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Abstract

According to a 2012 survey from the Centers for Disease Control and Prevention, approximately 

18% of the U.S. population uses natural products (including plant-based or botanical preparations) 

for treatment or prevention of disease. The use of plant-based medicines is even more prevalent in 

developing countries, where for many they constitute the primary health care modality. Proponents 

of the medicinal use of natural product mixtures often claim that they are more effective than 

purified compounds due to beneficial “synergistic” interactions. A less-discussed phenomenon, 

antagonism, in which effects of active constituents are masked by other compounds in a complex 

mixture, also occurs in natural product mixtures. Synergy and antagonism are notoriously difficult 

to study in a rigorous fashion, particularly given that natural products chemistry research 

methodology is typically devoted to reducing complexity and identifying single active constituents 

for drug development. This report represents a critical review with commentary about the current 

state of the scientific literature as it relates to studying combination effects (including both synergy 

and antagonism) in natural product extracts. We provide particular emphasis on analytical and Big 

Data approaches for identifying synergistic or antagonistic combinations and elucidating the 

mechanisms that underlie their interactions. Specific case studies of botanicals in which 

synergistic interactions have been documented are also discussed. The topic of synergy is 

important given that consumer use of botanical natural products and associated safety concerns 

continue to garner attention by the public and the media. Guidance by the natural products 

community is needed to provide strategies for effective evaluation of safety and toxicity of 

botanical mixtures and to drive discovery in botanical natural product research.

1. Introduction

Plants have been used as medicine since the beginning of human history.1 Texts from ancient 

Sumeria, India, Egypt, China, and others contain recipes for medicinal plant preparations for 

the treatment of disease.1,2 Today, medicinal plant use remains widespread, and a significant 

portion of the world's population utilizes herbal natural products and supplements as the 

primary mode of healthcare.3-5 In the United States, nearly 20% of adults and 5% of 

children utilize botanical supplements to treat disease.6
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Despite centuries of use, the activity of botanical medicines is only partially understood, and 

for most natural products on the market, there is a lack of knowledge as to which 

constituents are responsible for the purported biological activity. Scientific investigation of 

botanical natural products is challenging because of their immense complexity and 

variability.7-9 Natural products chemistry efforts are typically devoted to reducing 

complexity and identifying single “active” constituents for drug development. However, 

given that complex plant extracts, and not single molecules, are often administered for 

medicinal purposes, interactions between constituents could be of great importance.

Understanding how mixtures work in concert to achieve a given biological effect may 

address the ever-increasing threat of disease resistance. Indeed, many diseases are not 

regulated by a single molecular target, but often have a multi-factorial causality.7,9 It has 

been shown in numerous studies that disease resistance is less likely to occur against a 

combination of compounds than to single active constituents.8,10 Plants have evolved over 

millennia to address the multifactorial nature of disease pathogenesis by targeting pathogens 

through the combined action of structurally and functionally diverse constituents.7,11 As 

such, complex natural product mixtures offer an important resource for drug development, 

and to ensure future success in natural products research, understanding interactions within 

and between the constituents of natural product mixtures is paramount.

Pharmacological investigations into combination effects can be examined at the level of the 

molecular targets, disease pathways, cellular processes, and patient responses.12 As such, in 
vitro, in vivo, pre-clinical, and clinical research can all provide valuable insight into 

combination effects. Considerable progress has been made in the clinical arena in terms of 

investigating drug synergy, reviewed extensively in several publications.12-15 While much 

research is being conducted in this realm, this review will focus primarily on methodology to 

interpret combination effects using molecular and cellular methods.

Botanical extracts may contain hundreds or even thousands of individual constituents at 

varying abundance16 (Fig. 1) and identifying the compounds responsible for a given 

biological effect represents a significant challenge. Too often, it is assumed that the 

behaviour of a mixture can be described by the presence of just a few known constituents. 

However, a number of studies have shown that the overall activity of botanical extracts can 

result from mixtures of compounds with synergistic, additive, or antagonistic activity,9,17-20 

and those who work in the field of botanical natural products research will be quick to admit 

that it is very often the case that isolation efforts on a botanical extract fail because activity 

is lost upon fractionation.9,17,20 While there are multiple possible explanations for this 

failure (including irreversible adsorption of compounds to the column packing),21 it is 

certainly true that in some cases loss of activity occurs because multiple constituents are 

required to observe the biological effect. Many investigators recognize the multi-factorial 

nature of botanical medicines. However, research methodology as applied to botanical 

mixtures still tends, in most cases, either to take a reductionist approach (focusing on just 

one or two “marker compounds”) or to ignore the question of chemical composition 

altogether, testing the biological effects of complex mixtures for which active constituents 

are unknown. The problem in the latter case is that results tend to be difficult both to 

interpret and to reproduce. Herein, we seek to provide an overview of the methodology that 
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currently exists to understand combination effects within complex mixtures. We will 

highlight existing technologies for studying combination effects, placing particular emphasis 

on – Omics technologies and other Big Data approaches that have developed significantly in 

the last several years. We aim to provide practical advice to investigators seeking to 

comprehensively evaluate the constituents and mechanisms responsible for the biological 

activity of botanical mixtures.

2. Terminology and identification of combination effects

2.1 Definitions of synergy and antagonism

Several reviews have been written on the topic of combination effects in recent years that 

provide valuable commentary on defining combination effects in complex mixtures.7-9 

Although the evaluation of interactions between multiple bioactive constituents has gained 

popularity in many scientific disciplines,17,22-25 it remains difficult to give a undisputable 

definition for the term synergy.9,12,26 It is generally agreed, however, that interactions 

between multiple agents can be classified as antagonistic, additive/non-interactive, or 

synergistic. Additive and non-interactive combinations indicate that the combined effect of 

two substances is a pure summation effect, while an antagonistic interaction results in a less 

than additive effect. Positive interactions, known as potentiation or synergy, occur when the 

combined effect of constituents is greater than the expected additive effect.7-9,12,27-29

2.2 Assays for gathering biological data

To successfully acquire useful data for understanding combination effects in complex 

mixtures, one must first choose an appropriate biological assay for combination testing. 

