02 acquired at TE=32.2 ms will be used 

as the representative dataset for a conventional single echo fMRI acquisition at 

3T.

B. Optimally combined dataset (OC): same preprocessing as A) but with optimal 

weighted combination of the three echoes based on non-linear voxelwise 

estimation of T2* (Posse et al., 1999) between steps (4) and (5).

C. Multi-echo Independent Component Analysis plus Optimally Combined dataset 

(DN): same preprocessing as A) but with multi-echo independent component 
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analysis (MEICA) denoising (Kundu et al., 2012) and optimal combination 

between steps (4) and (5). MEICA was applied using the code available in 

https://github.com/ME-ICA/me-ica (version 3.2).

D. Multi-echo Independent Component Analysis denoised echoes (MEICA-E01, 

MEICA-E02, MEICA-E03): same preprocessing as A) but including MEICA 

between steps (4) and (5). The purpose of this pipeline was to evaluate the 

influence of denoising the echoes with a ME-based denoising approach in order 

to remove fluctuations related to changes in the net magnetization (∆S0) prior to 

ME-SPFM, as assumed in the proposed model.

The mask of the lateral ventricles was computed in the original functional space of each 

dataset as those voxels showing a value of R2* > 100 ms. The R2* maps were obtained based on 

a nonlinear fit of the mono-exponential decay model of the gradient-echo signal using the 

average signal intensity of each echo, and were eroded to reduce partial volume effects and 

remove CSF voxels in the edges of the brain.

FMRI data analysis

The three preprocessed echo datasets (E01, E02 and E03) and the three MEICA denoised 

echo datasets (MEICA-E01, MEICA-E02 and MEICA-E03) were analyzed with the multi-

echo sparse paradigm free mapping algorithm described above. The ME-SPFM algorithm 

was implemented for AFNI using functions for compatibility with R and used the LARS 

package (version 1.2) for the computation of the regularization path of the LASSO. The 

canonical HRF (SPMG1 option of 3dDeconvolve in AFNI) was used as the hemodynamic 

response function (HRF) to define the convolution matrices in H. Since the ME-SPFM 

algorithm outputs a 4D-dataset with voxelwise time-varying estimates of the activity-

inducing signal ∆a, for validation purposes we defined ME-SPFM activation maps for each 

trial by computing the maximum of the ∆a volumes when each trial occurred (i.e. 3 TRs for 

a duration of 4 s per trial).

The performance of ME-SPFM was compared with the results of the deconvolution with the 

Sparse Paradigm Free Mapping for a single (or echo) dataset (1E-SPFM, Caballero-Gaudes 

et al., 2013) and traditional GLM analyses implemented with 3dREMLfit in AFNI. These 

analyses were performed in the E02, OC and DN datasets. As for 1E-SPFM, datasets were 

analyzed with the implementation of SPFM available in AFNI (3dPFM program) using the 

LASSO algorithm, the Bayesian Information Criterion (BIC) for selection of the 

regularization parameter and the canonical HRF to define the corresponding convolution 

matrix. Similar to ME-SPFM, 1E-SPFM activation maps were created from the deconvolved 

coefficients (beta output dataset in 3dPFM) as the maximum of the volumes when each trial 

occurred. No additional processing steps were applied to the ME-SPFM and 1E-SPFM 

activation maps.

In addition, we performed two different GLM analyses in the E02, OC and DN datasets, 

where the design matrix was either defined considering all trials of a task in one regressor 

(TASK-LEVEL) or each trial individually modulated, i.e. each trial has its own regressor 

(‘IM’ or TRIAL-LEVEL). The SPM canonical HRF was used in both analyses, assuming a 
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trial duration of 4 s. The task-based activation maps were thresholded at FDR-corrected q ≤ 

0.05 (TASK-q05). The trial-based activation maps were thresholded at FDR-corrected q ≤ 

0.05 (IM-q05), as well as uncorrected p ≤ 0.05 (IM-p05) and p ≤ 0.001 (IM-p001). The 

number of components removed by MEICA was considered in the computation of the 

degrees of freedom of the GLM analyses when it was employed in preprocessing (i.e. the 

DN dataset).

Evaluation of spatial concordance with GLM analyses

We evaluated the ability of the 1E-SPFM and ME-SPFM to detect the activation revealed by 

the GLM analyses in terms of the spatial sensitivity, spatial specificity and spatial overlap 

using a dice coefficient metric. This evaluation only considered activations that produce a 

positive BOLD signal change (i.e. a positive effect size in GLM analyses), a positive 

coefficient in 1E-SPFM and a negative ΔR2* (i.e. ∆a < 0) coefficient in the analyses with ME-

SPFM.

First, we performed the comparison at the task level by using the task-based activation maps 

obtained with the DN dataset (TASK-q05/DN) as the reference maps. These can be 

considered as the gold standard of activation maps per task in each dataset that can be 

obtained with an analysis that is aware of the trials’ onsets and durations using the same 

hemodynamic model (i.e. SPMG1). For this comparison, we also considered the following 

activation maps: IM-q05, IM-p001, IM-p05; 1E-SPFM with the E02, OC and DN as input 

datasets, as well as ME-SPFM using the triplets E01, E02 and E03 or MEICA-E01, MEICA-

E02 and MEICA-E03 as input datasets.

Second, we performed the comparison at the trial-level by using the trial-based activation 

maps at p ≤ 0.05 obtained with the DN dataset (IM-p05/DN) as the reference maps, which 

considers a model of a single trial based on its onset and duration and, thus, is closer to the 

assumptions of the ME-SPFM activation maps. For this evaluation at the single trial level, 

we considered the following activation maps: 1E-SPFM with the E02, OC and DN datasets, 

as well as ME-SPFM using the triplets E01, E02 and E03 or MEICA-E01, MEICA-E02 and 

MEICA-E03 as input datasets.