Because combination effects can present themselves through myriad mechanisms (including 

changes to absorption and metabolism, affecting multiple cell targets, etc.), in vivo model 

systems provide the most comprehensive assessment of the overall effects on a living 

organism.30 The development of high-throughput in vivo testing of mixture-based libraries 

shows promise for identifying multi-target constituents within mixtures.30 Despite this, it 

remains challenging to address the complexity of in vivo systems, which require the sacrifice 

of test animals and maintenance of animal facilities. Additionally, results may not 

successfully translate from one animal model to another. Even when evaluating drug 

effectiveness in human patients, cell-to-cell variability and patient-to-patient variability in 

drug responses are common.12 Because of this, it is possible that patients receiving 

combination treatments have improved treatment efficacy because their disease is sensitive 

to at least one of the drugs in the combination (i.e. independent drug action), rather than 

because of true combination effects.12,31

To overcome some of these challenges, many researchers work with in vitro systems instead. 

However, many cell-free, high-throughput assays that search for molecular targets do not 

accurately model the biology of an intact cell, making the discovery of relevant combination 

effects unfeasible.32 As such, cell-based assays can be employed that strike a balance 

between efficiency and preservation of molecular pathway interactions.33 Many useful 

cellular systems for identifying combination effects in vitro have been discussed in a recent 

publication by Pemovska et al.12 In addition to choosing relevant cellular systems for 
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conducting biological testing, it is important to mimic physiological conditions in the assay 

itself. Indeed, most media used to grow cells for biological testing do not mimic 

physiological conditions, influencing the metabolism and phenotypic response of the cells 

under study.34 Similarly, biological assay conditions can result in “dynamic residual 

complexity,” in which the sample is subjected to an environmentally-induced chemical 

change, making interpretation of results challenging.35 In their recent publication, Vande 

Voorde et al.34 illustrated that the utilization of a complex culture medium designed to 

mimic the physiological environment of cancer cells prevented the formation of unwanted 

phenotypic artifacts and improved the translatability between in vitro assay results and in 
vivo tumor models. The utilization of physiologically relevant media also improves the 

likelihood that components that elicit a biological response during biological testing will be 

soluble and stable in a biological system, facilitating identification of active constituents. 

Primary tissue assays comprised of multiple cell types, such as those used to screen drug 

combinations for anti-inflammatory activity in mixed cultures of lymphocytes, can also be 

used to reveal combination effects that work through multi-target mechanisms.32

When screening for biological activity in vitro, however, researchers should be aware of 

potential false-positive results originating from pan-assay interference compounds, 

commonly referred to as PAINS, which are often identified as hits in biological screens.35 

These false positive results may occur through a variety of mechanisms, including 

fluorescence quenching, aggregation effects, chemical reactivity, oxidation/reduction, 

membrane disruption, and residual complexity.35 Synergy results are often identified in 

aqueous media due to aggregation effects, which can be minimized by the addition of 

detergent to the media.36 While the promiscuous nature of PAINS compounds may in some 

cases be cause for concern, numerous examples of clinical drugs contain substructures that 

fall into this category.37 For example, many quinone-based drugs have been approved by the 

FDA for their antineoplastic, immuno-suppressant, and antiprotozoal activities.37 As such, 

biological assay results should be seen as hypothesis-generating tools, and further 

verification is required to identify true leads (or to eliminate “PAINS” compounds from 

consideration).

In addition to carefully choosing the biological system to study for combination effects, data 

enabling the efficient comparison of a drug combination to agents in isolation must be 

gathered.8,32 Combination effects including synergy and antagonism can occur over a broad 

range of concentrations, so various ratios of the samples under study must be tested.
8,32,33,38-41 Numerous methodologies have been developed to acquire data to discover 

combination effects in vitro, including checkerboard assays and time-kill methods, many of 

which are quite labor- and material-intensive.8,32,42 One of the simplest methods for 

identifying potential combination effects is through testing samples alone and in 

combination, and determining if the combined effect of the samples is greater, equal, or less 

than the expected sum of the two samples in isolation. Although simple, assays employing 

this approach cannot claim synergy without further study because they lack the range of 

concentration combinations required to fully assess combination effects, and should be used 

only to prioritize samples for more in-depth studies.43 These in-depth studies can be 

achieved using a dose–response matrix design,33 also known as a checkerboard assay, in 
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which a series of dose–response curves using different dose combinations of the agents 

under study are acquired and compared.8,32

In addition to concentration-based approaches to evaluate combination effects, time-based 

approaches have also been developed and applied to identify antimicrobial synergy and to 

describe the relationship between bactericidal activity and sample concentration.44 This 

method involves exposing a selected pathogen to an inhibitor (or combination of inhibitors), 

sampling cultures at regular time intervals, serially diluting and incubating aliquots, and 

comparing the colony forming units produced. The resulting dose–response curve can be 

used to define additive, synergistic, and antagonistic effects.44 Importantly, several of these 

methods have been compared using the same datasets,38-41 revealing a lack of consistency 

between conclusions met using these approaches.38-40,42,45 Not only do in vitro tests often 

result in conflicting results, but it is very often the case that reproducible hits in vitro lack 

efficacy in vivo.30 Because of this inconsistency, preliminary screening efforts should be 

used to prioritize candidates with potential synergy but should not be used to unequivocally 

define combination effects.

2.3 Models for assessing combination effects

To identify if an interaction exists between individual compounds or complex samples, the 

observed combination response must be compared to the expected effect using a “null 

reference model.”12,46,47 Much of the confusion around categorizing interactions as 

antagonistic, additive, or synergistic results from the use of different reference models that 

are used to define the “expected” outcome of a given combination.27,48-51 Several reference 

models, as well as their biological assumptions and their limitations, are summarized in a 

recent paper by Pemovska et al.12 As described in a recent paper by Tang et al.,26 the two 

major reference model classes are the Bliss independence model52 and the Loewe additivity 

model,53 each of which relies on a different set of biological assumptions. The Bliss 

independence model, for example, assumes that each sample has independent, yet competing 

effects, while the Loewe additivity model defines the expected effect as a sample combined 

with itself.47 Recently, an additional reference model, the zero interaction potency (ZIP) 

model, was developed that takes advantage of both Loewe and Bliss models.47 The ZIP 

model is based on the assumption that two non-interacting samples will cause minimal 