Evaluation of temporal concordance with GLM-IM analysis

We also computed maps of the Pearson correlation between the fitted signal of the GLM-IM 

model with the fitted signal of 1E-SPFM and ME-SPFM (i.e. convolution of the detected 

events with the canonical HRF) in order to evaluate the temporal concordance of the 

detected events in comparison with a conventional model-based analysis using timing of the 

experimental trials. Moreover, we computed the correlation between these models with the 

preprocessed DN dataset (i.e. including MEICA and optimal combination) to examine 

whether the deconvolution approaches can explain additional variance of the preprocessed 

data, particularly in regions that might not be involved during the known tasks. These 

temporal correlation analyses can serve as an evaluation criterion that is not threshold-

dependent and therefore complements the aforementioned spatial evaluation.
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Quantitative Analysis of ΔR2* estimates

We evaluated the ability of ME-SPFM deconvolution to estimate events in the activity-

inducing signals that correspond to ΔR2* changes within physiologically plausible limits, 

which was established as ΔR2* < 1 s−1 according to previous reports of neurobiologically-

driven ΔR2* values at 3T (van der Zwaag et al., 2009). First, we computed histograms of the 

activity-inducing estimates for both ME-SPFM and MEICA-ME-SPFM activation maps in 

three conditions: a) during the entire dataset in all whole-brain voxels to assess the efficacy 

of the algorithms to yield physiologically-plausible estimates independently of the paradigm, 

b) during the timings of trials in the whole brain, and c) during the timings of trials in only 

those voxels showing positive activation in the TASK-q05 maps for the DN dataset, i.e. 

assumed to have a clear positive BOLD response to the task that is associated with ΔR2* < 0. 

In addition, we computed the percentage of estimates exceeding ΔR2* > 1 s−1 per trial, per 

task, per dataset and per ME-SPFM analysis.

RESULTS

The output of ME-SPFM is a 4D dataset with an identical number of time points as the input 

dataset, which can be visualized as a sequence of deconvolved maps. A movie showing the 

activity-inducing signal (given in the same units as ΔR2*) and the hemodynamic response 

signal (i.e. ΔR2* signal changes as the convolution of the activity-inducing signal with the 

HRF) of a run of a representative subject is available as supplementary material. The movies 

of the rest of the runs and subjects are available in https://ccaballero.pages.bcbl.eu/me-spfm-

videos/. Figure 2 depicts the corresponding activation maps for representative single trial 

events of each task type for the same run for IM-p05, 1E-SPFM with the DN dataset, and 

ME-SPFM with the preprocessed echo datasets and after ME-ICA. The activation maps 

obtained with ME-SPFM have a larger resemblance with the maps obtained with the trial-

based GLM analysis (IM-p05) than the activations maps obtained with 1E-SPFM. Even 

though the 1E-SPFM maps generally depict clusters of activation in the same locations as 

the GLM maps (i.e. high spatial specificity), they exhibit lower spatial sensitivity than the 

ME-SPFM activation maps, especially observed in FTAP-5, HOUS-1 and READ-2. In 

general, the ME-SPFM activation maps exhibit activity-inducing signals with negative ΔR2*

in brain regions showing positive BOLD signal changes, and conversely activity-inducing 

signals with positive ΔR2* in brain regions showing negative BOLD signal changes, in the 

IMp05 and 1E-SPFM maps. The MEICA+ME-SPFM activation maps illustrate that 

applying MEICA prior to ME-SPFM reduces spurious activations in the borders of clusters 

and draining veins, probably related to inflow fluctuations, and in brain edge voxels related 

to effects of head motion. Some examples of these effects are marked with green arrows.

Figure 3 plots the preprocessed and estimated signals for the trial-based GLM and MEICA

+ME-SPFM analyses for the same dataset in seven representative voxels, relevant to each 

task (shown in the left maps) and in left precuneus and right dorsolateral prefrontal cortex 

(DLPFC), which are regions typically associated with the default mode network and dorsal 
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attention network, respectively. For the voxels related to the tasks, the activity-inducing time 

series obtained with ME-SPFM exhibit negative ΔR2* (deflection in blue traces) that are 

reliably detected at the time of all experimental events (light green bands). These negative 

ΔR2* result in positive BOLD signal changes (red traces) that agree with the signals estimated 

by the GLM-IM model in the DN dataset (green traces). The Pearson’s correlation between 

the BOLD signal estimated with ME-SPFM and with the GLM-IM model is shown on top of 

each time course (Corr-FIT values). Clearly the correlation values are larger in the task-

activated voxels than in the left precuneus and right DLPFC. In addition to the task-related 

events, ME-SPFM is able to detect BOLD events that often occur during the timing of other 

tasks or in the absence of any task, i.e. during rest periods. The ME-SPFM activation maps 

shown on the right correspond to five representative task-unrelated spontaneous BOLD 

events marked with red dashed lines in the plots of the left precuneus and DLPFC. These 

maps depict spatial patterns with clusters of activation in regions of the default mode 

network (negative ΔR2* at 58, 132, 316 and 404 s and positive ΔR2* at 92 s) that act in 

synchrony with clusters of activation in areas of the dorsal attention network. Importantly, 

these transient events occurring at times without any task cannot be revealed by conventional 

GLM approaches, but are detected by ME-SPFM owing to its ability to operate without 

timing information.

Considering all datasets, Figures 4 and 5 show the average spatial dice coefficient, 

sensitivity and specificity for the different methods using the task-based GLM (TASK-

q05/DN) and trial-based GLM maps (IM-p05/DN) as reference maps, respectively. Both 

figures illustrate the ME-SPFM algorithm outperforms its 1E-SPFM counterpart regardless 

of the prior use of ME-ICA, achieving considerably larger spatial overlap and sensitivity 

with a reduction in specificity. As shown in Figure 4, ME-SPFM achieves similar spatial 

concordance with the TASK-q05 maps to the one obtained with trial-based GLM analyses 

using a statistical significance threshold between punc ≤ 0.05 (IM-p05) and punc ≤ 0.001 

(IM-p001). In general, denoising the fMRI signal with MEICA (i.e. the DN dataset) is 

beneficial to increase the sensitivity and the spatial concordance of the TRIAL-LEVEL (i.e. 

IM) GLM maps with respect to the TASK-LEVEL maps. In all cases, the spatial 

concordance of the IM-p001 maps is similar to the TRIAL-q05 maps. MEICA-based 

denoising is more advantageous than preprocessing based on optimal combination of echoes 

(i.e. the OC dataset) or a standard single echo (E02) dataset for detecting single-trial BOLD 

events in both 1E-SPFM and ME-SPFM analyses. The advantage of MEICA is also seen in 

the IM-p05 maps. Similar conclusions can be drawn from the results in Figure 5 wherein the 

TRIAL-LEVEL IM-p05/DN activation maps become the reference maps. MEICA+ME-

SPFM yields larger spatial concordance, sensitivity and specificity than ME-SPFM, and both 

of them outperform 1E-SPFM analyses in terms of spatial overlap for all the conditions.

Figure 6 shows the corresponding receiver operating characteristic (ROC) curves with the 

sensitivity and specificity of each individual trial’s activation map for all conditions and the 

two types of reference maps: TASK-q05/DN are shown at the top and IM-p05/DN are shown 

at the bottom. For visualization purposes, only the IM-q05, IM-p001 and IM-p05 with the 

DN dataset are shown in the ROC plots at the TASK-LEVEL. The radius of each circle is 

relative to the number of voxels showing activations (i.e. total number of positives) in the 
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reference maps. Similar to Figures 4 and 5, the ROC curves illustrate that ME-SPFM offers 

larger sensitivity in detecting single-trial events than 1E-SPFM, which instead achieves 

nearly perfect specificity values (i.e. above 95%) similar to GLM-IM activation maps. 

Interestingly, ME-SPFM achieves larger sensitivity values than GLM-IM for certain trials, 

particularly for the house viewing and reading conditions. The use of MEICA in 

preprocessing slightly improves the performance of ME-SPFM, particularly when compared 

with the IM-p05/DN activation maps.

To demonstrate the temporal concordance of the detected activation, Figure 7 shows the 

average Pearson’s correlation coefficients of the hemodynamic signal estimated with the 

GLM-IM model (top three rows) and the preprocessed DN dataset (bottom four rows) with 

the hemodynamic signals estimated with 1E-SPFM/DN, ME-SPFM and MEICA+ME-

SPFM. Fisher’s z-transformation was applied to the correlation coefficients prior to 

averaging across datasets and then inversely applied for visualization purposes. Also, notice 

that the range of the correlation maps only covers positive values because negative 

correlations were only identified in few disperse voxels in white matter. As for the 

correlation with the GLM-IM hemodynamic signal, both ME-SPFM analyses show higher 

temporal correlation values than those obtained with 1E-SPFM, particularly confined to gray 

matter voxels. The peaks of the correlation maps occur in brain regions involved in the 

processing of the multiple tasks, such as the primary auditory cortex for listening to music, 

the primary motor cortex for finger tapping, the ventral occipitotemporal cortex involved for 

viewing of houses and reading, the posterior temporal-occipital cortex for passive viewing of 

biological motion, and the primary occipital cortex for the multiple tasks with visual input. 

The 1E-SPFM maps only display large correlation values in these cortical regions.

The bottom four rows of Figure 7 illustrate the average correlation maps of the 

corresponding hemodynamic signals with the preprocessed MEICA+OC denoised (DN) 

dataset. The correlation maps of the DN dataset with the GLM-IM fitted signal are spatially 

smooth with non-negligible correlation across all brain voxels and peaks in task-related 

areas. Similar to the correlation maps with the GLM-IM hemodynamic signals, the ME-

SPFM correlation maps reveal a pattern of larger correlation values in voxels across the 

entire cortex and in some subcortical areas (e.g. putamen and caudate nucleus) and low 

correlation values in voxels in white matter and cerebrospinal fluid where the deconvolution 

normally produces null estimates. The correlation values of the MEICA+ME-SPFM 

hemodynamic signal with the DN dataset is larger than those obtained with the ME-SPFM 

maps. This can be expected since the reference signal has also been denoised with MEICA. 

Both ME-SPFM clearly exhibit larger correlations than the 1E-SPFM due to their higher 

temporal sensitivity. The widespread pattern of correlation in grey matter can also be 

observed, but less evidently so in the maps obtained with 1E-SPFM. The deconvolution 

approaches are able to explain variance of the preprocessed DN signal in regions such as the 

anterior and posterior cingulate cortices, precuneus and prefrontal regions, which cannot be 

described with the GLM-IM model.

Figure 8 displays the histograms of the activity-inducing estimates in the same units as ΔR2*

obtained with ME-SPFM and MEICA+ME-SPFM for all subjects: (A) during the entire run, 
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(B-F) during the timings of each task in all intracranial voxels, and (G-K) only in the voxels 

with significant positive response in the corresponding TASK-q05/DN activation map. 

Voxels with zero ΔR2* are discarded in the histogram plots. In general, the activity-inducing 

estimates are within values of ΔR2* between [−1, 1] s−1, which is a physiologically-plausible 

range of ΔR2* in grey matter at 3T. In addition, the percentage of voxels showing activity-

inducing estimates with ΔR2* > 1 s−1 was considerably reduced in the MEICA+ME-SPFM 

analyses (see plots L and M). A table with the percentage of voxels showing activity-

inducing estimates with ΔR2* > 1 s−1 for ME-SPFM and MEICA+ME-SPFM for all 

datasets is available as supplementary material. The histograms illustrate that the activity-

inducing estimates obtained with MEICA+ME-SPFM show smaller ΔR2* amplitudes than the 

those obtained with ME-SPFM. Furthermore, the histograms become skewed towards 

negative ΔR2*-estimates when the mask only includes voxels with significant positive task-

related BOLD signal changes. Interestingly, the histograms exhibit a noticeable symmetry 

around 0 s−1 with all intracranial voxels, particularly when the entire duration of the run is 

considered.

DISCUSSION

The proposed deconvolution algorithm for ME-fMRI, named multi-echo sparse paradigm 

free mapping (ME-SPFM), achieved larger spatial overlap with maps obtained using 

conventional GLM analyses and greater sensitivity than single echo deconvolution but 

reduced specificity relative to its 1E-SPFM counterpart (Caballero-Gaudes et al., 2013). 