changes to the dose–response curves, both in terms of the slope of the curve and in the half 

maximal effect.47 This model shows particular promise for high-throughput drug 

combination screenings and shows potential for identifying the variety of combination 

effects that can occur across different concentration ranges.47 These models, and other lesser 

utilized models, are discussed in depth in several publications.26,27,49,54

Despite the existence of numerous reference models, the general isobole equation, based on 

the assumptions of the Loewe additivity principle, remains the most popular for studying 

combination effects.8,9,27-29,55 As described elsewhere, an isobole, or an “isobologram,” is a 

graphical representation of the combination effects between two samples.8,9,27-29,55 The 

axes of the plot represent the doses of individual agents, and the points plotted indicate the 

combination of concentrations of the two treatments required to reach a particular fixed 

effect (i.e. 50% inhibition of cell growth).8 If the two samples have no interaction, the line 
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joining the axes will be a straight line. Synergy will result in a concave curve, and 

antagonism will result in a convex curve (Fig. 2).8,9,27-29 In a recent publication, Lederer et 
al.55 scrutinized the implicit assumptions of the Loewe additivity model (and with it the 

general isobole equation), and found that the consistency of the model only holds if the two 

samples under study do not differ in the slopes nor the maximal effects of their dose–

response curves.55 In cases where one sample reaches an effect that cannot be reached by the 

other sample, the Loewe additivity consistency condition is violated.54,56 To overcome this 

limitation with the Loewe additivity consistency condition, Lederer et al.55 developed an 

adaptation of the general isobole equation termed the explicit mean equation. The explicit 

mean equation is equivalent to the isobole equation in cases where the two samples meet the 

Loewe additivity consistency condition and is capable of identifying combination effects 

even if this condition is violated. In a follow up study, Lederer et al.46 compared six models 

built on either Loewe additivity or Bliss independence principles using existing, high-

throughput datasets57,58 and found that Loewe additivity models performed better than Bliss 

independence at separating synergy relationships from other combination effects and that the 

explicit mean equation was the overall best performing model.46

In recent years, variants of the Loewe additivity model and the Bliss independence model 

have been developed.56,59-63 However, because the expected responses from these different 

models are often disparate,27,46 it is challenging to draw biological conclusions from the 

resulting data. In some instances, combination effects have been identified as synergistic by 

one model but antagonistic by another.57 As such, researchers should be clear about which 

model they have chosen to adopt, as stated in the Saariselkä agreement.64 Tang et al.26 have 

expanded upon this suggestion and have proposed the use of terminology that incorporates 

results from both Bliss independence and Loewe additivity models. The authors argue that 

the level of consistency between models should be used to designate the degree of synergy 

or antagonism. For example, if both models identify a given interaction as synergistic, that 

interaction should be considered “strong synergy,” and if the combination is identified as 

synergistic by one model only, it should be considered “weak synergy”.26 By utilizing both 

models, this proposal minimizes the incorporation of bias into predictions and provides more 

informative definitions for the combination effects described. While in principle this 

proposal makes sense, it also relies on the assumption that the models are equally valid. 

While Loewe additivity models have been shown to perform better than Bliss independence 

models on numerous occasions,46 Russ and Kishony65 found that the Bliss independence 

models are more consistent when interactions between more than two samples are evaluated. 

As such, the use of any synergy model should be seen only as a hypothesis-generating tool 

to prioritize potential interaction effects for further study. Indisputable definitions of synergy 

and antagonism remain elusive, and a wider agreement on the terminology used for 

interaction assessment is still required to standardize future research initiatives.

2.4 Scoring and interpreting biological data

In addition to a lack of consensus among the theoretical models to utilize for defining 

combination effects, there are challenges on how to apply and interpret existing models to 

analyze drug combinations.47 As stated earlier, most synergy analyses focus on the 

differences in isobologram shapes at fixed effects, and summary interaction scores such as 
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the fractional inhibitory concentration (∑FIC) index have found wide application.8,47,48,66,67 

The ∑FIC index is calculated using eqn (1):8

∑FIC = FICA + FICB,

where FICA = [A]
IC50A

and FICB = [B]
IC50B

(1)

In this equation, A and B represent the samples under study, IC50A and IC50B represent the 

concentrations of A or B in isolation to reach 50% inhibition, [A] is the IC50 of A in the 

presence of B, and [B] is the IC50 of B in the presence of A. Notably, any fixed effect can be 

used to calculate ∑FIC indices, but IC50 values are perhaps the most common metric.

Despite the popularity of this method, the interpretation of ∑FIC scores for defining 

combination effects varies considerably from author to author. In their recent publication, 

van Vuuren and Viljoen8 provide an excellent commentary on ∑FIC score interpretation, 

improving upon the earliest interpretations proposed by Berenbaum in which synergistic 

interactions were considered to be any value below one, additive/indifferent interactions 

focused on one, and antagonistic interactions above one.27 However, because of the 

inconsistency across null reference models, and because fixed effects can often be placed 

within a three-dilution range using in vitro assays,68 a more conservative approach is 

warranted. Taking this into consideration, van Vuuren and Viljoen8 and the authors of this 

review suggest that synergistic interactions be defined as interactions having ∑FIC ≤ 0.5, 

additive interactions range from 0.5 to 1.0, non-interactive effects range from 1.0 to 4.0, and 

antagonistic effects fall above 4.0 (Table 1).