Even though the deconvolution with 1E-SPFM generated single-trial activation maps with 

very high specificity, it exhibited a significant reduction in sensitivity that caused the 

algorithm to fail in the detection of activations in brain regions related to the task for certain 

events (see 1E-SPFM activation map of HOUS Trail 1 in Figure 2) probably due to 

insufficient contrast-to-noise ratio in these trials. Here, the deconvolution with ME-SPFM 

was performed with the same combination of sparsity-promoting regularized estimator of 

LASSO and the Bayesian Information Criterion as for 1E-SPFM. From these results, it can 

be inferred that the superior performance of ME-SPFM is due to its ME-based formulation 

as this accounts for the linear dependence of the BOLD signal on TE according to a mono-

exponential decay model. Importantly, the advantage of ME-SPFM over 1E-SPFM was 

observed for the three ways of preprocessing to generate a single dataset from the multiple 

echo datasets, even after MEICA denoising and optimal echo combination which can be 

considered one of the most advanced preprocessing approaches for ME-fMRI data 

(Gonzalez-Castillo et al., 2016). Based on these results, it can be concluded that, for the 

purpose of voxelwise deconvolution, leveraging the information available across the multiple 

echo datasets through a TE-dependent model is more advantageous than weighted 

combination of the multiple echoes in a single dataset (Posse et al., 1999; Gowland and 

Bowtell, 2007; Poser et al., 2006), even with MEICA denoising (Kundu et al., 2012). In 

addition, the advantage of ME-SPFM with respect to 1E-SPFM increased when the 

reference activation maps were defined based on a GLM analysis with task-level regressors, 

rather than with individually modulated regressors for each trial. This result may be 
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associated to the higher level of uncertainty of the single-trial activation maps used as 

reference, which results in higher variability in the specificity, sensitivity and spatial overlap 

estimates.

We observed that applying MEICA prior to ME-SPFM in order to denoise the multiple echo 

datasets did improve, but not substantially, the sensitivity, specificity and spatial overlap 

with the TASK-LEVEL or TRIAL-LEVEL reference maps. Hence, we conclude that the 

improved ability to blindly detect individual BOLD events is more associated with the ME-

SPFM algorithm rather than due to denoising with MEICA. To some degree, this result also 

demonstrates that the proposed ME-SPFM algorithm can cope with S0-related fluctuations 

of the signal despite these being neglected in the deconvolution. Moreover, the slight 

improvements in performance of the 1E-SPFM and ME-SPFM algorithms when the echo 

datasets are denoised with MEICA are similar to the ones observed when GLM analyses are 

performed, which is concordant with previous results (Gonzalez-Castillo et al., 2016).

Denoising the echo datasets with MEICA prior to the proposed ME-SPFM algorithm is still 

recommended (i.e. the MEICA+ME-SPFM analysis), since the corresponding activation 

maps become more focal, showing a reduced number of voxels with non-zero ΔR2* values 

that may originate from inflow effects, movement-related artefacts and physiological 

fluctuations (see green arrows in Figures 1). Moreover, the number of voxels showing 

activity-inducing signals with non-physiologically plausible values of ΔR2* is significantly 

reduced in MEICA+ME-SPFM (see Figure 8). The smaller amplitude of the MEICA+ME-

SPFM estimates also agrees with previous observations of diminished effects sizes in task-

related activations observed in Gonzalez-Castillo et al. (2016).

As shown in Figure 7, the ME-SPFM algorithm also exhibited higher temporal correlation 

with the hemodynamic signals estimated by GLM-IM than by the 1E-SPFM algorithm, 

suggesting a higher temporal sensitivity of the estimated ΔR2* signals. Even though the peaks 

of the temporal correlation maps were located in brain regions assumed to strongly engage 

in the experimental tasks, the correlation maps of ME-SPFM also exhibited non-negligible 

correlation values in grey matter voxels across the entire cortex, subcortical regions and 

cerebellum, whereas the correlation was clearly reduced in white matter voxels. This 

indicates that ME-SPFM offers not only higher temporal sensitivity, but also does not detect 

hemodynamic (i.e. ΔR2*) signal changes at random, but they are specific to brain regions of 

potential functional relevance. These BOLD signal changes (i.e. ΔR2*-events) are missed by 

1E-SPFM and cannot be explained from the experimental design with GLM analyses. There 

can be multiple causes for the origin of these activations. First, the higher contrast-to-noise 

ratio of the BOLD signal in grey matter voxels than in white matter (Krüger and Glover, 

2001). Second, due to the sluggishness of the hemodynamic response, BOLD signal changes 

associated with ΔR2* occurring prior to the trials may also extend in time and overlap with 

the BOLD signal changes in response to the trials. Third, part of the activations observed in 

brain regions beyond those primarily involved in the performance of the tasks could also be 

explained in terms of behavioural differences across trials, for instance due to changes in 

attention, self-awareness or executive control mechanisms that engage other brain regions in 
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a less prominent manner and thus are only detected with ME-SPFM due its enhanced 

sensitivity relative to 1E-SPFM. Here, we confirmed that subjects performed all task-related 

events based on eye-tracking measurements, thus ensuring that variability across trials is not 

associated to inappropriate performance of the tasks (Gonzalez-Castillo et al., 2016).

Importantly, ME-SPFM also enabled us to detect hemodynamic events with physiologically 

plausible ΔR2* values in periods between trials when the subjects are not assumed to engage 

in any evoked task. These spontaneous events detected during rest would be neglected by 

any analysis approach that only model events with timing known by the experimenter. 

Figure 3 shows several instances of these transient, spontaneous ΔR2*-events for a 

representative dataset (see also the movie available as supplementary material) in brain 

regions of the default mode network (Raichle, 2015) as well as the attention and 

frontoparietal executive control networks (Dixon et al., 2018; Fox et al., 2006). Similar 

patterns of spontaneous ΔR2*-events were observed across all datasets. The maps and 

amplitude of these spontaneous activations highly resemble the functional connectivity maps 

observed in resting state fMRI and also exhibit similar between-network relationships in the 

sign of the detected activations. For instance, the illustrative maps in Figure 3 show the well-

known opposite polarity of BOLD signal changes, and thus also in ΔR2*, between regions of 

the default mode network (i.e. precuneus, posterior cingulate, inferior parietal lobule and 

medial prefrontal cortex) and the dorsal attention network (i.e. dorsolateral prefrontal cortex, 

frontal eye fields, intraparietal sulcus, superior parietal lobule) (Fox et al., 2005). Although 

the datasets were not acquired in resting state, these findings corroborate previous evidence 

of involvement of resting state functional networks during event-related paradigms obtained 

in single-echo datasets with SPFM (Caballero-Gaudes et al., 2013; Petridou et al., 2013) and 

Total Activation (Karahanoğlu et al., 2013). Point process analyses have also revealed the 

presence and relevance of these extreme events in resting-state analyses (Liu et al., 2018; 

Tagliazucchi et al., 2012; Tagliazucchi et al., 2016), and they can serve as a proxy of the 

onset of significant BOLD deflections to estimate the shape of a resting-state HRF (Wu et 

al., 2013).

The activity-inducing signals estimated with ME-SPFM have the same interpretable units as 

ΔR2*, i.e. s−1. As shown in Figure 8, most of the ME-SPFM estimates fell within limits of 

neuronally-driven ΔR2* at 3T. For positive BOLD signal changes, Donahue et al. (2011) and 

van der Zwaag et al. (2009) reported total ΔR2* values of −0.74 ± 0.05 s−1 and −0.98 ± 0.08 s

−1 in the human visual and motor cortices at 3T for a block-design tasks with long stimuli. 

These values are higher than those obtained with our deconvolution in response to more 

complex tasks and with shorter trial duration. Should we have a prior hypothesis of the 

maximum ΔR2* induced by neuronally-driven events per brain region, this information can be 

exploited to characterize the nature of the detected events and identify those events with 

exceeding ΔR2* values that might be more related to artefactual changes in the BOLD signal 

(i.e. due to severe motion) than to neurobiological processes. For that, it is important to 

consider that ΔR2* values may vary due to differences in anatomy across brain regions (e.g. 
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vascularization), imaging parameters (e.g. magnetic field strength, RF coil type, voxel size, 

flip angle) and experimental paradigm (e.g. block vs. fast event-related designs).

Furthermore, the histograms of ΔR2* were symmetrical at the whole-brain level, particularly 

when considering the entire run. Similar results were obtained for all analyses when a 

gamma function (GAM option in 3dDeconvolve) without post-stimulus undershoot was used 

for deconvolution (data not shown). This observation indicates that the observed symmetry 

in the ΔR2* histograms of the estimates cannot be completely explained due to spurious 

estimates that try to compensate mismatches between the assumed and real HRF shapes. The 

hemodynamic equilibrium in number and magnitude is intriguing, but agrees with our 

previous observations of whole-brain, widespread activations with equivalent number of 

positive and negative BOLD signal changes at 3T (Gonzalez-Castillo et al., 2012). Although 

this work does not aim to explore this issue, we conjecture that the observed hemodynamic 

equilibrium has a main neuronal contribution probably due to inhibition (Devor et al., 2007; 

Shmuel et al., 2006), rather than purely hemodynamic due to blood stealth of positively 

active regions from neighboring regions (Harel et al., 2002). Our support to this claim is that 

positive ΔR2* occurred in spatially distributed regions across distinct vascular territories, 

were observed across all tasks, and were also confined to regions of the same functional 

network (e.g. default mode, dorsal attention) in periods of rest.

Remarks, limitations and future directions

Estimates of the activity-inducing signal obtained by ME-SPFM are related to changes in the 

apparent relaxation rate ΔR2* [s−1], which is closely related to changes in the concentration of 

deoxygenated hemoglobin and blood oxygen saturation, which in turn are described by 

localized changes in blood flow, oxygen metabolism and blood volume in response to 

neuronal activity (Buxton et al., 2004). Hence, it is important to emphasize that the origin of 

the ΔR2* events detected by ME-SPFM is governed by a complex mixture of 

neurophysiological and metabolic processes that would need additional imaging data to 

describe their intrinsic dynamics and a more valid quantification, for example by means of 

combining multiecho BOLD with ASL acquisitions (Havlicek et al., 2017) or calibrated 

fMRI procedures (Blockley et al., 2013).

Furthermore, the ME-SPFM formulation proposed here, as well as the ME-ICA algorithm, 

builds upon the assumption of linear TE-dependence of fractional BOLD signal changes 

based on a mono-exponential decay model of the gradient-echo fMRI signal. This is valid 

for the extra-vascular contribution to the BOLD signal, which increases linearly with TE 

(Donahue et al., 2011). However, in the gradient echo signal at 3T and for a TE equal to the 

tissue T2, the relative intra-vascular contribution can represent approximately 36% and 11% 

of the signal variation for the micro- and macro-vasculature, respectively (Uludağ et al., 

2009; Croal et al., 2017). The intra-vascular signal shows a nonlinear dependence on TE 

with a peak for TEs between 20–50 ms and decreasing values for longer TEs (Uludağ et al., 

2009; Havlicek et al., 2017), probably due to changes in the average chemical exchange time 

during the stimulation (Kang et al., 2018). As a consequence, the model assumed might not 

be valid for the percentage of intra-vascular signal changes within the total signal changes; 
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instead they could be more accurately characterized using the Luz-Meiboom exchange 

model (Uludağ et al., 2009; Duong et al., 2003). At field strengths larger than 4.7 T, the 

contribution of the intravascular signal to total gradient echo fMRI signal change would be 

nearly zero regardless of the TE (Uludağ et al., 2009). Moreover, recent experiments using a 

combination of multi-echo BOLD and cerebral blood flow measurements in the human 

visual cortex at 3T have shown that the amount of nonlinearity in the model with TE might 

also change during the time course of the BOLD response (Havlicek et al., 2017), suggesting 

different physiologically-driven dynamics for the intercept time-course and the BOLD 

component of the signal. Yet, these non-linear findings were obtained with long stimulus 

durations (e.g. visual stimuli of 55 s duration were used in Havlicek et al. (2017) and 16 s 

duration in Donahue et al. (2011) and Kang et al. (2018)), whereas our data comprised short 

stimuli of 4 s duration. Even if the assumption of linearity on TE failed, which would make 

the model assumed in ME-SPFM and other ME-based approaches such as MEICA slightly 

imperfect, our results showed large agreement with the results of GLM analyses, proving the 

viability of a ME-based deconvolution approach. Finally, fitting a multi-exponential model 

might also be more accurate in voxels with large partial volume effects, particularly for CSF 

with T2* considerably longer than that of grey matter (Speck et al., 2001).