Despite its popularity, the ∑FIC index, like the isobologram upon which it is based, is 

insufficient to effectively capture the combination effects that may occur across multiple 

dose regions.46,47 An inherent limitation of the ∑FIC index is the focus on a single 

interaction parameter. In a recent publication, Lederer et al.46 compared multiple synergy 

measurements and found that the “lack of fit” model,69 where synergy scores are defined by 

the volume spanned between the null reference model and the measured response, 

performed better than parametric models in its ability to identify synergistic effects.46

Similarly, Yadav et al. developed a score that enables the use of an interaction landscape 

over the full dose–response matrix to identify combination effects across multiple dosages 

and response levels.47 Rather than relying on a single parameter such as the IC50 

measurement, the delta-score utilized in this study was calculated by assessing changes in 

both the shape parameter and the midpoint of each dose–response curve for individual 

samples and combinations thereof. The delta scores were visualized using a response surface 

plot to visualize the combination effect landscape over all tested dosage combinations, 

enabling identification of potency changes and differences in combination effects even 

within the same sample pair (Fig. 3). There appears to be value in using these different 

methods to explore synergy; however, these approaches have not yet been applied to 

understand synergy in complex natural products and discussion of their merit for this 
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purpose remains hypothetical. Despite the aforementioned limitations, isobole analysis and 

the ∑FIC index have found the widest utility in natural products research.8

3. Documented examples of synergism and antagonism

Proponents of the health benefits of plant-based medicines often proclaim that whole plant 

preparations are more effective than isolated compounds due to the beneficial interactions 

between constituents within them.9,18,70,71 While this claim is sometimes disputed,72-75 

considerable evidence exists that combination effects within complex extracts can alter the 

biological activity of a mixture.7-9,76 Here, we provide a few case studies in which synergy 

and/or antagonism within botanical preparations have been discussed. Additional examples 

of synergy within and between botanical extracts have been extensively reviewed in several 

publications,8,9,20,28,76 providing compelling evidence that at least in some cases, the 

combined effect of botanical mixtures is not simply a summation of their individual 

constituents. However, explorations into phytosynergy are only in their infancy. The vast 

majority of complex natural product mixtures still await chemical investigation, representing 

an untapped resource with considerable potential for future scientific exploration.

3.1 Anti-plasmodium activity of Artemisia annua

Artemisia annua L. (Asteraceae) has gained considerable popularity over the last few years 

since the award of the 2015 Nobel Prize in Physiology or Medicine to Youyou Tu for her 

discovery of artemisinin, an antimalarial sesquiterpene lactone produced by this plant.77,78 

Artemisinins have been established as potent and safe antimalarial agents,79 and artemisinin-

based combination therapies are now the front-line treatment recommendation by the World 

Health Organization.80 The replacement of ineffective malaria treatments such as 

chloroquine with artemisinin-based combination therapies has decreased malaria-associated 

morbidity and mortality worldwide.81-83 Several researchers have suggested that artemisinin 

acts to destroy Plasmodium falciparum parasites through the activation of a trioxane bridge 

in the P. falciparum food vacuole in a heme-dependent manner.84,85 This disruption causes 

the production of free radicals that interrupt heme detoxification, ultimately generating more 

reactive oxygen species and killing the parasite.

In addition to artemisinin, there are approximately 30 other flavonoids and sesquiterpenes 

within A. annua, some of which have minor anti-plasmodial activities.86 As might be 

expected, since botanical preparations are multi-factorial rather than monospecific in nature, 

both in vitro and in vivo studies evaluating the activity of A. annua extracts have found that 

the amount of artemisinin in the extracts does not fully explain the extract's efficacy against 

P. falciparum parasites.87,88 Indeed, various combination therapies including artemisinin and 

its derivatives are utilized as antimalarial treatments.89,90 In a recent study, Suberu et al.91 

aimed to identify the compounds within A. annua tea extract contributing to its anti-

plasmodial efficacy. Building upon the work of previous studies which found that several 

flavonoids potentiated the activity of artemisinin against P. falciparum,92,93 Suberu et al.91 

tested the tea extract, purified standards from the extract, and various combinations of 

artemisinin with purified compounds against both chloroquine-sensitive and chloroquine-

resistant strains of P. falciparum. Interestingly, the type of combination effect observed, 
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whether it be synergistic, additive, or antagonistic, often differed depending on the dosage of 

the combined constituents and/or the resistance profile of the parasite under analysis.91

Using isobologram analysis and calculating ∑FIC indices, Suberu et al.91 found several 

compounds that enhanced or antagonized the activity of artemisinin against P. falciparum. 

Two compounds that contained anti-plasmodial activity, 9-epi-artemisinin and artemisitene, 

were found to antagonize the efficacy of artemisinin against both chloroquine-sensitive and 

chloroquine-resistant strains. Although the mechanism by which these compounds 

antagonize artemisinin's activity is unknown, it is reasonable to assume these compounds, 

which have only minor structural differences, compete for the same molecular target, 

reducing the overall efficacy of the compounds in combination.91 Several additional 

compounds contained within the extract, however, did not demonstrate the same 

combination effect at all concentrations tested. For example, 3-caffeoylquinic acid showed a 

summation effect in combination with artemisinin at a ratio of 1 : 3 (artemisinin to 3-

caffeoylquinic acid) when tested against the chloroquine-sensitive strain, but at higher 

combination ratios (1 : 10–100), synergistic interactions were observed. Similarly, casticin, 

which possessed antagonistic activity at the 1 : 3 ratio, has been reported to be synergistic in 

other studies using higher combination ratios (1 : 10–1000).92,93 The reason for this 

discrepancy is unknown, but it is possible that these compounds act as either anti-oxidant or 

pro-oxidant species depending on the dosage level.94,95 When combined at a low 

concentration with artemisinin, they may have counteracted artemisinin activity through 

anti-oxidative interaction, minimizing the oxidative stress resulting from the reactive oxygen 

species formed through artemisinin's activity, while at higher concentrations they were pro-

oxidative, increasing the oxidative stress and leading to increased efficacy of artemisinin.91

Other compounds, including rosmarinic acid and arteannuin B, showed differential 

combination effects when tested against sensitive and resistant strains of P. falciparum. 

Rosmarinic acid was synergistic against the sensitive strain, but showed antagonistic activity 

in the resistant strain.91 Similarly, arteannuin B had an additive/indifferent interaction in the 

chloroquine sensitive strain, but a synergistic interaction with the resistant strain, leading to 

a three-fold improvement in artemisinin's activity.91 Because arteannuin B selectively 

potentiates the activity of artemisinin in the chloroquine-resistant strain, it likely targets the 

parasite's chloroquine resistance mechanism, illustrating the promise of combination 

treatments not only for developing therapeutics against drug-resistant pathogens, but also for 

providing insight into the mechanisms by which parasites gain resistance as a whole.

It is important to note that Suberu et al. chose somewhat liberal ranges for the ∑FIC indices 

used to define their combination effects,91 and other researchers, depending on the models 

chosen, may have categorized some of the synergistic and antagonistic interactions as 

“additive” or “indifferent”.8 Even if one were to recategorize interactions based on 

conservative estimates, however, all three types of combination effects (synergy, additivity, 

and antagonism) were witnessed during the course of this study. While the specific 

categorizations of synergy, additivity, and antagonism chosen by Suberu et al. may be 

disputed, it is clear that the nature of combination effects did often change depending on 

both the dosage and the parasite strain under study.91
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3.2 Endotoxin from bacterial endophytes in Echinacea species

Few botanicals have been the subject of as much research or as much controversy as plants 

from the genus Echinacea. This botanical, which is widely used for the treatment of upper 

respiratory infections, has been the subject of several clinical trials. Although these trials had 

conflicting results,96,97 Echinacea species remain one of the most popular and best-selling 

botanical medicines in the United States,98 and preparations from this plant are popular in 

Europe as well.99

The constituents responsible for the activity of Echinacea purpurea (L.) Moench 

(Asteraceae) extracts and the mechanisms by which these constituents exert their purported 

beneficial effects have been studied extensively. Early research on Echinacea attributed its 

purported health benefits to its ability to “activate” or “stimulate” immune cells. These 

findings were based upon early work by Wagner and co-workers, in which isolated 

Echinacea polysaccharides were observed to stimulate phagocytosis and induce TNF-alpha 

secretion by macrophages.100 Later research demonstrated that much of the 

immunostimulatory activity originally attributed to Echinacea polysaccharides could instead 

be linked to the lipopolysaccharides and lipoproteins. These lipoproteins and 

lipopolysaccharides are components of bacterial cell walls, and can be attributed to the 

presence of bacterial endophytes, bacteria living asymptomatically within the Echinacea 
plant tissues.101-104 Even very minute quantities of certain lipoproteins and 

lipopolysaccharides induce pronounced immunostimulatory effects in macrophages, so the 

presence of these compounds as contaminants can confound in vitro assay data.

An alternative narrative about the immunomodulatory activity of Echinacea preparations 

focused on alkylamide constituents. Contrary to the research on polysaccharides, 

lipoproteins, and lipopolysaccharides, these alkylamides were observed to suppress the 

production of pro-inflammatory cytokines by macrophages.105-108 Such activity could 

translate to a beneficial anti-inflammatory effect in vivo. The apparently contradictory 

activity of various classes of compounds, both isolated from Echinacea, suggested the 

possibility that the activity of some constituents might be masked by others in the context of 

complex Echinacea extracts. This was shown in a study by Todd et al.,104 in which complex 

E. purpurea extracts possessed little to no cytokine-suppressive activity, but could be 

separated to produce sub-fractions with opposing effects. Some fractions, those containing 

alkylamides, suppressed cytokine and chemokine production by macrophages, while others, 

those containing lipopolysaccharides, induced cytokine production. Thus, it was 

demonstrated that lipopolysaccharides (and likely other compounds of bacterial origin) 

masked the anti-inflammatory effect of complex Echinacea preparations, effectively acting 

as antagonists. It was not until these fractions were separated that the individual activities of 

the various constituents could be observed.

3.3 Combination effects in Chinese Herbal Medicines

Chinese Herbal Medicine, a branch of Traditional Chinese Medicine, has been used for over 

1000 years to promote health and to treat various illnesses in China and other Asian 

countries.109 In this field of medicine, multiple herbs are combined in order to take 

advantage of combination effects that improve the efficacy of active constituents and/or 
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minimize side effects associated with treatment. The complexity of such formulations, 

however, poses a great challenge to researchers attempting to validate the effectiveness of 

herbal preparations. Zhou et al. have recently written an excellent review on the state of 

synergy research as it relates to Chinese Herbal Medicine, outlining methods to understand 

combination effects in multi-herb preparations as well as providing examples of specific 

herbal formulations.109

Salvia miltiorrhiza Bunge (Lamiaceae) and Pueraria lobata (Willd.) Ohwi (Fabaceae), 

known as Danshen and Gegen, respectively, are often combined to treat coronary heart 

disease.110 In a recent study, Danshen and Gegen were tested both alone and in combination 

in order to confirm the presence of anti-atherogenic effects and to identify potential 

combination effects between herbal constituents. Biological effects of the three extracts 

(Danshen and Gegen alone and in combination) were tested for their anti-inflammatory, anti-

foam cell formation, and anti-vascular smooth muscle cell (vSMC) proliferation effects.110 

The biological assay results were evaluated using both fixed-ratio experimental design and 

fractional inhibitory concentration indices (alternatively named “combination indices” in 

this publication). The Danshen–Gegen combination was characterized as synergistic in the 

anti-inflammation assay, additive in the foam cell formation assay, and antagonistic in the 

vSMC proliferation assay, with ∑FIC indices of 0.75, 1.03, and 2.02, respectively.110 When 

categorizing these combination effects, however, the authors of this study chose quite lenient 

values. Using the recommended values in this review and others,8 the combination effects 

witnessed in these three assays would be recategorized as additive (for the anti-inflammation 

assay) and indifferent (for the foam-cell formation and vSMC proliferation assays). 

Nonetheless, this study highlights the applicability of multi-herb formulas to treat disease, 

and provides rationale for the combination of Danshen and Gegen for the treatment of 

atherogenesis.110

4. Underlying mechanisms of synergy

Synergy can occur through a variety of mechanisms, including (i) pharmacodynamic 

synergism through multi-target effects, (ii) pharmacokinetic synergism through modulation 

of drug transport, permeation, and bioavailability, (iii) elimination of adverse effects, and 

(iv) targeting disease resistance mechanisms.8,9,76,77,111,112 While the general mechanisms 

by which synergy can occur are relatively well studied, the mechanisms by which specific 

botanical preparations exert synergistic effects remain largely unknown,76,113 stymying 

efforts to standardize and optimize them for therapeutic purposes. Only through 

understanding the nature of synergistic activity within botanical extracts will we be able to 

optimize safe and efficacious preparations for the treatment of disease.