A potential limitation of our approach is the use of sparsity-promoting L1-norm regularized 

estimators such as LASSO for deconvolution. We used the Least Angle Regression (LARS) 

algorithm (Efron et al., 2004) to efficiently compute the entire regularization path in 

combination with the Bayesian Information Criterion (BIC) for selection of the 

regularization parameter (Zou et al., 2007). Although the BIC curve is voxel-dependent, we 

observed homogenous maps of the regularization parameter (both the BIC curves and the 

maps of the regularization parameter are also available in 3dMEPFM in AFNI). Other 

approaches based on Bayesian procedures, stability selection, or other less strict model 

selection criteria such as the Akaike Information Criterion (AIC), could also be investigated. 

In promoting a sparse solution the activity-inducing signal might show very few events in 

some gray matter voxels, with periods where no activity is found. We do not interpret this 

absence of activation as that the brain region does not have neuronal activity, but as that the 

voxel’s fMRI signal does not show sufficiently relevant hemodynamic response according to 

the assumed HRF model to be found by the algorithm using the BIC. Note that the BIC 

establishes an inherent trade-off between fitting perfectly the signal (i.e. sensitivity) and 

sparsity (i.e. specificity) in detecting events. Even though the rule of the BIC selects sparser 

estimates than for example the AIC, we observed that sparse hemodynamic events are 

sufficient to achieve a high correlation between the preprocessed denoised signals and the 

BOLD signals estimated with ME-SPFM, particularly in grey matter regions (see Figure 7). 

Even so, the sparsity assumption might not be appropriate for prolonged blocked stimuli or 

faster event-related paradigms. In such cases, the proposed ME-based deconvolution 

framework could be adapted to use other regularization terms, such as the L2-norm (i.e. 

ridge regression) to relax the sparsity assumption, or generalized total variation 

(Karahanoğlu et al., 2013) or synthesis-based regularization scheme including a first order 

difference / integrator operator in the model (Cherkaoui et al., 2019) to capture blockwise 

activity-inducing signals. Furthermore, the deconvolution algorithm could also incorporate 

spatial regularization terms (e.g. following Karahanoğlu et al., 2013) or formulate a 
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multivariate version to account for the spatial correlation across voxels, and thus similarity 

of the estimates. We will investigate the implementation of these approaches in future 

studies. Importantly, the proposed ME-based deconvolution method can be modified 

straightforwardly to estimate both ΔR2*(t) and ∆ρ(t) (i.e. also estimating time-varying 

changes in the net magnetization ∆S0(t)), even using different types of regularization for 

each component so as to adapt to the nature of their fluctuations (Caballero-Gaudes et al., 

2018a; 2018b).

Another possible limitation of the PFM framework is that it uses a particular HRF shape as 

the model for deconvolution. To explore the robustness of our evaluations to a mismatch in 

the HRF shape, we also computed the spatial concordance with GLM analyses in a scenario 

where the ME-SPFM and 1E-SPFM algorithms used the canonical HRF (SPMG1) and the 

GLM analyses used the BLOCK model in AFNI. This evaluation did not change the patterns 

observed in Figures 4, 5 and 6 (data not shown), suggesting that ME-SPFM is robust to 

mismatches in the shape of the HRF similar to the observations obtained for 1E-SPFM 

(Caballero-Gaudes et al., 2013) and probably gained by the regularization terms of the 

deconvolution. Beyond that, since ME-SPFM is not locked to the timing of the trials, it can 

clearly account for variability in the onset of the response. It can also describe more complex 

patterns, such as the transient stimulus onset/offset responses reported in Gonzalez-Castillo 

et al. (2012) in terms of two hemodynamic events. Further flexibility in the HRF model can 

be incorporated by using multiple basis functions like the informed basis set with the 

canonical HRF and its temporal and dispersion derivatives, or the FLOBS approach in FSL 

and employing structured-sparse regularization terms for the deconvolution, such as the 

Group LASSO, to promote the fact that the activity-inducing signals of the different 

functions must exhibit activity simultaneously (see Gaudes et al., 2012 for a proof of 

concept with 1E-SPFM). Alternatively, a semi-blind deconvolution approach that alternates 

between the deconvolution of the activity-inducing signal and estimation of the HRF shape 

could also be explored (Cherkaoui et al., 2019).

In addition, the proposed discrete model operates at the sampling period of the fMRI 

acquisition (i.e. TR) and, as such, the deconvolution obtains as many estimates of the 

activity-inducing signal as number of scans (N). To allow the detection of events with 

greater temporal precision, the activity-inducing signal could also be estimated at a finer 

temporal resolution (i.e. where the number of estimates is n times larger than N) by 

modifying the convolution matrix H accordingly, which will not be Toeplitz, or performing 

the deconvolution in the Fourier domain. Relevantly, any mismatch between the assumed 

HRF shape and the HRF of the real BOLD fluctuations in the data will also interact with the 

temporal accuracy of the estimates. In that respect, considering more complex models that 

account for temporal shifts in the HRF model, such as the canonical HRF and the temporal 

and dispersion derivatives, could also help to increase the temporal precision of the 

deconvolution (Caballero-Gaudes et al., 2012).

The evaluations of spatial concordance in terms of dice coefficients, sensitivity and 

specificity were constrained to the activations resulting in positive BOLD signal changes. 

This decision was based on the fact that the HRF model is more firmly established for 
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positive BOLD responses, rather than negative ones. In terms of mathematical modelling, it 

is important to highlight that coefficients in the activity-inducing signal with positive ΔR2*, 

i.e. generating negative BOLD response, can also be estimated to counteract mismatches in 

the HRF shape, for example to model a deeper post-stimulus undershoot than the one 

described by canonical HRF. As noted above, changing the HRF model did not alter the 

symmetry of the histograms of the activity-inducing signals across the entire brain depicted 

in Figure 8. If a different temporal HRF model was to be formulated for negative BOLD 

signal changes (see Goense et al. (2016), Sten et al. (2017) and references therein), the 

algorithm could be modified to use two different complementary HRF models for the 

positive and negative signal changes and establish non-positive (or non-negative) constraints 

in the estimates of the activity-inducing signals of each of the models, or even limiting the 

algorithm to capture the signal changes with a polarity of interest.