4.1 Pharmacodynamic synergism

Cancerous cells and pathogenic organisms can quickly gain resistance to drugs containing a 

single compound, and many cancers and resistant bacterial infections are now treated with 

complex drug combinations affecting multiple targets to overcome the development of 

resistance.114,115 Plants have long had to defend themselves against multi-factorial diseases, 

and have evolved to produce multiple active constituents that can adhere to cell membranes, 
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intercalate into RNA or DNA, and bind to numerous proteins.7,116-118 Pharmacodynamic 

synergism results from the targeting of multiple pathways, which can include enzymes, 

substrates, metabolites, ion channels, ribosomes, and signal cascades.9,119

Oftentimes, disease targets are able to counteract the therapeutic effect of an active 

metabolite, resulting in its reduced efficacy.76 One type of pharmacodynamic synergism 

involves “anti-counteractive action” in which a synergistic compound binds to an anti-target, 

effectively inhibiting the disease target from counteracting the therapeutic effect of the active 

constituent.76 Pharmacodynamic synergy may also occur through complementary actions, in 

which synergists in a mixture interact with multiple points of a given pathway, resulting in 

positive regulation of a process affecting the drug target or in the negative regulation of 

competing mechanisms. Through the selective variation of target activity and expression 

through complementary actions, pharmacodynamic synergists can both augment beneficial 

effects of treatments and reduce adverse effects of the disease.76 For example, Ginkgo biloba 
L. (Ginkgoaceae) has been shown in numerous studies to have synergistic neuroprotective 

effects both in vivo and in vitro by inhibiting the formation of free radicals, scavenging 

reactive oxygen species, regulating gene expression of mitochondrial targets, and reducing 

excessive stimulation of nerve cells by neurotransmitters.66,120

4.2 Pharmacokinetic synergism

In addition to pharmacodynamic synergy, plants often contain compounds that do not 

possess specific pharmacological effects themselves, but increase the solubility, absorption, 

distribution, or metabolism of active constituents.7,9,76,121 These pharmacokinetic effects 

result in enhanced bioavailability of active constituents, enabling increased efficacy of the 

extract as compared to individual constituents in isolation.9 Several examples exist in which 

mixture constituents improve the solubility of active constituents. For example, hypericin 

from Saint John's Wort (Hypericum perforatum L. (Hypericaceae)), is poorly soluble in 

water. However, when hypericin is combined with H. perforatum mixture constituents 

including procyanidin B2 and hyperocide, solubility and oral bioavailability of hypericin are 

significantly improved.122 In a recent study, researchers interrogated the function of highly 

abundant sugars, amino acids, choline, and organic acids that are found commonly in 

microbial, mammalian, and plant cells.123 Through these studies, it was found that these 

abundant molecules likely play a role in the production of “natural deep eutectic solvents,” 

which may serve as a third liquid phase, intermediate in polarity between lipid and water 

phases, where biosynthetic products of intermediate polarity are produced and stored.123 

The presence of compounds that improve the solubility of bioactive constituents, both within 

and between organisms, is a particularly important type of synergism that is often 

underappreciated.

Absorption of active constituents can be improved through a variety of mechanisms, 

including the inhibition of drug exporters such as P-glycoproteins.111,124,125 Additionally, 

transport barriers may be disrupted or their recovery delayed, improving permeability of 

active constituents into target cells.76 For example, the absorption of baicalin, a constituent 

of the plant Scutellaria baicalensis Georgi (Lamiaceae), is synergistically enhanced by the 

addition of both coumarins and volatile oils from the botanical Angelica dahurica Bentham 
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et Hooker (Apiaceae), likely by affecting transport systems independent of P-glycoproteins.
126 Pharmacokinetic synergy also results from constituents that inhibit enzymes that convert 

drugs into excretable or inactive forms, or that activate enzymes that convert pro-drugs into 

active forms.7,76

4.3 Elimination of adverse effects

An additional type of synergy occurs when inactive mixture constituents serve to neutralize 

the unwanted side effects of a toxic, yet bioactive constituent. This type of synergy, if it can 

truly be called that, does not function to improve the efficacy of the active compound(s) per 
se, but rather functions to minimize the negative effects that the active agent may cause.9 

Many potent chemotherapeutic agents, for example, while successful in targeting tumor 

cells, are often limited by severe side effects caused by action of active agents against 

healthy cells. In a recent study, an extract of staghorn sumac (Rhus hirta (L.) Sudw. 

(Anacardiaceae)) was combined with the chemotherapeutic drug 5-fluorouracil (5-FU) 

commonly used to treat breast and colon cancer.127 In combination with 5-FU, the R. hirta 
extract was found to protect normal cells from 5-FU toxicity in vitro. This chemoprotective 

effect may have be attributed in part to the presence of antioxidants in the R. hirta extract,128 

which minimized oxidative stress and cell damage initiated by 5-FU treatment.127

4.4 Targeting disease resistance mechanisms

Many diseases, such as cancers and infectious diseases, have evolved resistance to single-

target drugs. In cancer, drug resistance to single chemotherapeutic agents has increased 

largely due enzymatic cross-talk129 and counteractive pathways.130,131 Combination 

chemotherapy is growing in popularity, in part due to the ability for multi-constituent 

mixtures to modulate different pathways and overcome drug resistance.132 Infectious 

diseases, including those caused by fungi,133 viruses,134 and bacteria,135 are also becoming 

more challenging to treat due to the development of drug resistance.136 Bacterial pathogens 

gain resistance to antibiotics due to three major reasons: (i) active site modification resulting 

in inefficient drug binding, (ii) metabolism of antibiotics into inactive forms, or (iii) efflux of 

antibiotics out of bacterial cells (Fig. 4).20,111

Bacterial resistance to beta-lactam antibiotics is achieved by the development of beta-

lactamase enzymes that cleave the antibiotics into inactive forms.137 This resistance 

mechanism can be overcome by combining beta-lactam antibiotics with beta-lactamase 

inhibitors. In a recent study, Catteau et al.138 found that a dichloromethane extract of shea 

butter tree leaves (Vitellaria paradoxa C.F. Gaertn. (Saptoaceae)) synergized the activity of 

ampicillin, oxacillin, and nafcillin against methicillin-resistant Staphylococcus aureus by 

targeting PBP2a +/− beta-lactamase enzymes. V. paradoxa constituents ursolic acid and 

oleanolic acid were found identified as the constituents responsible for this synergistic 

activity.138

Similarly, promiscuous efflux pumps promote resistance by extruding a wide array of 

compounds from bacterial cells.139,140 In their hallmark paper, Stermitz et al.18 described 

the presence of an inhibitor of the norA efflux pump, 5′-methoxyhydnocarpin, in Berberis 
species that potentiated the activity of the efflux pump substrate berberine. More recently, 