Apart from possible updates in the ME-SPFM algorithm, its performance will depend on the 

parameters and optimization of the multi-echo data acquisition. Similar to ME-ICA, the 

algorithm relies on a linear dependence of the BOLD signal with TE. Consequently, the 

quality of the deconvolution may improve if more echoes are acquired in the same range of 

TE by reducing the timing between echoes with more efficient k-space trajectories, e.g. with 

spirals. Additional echoes can also be acquired at longer TEs providing these echoes are not 

detrimental due to possible reduction in contrast-to-noise ratio (Gowland and Bowtell, 2007; 

Chiew and Graham, 2011), at the cost of reducing the temporal resolution. For these reasons, 

three or four equally spaced echoes have been typically acquired for standard multi-echo 

acquisitions (e.g., Kundu et al., 2012; Kundu et al., 2013; Kundu et al., 2017; Poser et al., 

2006; Posse 2012; Power et al., 2018). The acquisition of two echoes have also shown good 

denoising performance, especially when the first echo signal is sampled as close to zero TE 

and, as such, it primarily captures fluctuations of the net magnetization with no BOLD 

weighting (Bright and Murphy, 2013; Buur et al., 2009). Nowadays, simultaneous multi-

slice (a.k.a. multiband) multi-echo acquisitions can circumvent the trade-off between the 

number of echoes and the spatial/temporal resolution. The combination of multiecho with 

multiband acquisitions can be leveraged to improve the sensitivity and specificity relative to 

conventional multiecho approaches particularly at ultra-high 7T field strength (Boyacioğlu et 

al., 2015) and in subcortical nuclei of the basal ganglia (Puckett et al., 2018). It can also 

yield additional advantages such as removal of physiological noise, high frequency artefacts 

and slice-leakage components with MEICA (Olafsson et al., 2015). We hypothesize that 

ME-SPFM will also benefit from multiecho multiband acquisitions in a similar fashion, 

particularly if MEICA is part of the preprocessing. However, further systematic empirical 

evaluations are required. For example, further research should examine the inflow 

contribution to the hemodynamic events detected by ME-SPFM, and if its other formulations 

(Caballero-Gaudes et al., 2018a; 2018b), can disentangle these effects from the real BOLD 

contrast. In addition, the effect of other important acquisition parameters that change the 

signal- or contrast-to-noise ratio of the data and the performance of the algorithm, such as 

TR, the flip angle, in-plane acceleration, could also benefit from systematic evaluations.

Regardless of the HRF shape and the parameters of the acquisition, it is important to 

emphasize that, similar to other deconvolution algorithms assuming a linear convolution 
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model to link the activity-inducing signal and hemodynamic signal changes (i.e. ΔR2*), ME-

SPFM cannot disentangle the mixture of active neuronal/metabolic processes and passive 

vascular processes that underlay the BOLD signal as long as they show the linear TE-

dependence. Biophysical generative nonlinear models such as the Balloon model (Buxton et 

al., 1998; 2004; Friston et al., 2000) or the physiologically-informed dynamic causal model 

(P-DCM) (Havlicek et al., 2015) are required to distinguish them. Bayesian filtering 

algorithms have been proposed to invert the Balloon model and estimate the activity-

inducing signal (Friston et al., 2008, 2010; Havlicek et al., 2011) (to our knowledge, no 

algorithm has been proposed for blind estimation of neuronal input and the model 

parameters for P-DCM). These approaches have been typically evaluated with regional time 

series due to the high number of model parameters to estimate. The inability of less 

parameterized deconvolution algorithms to disentangle the underlying neuronal and vascular 

processes might be a cost to pay in order to deconvolve the activity-inducing signal without 

prior knowledge of the timing of the BOLD responses at the voxelwise level, without the 

penalty of obtaining less accurate estimates at the regional level (Sreenivasan et al. 2015). 

More work is necessary to compare both types of algorithms with realistic simulations and a 

variety of experimental paradigms.

In this work, we used datasets with a known experimental paradigm for validation of ME-

SPFM, confirming subject’s compliance with concurrent eye-tracking data. The usage of 

ME-SPFM in a completely blind scenario with no knowledge of the experimental conditions 

would be more challenging. This may require the combination of the deconvolution with 

reverse inference approaches that attempt to decode the subject’s engagement in a particular 

cognitive process from the activation maps (Poldrack, 2011; Poldrack and Yarkoni, 2016), 

for example by comparing the activation maps to a predefined set of meta-maps formed 

using the Activation Likelihood Estimation method of the BrainMap database (Tan et al., 

2017). Decoding could be performed at the same rate as the TR of the acquisition, even 

though successive spatial maps can be averaged to reduce the level of noise in the activation 

maps and uncertainty in the decoding scores.

Finally, deconvolution algorithms can also be understood as a way of denoising the fMRI 

signal, like a filtering process matched to the shape of the HRF, wherein the denoised signal 

comprises the BOLD fluctuations triggered by the deconvolved activity-inducing signal. By 

some means, this interpretation is supported by the correlation maps of Figure 7 that 

illustrate a very high correlation between the ME-SPFM hemodynamic dataset without 

MEICA, and the preprocessed DN dataset (i.e. with MEICA denoising and optimal 

combination). A comprehensive comparison of ME-SPFM with other ME-based denoising 

approaches, such as dual-echo regression (Bright and Murphy, 2013) or MEICA-based 

approaches (Kundu et al., 2012; Power et al., 2018), for denoising the fMRI signal in 

resting-state and task-based paradigms is beyond the scope of this study. The application of 

ME-SPFM for denoising will likely involve refinement of the proposed methods (e.g. degree 

of sparsity, choice of regularization parameters) particularly for connectivity-based analyses.

In summary, in this paper we have introduced the algorithm of multi-echo sparse paradigm 

free mapping (ME-SPFM) for the deconvolution of BOLD fMRI data collected with ME 
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acquisitions. The ME-SPFM method obtains estimates of the ΔR2* associated with single-

trial BOLD events, outperforming our previous method for single-echo acquisitions (1E-

SPFM), and exhibiting more concordance with the maps obtained with conventional GLM-

based analyses despite being unaware of the timings of the events (i.e. blind detection). The 

new algorithm is available in AFNI as 3dMEPFM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the ME-fMRI signal model and the ME-SPFM algorithm. From left to right: 

An activity-inducing signal (∆a(t)) is convolution with the hemodynamic response (ℎ(t)) 

resulting in the activity-induced hemodynamic signal or BOLD responses (i.e. ΔR2*(t)). The 

convolution step can be modelled as multiplying the activity inducing signal with a Toeplitz 

matrix whose columns are shifted HRFs every TR. Percentage signal changes of the fMRI 

signal acquired at TEk can be modelled as the sum of the hemodynamic signal scaled by TEk 