Caesar and Cech Page 13

Nat Prod Rep. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the berberine-containing plant Hydrastis canadensis L. (Ranunculaceae) was found to 

possess synergistic norA efflux pump inhibitory activity.141 Many of these synergists have 

been characterized in subsequent publications.17,22,142

5. Identifying constituents responsible for combination effects

When working with complex natural product mixtures, constituents responsible for activity 

are often not known. Additionally, the composition of natural product extracts varies 

depending on how and where the source material is grown, prepared, processed, and stored,
143 and as such, there is a lack of knowledge for many natural products about the 

composition and identity of what is being consumed. To address this safety risk, and to 

improve efficacy of natural product mixtures, bioactive mixtures should be comprehensively 

characterized and the concentrations and identities of constituents contributing to the 

biological activity (whether it be through additive, synergistic, or antagonistic means) should 

be determined. This task, while straightforward in theory, is quite challenging in practice 

since the biologically important constituents are often not known and are part of a complex 

matrix containing hundreds or thousands of unique constituents.16

5.1 Targeted approaches

5.1.1 Bioactivity-guided approaches to identify active molecules.—One of the 

most common approaches for identifying bioactive mixture components is bioassay-guided 

fractionation. With this approach, active extracts are separated using a variety of 

chromatographic techniques, the simplified fractions are screened for biological activity, and 

the process is iteratively repeated until active compounds have been isolated and 

characterized.17,144-148 In the last decade, substantial developments have been made in 

improving extraction and separation efficiency and facilitating the isolation of minor 

constituents that may contribute to activity.144 Once active constituents are known, it is 

possible to rationally design extracts for improved biological efficacy. The Pauli group 

recently demonstrated this possibility by producing specialized “knock-out” extracts of 

Humulus lupus L. (Cannabaceae) containing differential levels of biologically active 

constituents.149 Depending on the ratio of active constituents, extracts showed either 

estrogenic or chemopreventive activity, illustrating that extracts can be designed for specific 

biological activities through modulating concentrations of bioactive constituents. With this 

approach, researchers identified certain extracts whose estrogenic activity was not explained 

by the expected contribution of the known active constituent 8-prenylnaringenin, suggesting 

that antagonistic or synergistic constituents may also be present in these extracts. These 

combinations effects were attributed to major constituents in the mixtures, although it is 

possible that unknown constituents may have played a role in the mismatch witnessed.149

Despite the historical effectiveness of bioassay-guided fractionation,150 loss of activity 

during fractionation is very common.145,148 Additionally, because structural information is 

not used to guide separations, this approach may result in the repeated isolation of 

previously described molecules.148 To avoid re-isolation of known molecules, preliminary 

structural assessment steps to identify and discard samples containing known active 

constituents can be taken.148,151-153 This process, termed “dereplication,” enables 
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prioritization of samples likely to contain new biologically important entities, facilitating 

efficient use of resources for compound discovery.148,151-153 Dereplication is often achieved 

by comparing the spectral patterns of mixture constituents through mass spectrometry,
151,154-156 NMR,157 or UV spectroscopy,151 and searching for known compounds with 

matching spectral fingerprints in a dereplication database. Recently, the Global Natural 

Product Social Molecular Networking (GNPS) platform has been developed that enables 

spectral annotation and identification of related compounds using MS/MS molecular 

networking.148,153,158 In addition, GNPS provides researchers the ability to share raw 

MS/MS spectra online, enabling crowdsourced spectra annotation and knowledge sharing 

between laboratories around the world.153

5.1.2 Bioactivity-guided approaches to identify synergists.—While 

dereplication protocols have advanced significantly, reducing the likelihood of compound 

rediscovery, bioassay-guided fractionation may be unsuitable for identifying synergistic 

compounds from complex mixtures.17,145 Often, synergistic compounds possess no 

biological activity on their own, but enhance the activity of active compounds in 

combination.27 If these compounds are separated from active compounds during the 

fractionation process, they may be overlooked. Recently, a modification of bioassay-guided 

fraction was developed, termed “synergy-directed fractionation,” which combines 

chromatographic separation and synergy testing in combination with a known active 

constituent in the original extract.17 With this process, extracts are subjected to synergy 

testing, active extracts are fractionated, and resulting fractions again tested for synergy. This 

process is repeated iteratively until pure compounds have been obtained (Fig. 5). By 

combining fractions with a known active constituent and testing for combination effects, 

synergists that did not possess activity on their own could still be identified. This approach 

enabled the identification of three synergists in the botanical medicine Hydrastis canadensis 
that potentiated the activity of berberine through NorA multidrug resistance pump inhibition 

that would have been overlooked using conventional techniques.17

5.2 Metabolomics and biochemometrics

5.2.1 Metabolomics approaches to identify active constituents.—While 

bioassay-guided fractionation (and modifications of it such as synergy-directed 

fractionation) have improved significantly with advancements in separation techniques and 

dereplication protocols, these methods tend to focus on the compounds that are most easily 

isolated in the mixture rather than those that are most likely to be active.22,146 It would be 

desirable instead to identify bioactive compounds in complex mixtures before several 

bioactivity-guided fractionation steps have been completed. Towards this goal, many 

researchers have sought to guide isolation efforts by combining chemical and biological 

profiles of samples under analysis to identify markers of activity.145-148,159-162 Using 

approaches broadly termed as “biochemometrics,” chemical and biological datasets can be 

interpreted using multivariate statistics and putative bioactive constituents identified early in 

the fractionation process.145-148,159-162 Biochemometrics has been successfully employed 

by several research groups to identify minor active constituents from complex natural 

product mixtures. For example, in a recent study assessing the anti-tuberculosis activity of 

the Alaskan plant Oplopanax horridus (Sm.) Miq. (Araliaceae), 29 bioactive constituents 
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were identified based on biological and gas chromatography-mass spectrometry data. 