(i.e. −TEkΔR2*(t)), fluctuations of the net magnetization (∆ρ(t)), and other noisy sources (e.g. 

thermal noise) (∆n(t)). The percentage signal changes of all echoes (or their MEICA 

denoised versions) are concatenated and input to ME-SPFM algorithm, which solves a 

regularized least squares problem, to obtain estimates of the activity inducing signal.
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Figure 2. 
Activation maps of an individual single-trial event for each experimental condition obtained 

with an individually-modulated (IM) GLM analysis (T-test, uncorrected p ≤ 0.05) (first row), 

1E-SPFM (second row), ME-SPFM (third row) and MEICA+ME-SPFM (fourth row). The 

maps of IM-GLM and 1E-SPFM show estimated beta coefficients in signal percentage 

change (i.e. % amplitude), whereas ME-SPFM and MEICA-ME-SPFM show estimated ΔR2*

values in units of s−1. Note the ME-SPFM and MEICA+ME-SPFM activations maps are 

shown with reverse colorbars so that negative (positive) ΔR2* values shown in red (blue) 

induce positive (negative) BOLD signal changes.
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Figure 3. 
Time courses of signal percentage change in E02 dataset (SPC E02, black line), GLM-IM 

fitted signal (green), ΔR2*(blue) and ΔR2* BOLD estimates, i.e. ΔR2* convolved with canonical 

HRF (red) obtained with MEICA+ME-SPFM in seven representative voxels in task-related 

regions, and left precuneus and right dorsolateral prefrontal cortex (DLPFC) of the same 

dataset as Figure 1. The voxel’s location is shown in the left maps. Dark and light grey 

bands indicate the times of trials of the relevant task for each voxel and the rest of the tasks, 

respectively. The maps shown on the right display instances of spontaneous ΔR2* events 

occurring at rest, whose timing is marked with dashed lines in the time courses of the left 

precuneus and right DLPFC.
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Figure 4. 
Dice coefficient (i.e. spatial overlap), sensitivity and specificity values of single-trial 

activation maps obtained with each of the analysis methods (GLM-IM, 1E-SPFM, ME-

SPFM and MEICA+ME-SPFM) for each of the experimental conditions. Each box depicts 

the median and the mean (dashed line) across all trials. Its width is defined by the 

interquartile range (IQR) defined by the 1st quartile (Q1) and 3rd quartile (Q3) quartiles. The 

whiskers define the 1.5xIQR below Q1 and 1.5xIQR above Q3. TASK-LEVEL activation 

maps thresholded at FDR-corrected q ≤ 0.05 (TASKq05) and only including voxels with 

positive activation were used as reference maps, shown on the left for a representative 

dataset. The GLM-IM and 1E-SPFM activation maps were computed from the E02, OC and 

DN (i.e. MEICA and OC) preprocessed datasets, and GLM-IM maps were obtained at 

thresholds FDR-corrected q ≤ 0.05 (IMq05), as well as uncorrected p ≤ 0.05 (IMp05) and p 
≤ 0.001 (IMp001).
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Figure 5. 
Dice coefficient (i.e. spatial overlap), sensitivity and specificity values of the single-trial 

activation maps obtained with 1E-SPFM, ME-SPFM and MEICA+ME-SPFM for each of 

the experimental conditions. Each box depicts the median and the mean (dashed line) across 

all trials. Its width is defined by the interquartile range (IQR) defined by the 1st quartile (Q1) 

and 3rd quartile (Q3) quartiles. The whiskers define the 1.5xIQR below Q1 and 1.5xIQR 

above Q3. TRIAL-LEVEL activation maps thresholded at uncorrected p ≤ 0.05 (IMp05) and 

only including voxels with positive activation were used as reference maps, shown on the 

left for a representative dataset. The 1E-SPFM activation maps were computed from the 

E02, OC and DN (i.e. MEICA and OC) preprocessed datasets.
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Figure 6. 
Receiver operating characteristic (ROC) curves with the sensitivity and specificity of each 

individual trial’s activation map for all conditions and the two types of reference maps: 

TASK-q05/DN (top) and IM-p05/DN (bottom). The number of dots per type of analysis is 

the total number of trials across all datasets (i.e. 16 datasets with 30 trials each equals 480 

trials). For visualization purposes, only the IM-q05, IM-p001 and IM-p05 with the DN 

dataset are shown in the ROC plots at the TASK-LEVEL. The radius of each circle is 

relative to the number of positives in the reference map, i.e. trials with bigger circles 

activations had more activated voxels in the reference maps, wherein the largest radius is the 

maximum number of positives across all trials and conditions. For the TASK-q05/DN plots, 

the maximum/minimum number of positives for each task were: 57558/7278 for MUSI, 

60915/8210 for BMOT, 37303/8089 for HOUS, 53249/10456 for FTAP, 46860/5542 for 

READ. For the IM-p05/DN plots, the maximum/minimum number of positives for each task 

were: 50825/1120 for MUSI, 59764/1892 for BMOT, 39137/2603 for HOUS, 33380/804 for 

FTAP, 29539/933 for READ.
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Figure 7. 
(Top three rows) Maps of Pearson’s correlation coefficients between the BOLD signals 

estimated with the GLM-IM analysis and the BOLD signals estimated with the 1E-SPFM, 

and ME-SPFM and MEICA+ME-SPFM deconvolution algorithms. (Bottom four rows) 

Maps of Pearson’s correlation coefficients between the preprocessed DN dataset and the 

fitted signals estimated with the GLM-IM analysis, and the 1E-SPFM, and ME-SPFM and 

MEICA+ME-SPFM deconvolution algorithms.
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Figure 8. 
Histograms of ΔR2* values estimated with ME-SPFM (blue lines and boxes) and MEICA

+ME-SPFM (green lines and boxes) in: A) whole-brain voxels during the entire dataset, (B-

F) in whole-brain voxels during times of trials for each condition, and (G-K) in voxels with 

positive activation according to the TASK-LEVEL IMq05 activation map during the times of 

trials for each condition. (L-M) Box plots with the percentage of voxels with ΔR2* > 1 s−1

for the analysis, showing one circle per dataset.
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