Importantly, nearly half of the bioactive constituents identified (14 out of 29) had individual 

peak areas accounting for less than 1% of the active fraction chromatograms.145

In mass spectrometry-based biochemometrics studies, the number of variables (ions 

detected) tends to greatly outnumber the number of samples analyzed (i.e. extracts or 

simplified fractions), posing a problem for many multiple regression models.163 Partial 

least-squares (PLS) analysis, however, due to its combination of principal component 

analysis (PCA) and multiple regression analysis, is less affected by this mismatch and is the 

most popular tool for modelling biochemometric data.163 The resulting PLS models, 

however, are often incredibly complex and difficult to decipher. Numerous data visualization 

tools have been developed to extract meaningful information from PLS datasets.146,163-165

One commonly used tool is the S-plot, in which correlation and covariance of variables with 

a given biological activity are plotted. In a recent study, S-plots were utilized to identify 

differences in metabolite profiles (detected using UPLC-QTOF-MS) of Garcinia 
oblongifolia Champ. Ex Benth. (Clusiaceae) leaves, branches, and fruits and to correlate 

those differences to differences in biological activity.162 Using this approach, 12 marker 

compounds were identified, primarily xanthones, that were likely responsible for the 

enhanced antioxidant and cytotoxic properties of the branch extract over other plant parts.162 

In another study, S-plots were generated from bioactivity and chemical profiles of the fungus 

Ganoderma sinense to identify potential anti-tumor agents. This approach successfully 

identified five known cytotoxic compounds with significant anti-tumor potential.161 A recent 

study compared the use of S-plot analysis with an additional data visualization tool, the 

selectivity ratio, to identify antimicrobial constituents from the fungal organisms Alternaria 
and Pyrenochaeta sp.146 In this study, both S-plot and selectivity ratio analyses identified 

macrosphelide A as the dominant bioactive constituent from Pyrenochaeta sp. However, 

when attempting to identify bioactive compounds from Alternaria sp., the selectivity ratio 

out-performed the S-plot in its ability to identify altersetin, a low abundance antimicrobial 

constituent, without being confounded by highly abundant (and only weakly active) 

constituents in the mixture.146 In a follow up study, an inactive mixture was spiked with 

known antimicrobial compounds to identify the impact of data acquisition and data 

processing parameters on biochemometric analysis using the selectivity ratio plot.159 This 

study found that data transformation, contaminant filtering, and model simplification tools 

had major impacts on the selectivity ratio models, emphasizing the importance of proper 

data processing approaches for extracting reliable information from biochemometric 

datasets.159 In all selectivity ratio studies applied to identify bioactive natural products,
146,159,160 bioactive mixture constituents were identified early in the fractionation process, 

enabling chromatographic isolation efforts to be tailored to mixture constituents that were 

most likely to possess bioactivity.

These numerous examples illustrate the efficacy of biochemometrics for distinguishing 

between active and inactive chemical entities in complex mixtures. However, these 

approaches do not provide structural information about putative unknown active 

constituents, hindering the ability to truly optimize isolation efforts. To address this gap, a 

recent study utilized a combination of selectivity ratio analysis and GNPS molecular 
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networking to identify putative active constituents from the botanical medicine Angelica 
keiskei (Miq.) Koidz. (Apiaceae) and the molecular families to which they belonged.160 

Using this approach, a subset of chalcone analogs were targeted for isolation, yielding two 

known antimicrobial constituents and an additional, low-abundance compound not 

previously known to possess antimicrobial activity.160 This concept was streamlined into a 

process called “bioactive molecular networking,” in which bioactivity predictions are 

directly visualized in molecular networks themselves, where the size of individual nodes 

correspond to the predicted bioactivity score for each ion (Fig. 6).148 By including both 

MS/MS fragmentation data and peak area data in the production of molecular networks, 

bioactive molecular networking enables dereplication, compound annotation, and 

identification of putative active compounds in one step.148

An additional approach, Compound Activity Mapping, was developed by the Linington 

laboratory that utilizes image-based cytological screening data and high-resolution mass 

spectrometry-based metabolomics data to predict both the identities and biological functions 

of putative bioactive constituents early in the fractionation workflow.147 Using Compound 

Activity Mapping, biological and chemical datasets are integrated to identify putative 

bioactive constituents that show consistent positive correlation with phenotypes of interest 

(Fig. 7).147 The data are presented as a network display, enabling identification and 

prioritization of lead compounds, even those of low abundance, that likely contribute to a 

specific biological activity. The utility of this approach was demonstrated through the 

investigation of 234 extracts of actinobacterial origin.147 Using Compound Activity 

Mapping, biological and chemical datasets from these samples were combined to identify 13 

clusters of bioactive fractions containing 11 known molecular families and four new 

compounds. Subsequent isolation efforts targeted towards these new compounds revealed 

the presence of a new natural product family, the quinocinnolinomycins, which were 

predicted to elicit a cytotoxic response through the induction of endoplasmic reticulum 

stress.147

5.2.2 Metabolomics approaches to identify synergists.—In a recent study, an 

inactive botanical extract was spiked with four known antimicrobial compounds to assess the 

ability of selectivity ratio analysis to identify known constituents.159 Despite the fact that the 

spiked extract contained concentrations of active constituents that should have completely 

inhibited the growth of Staphylococcus aureus, the extract only caused about a 30% 

reduction in growth even at the highest concentration tested. To assess the large discrepancy 

between the predicted and observed activities of the spiked extract, checkerboard assays 

were conducted in combination with the active constituents berberine and magnolol, 

yielding ∑FIC indices of 3 and 5, respectively, and strongly indicating the presence of 

antagonists in the mixture. After chromatographic separation had been conducted, however, 

antagonists were separated from active constituents and activity of the mixture was restored.
159 In a traditional natural products discovery setting, this extract may not have been targeted 

for isolation efforts despite the fact that it contained active compounds. This example 

illustrates that predictive tools capable of identifying active compounds alone may not be 

sufficient to comprehensively model the complexity of natural product mixtures, and 
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approaches capable of identifying the presence of synergists and antagonists that may not 

possess any biological activity on their own are needed.

To identify synergists and additives in complex botanical mixtures, Britton et al. recently 

combined biochemometric analysis with synergy-directed fractionation to identify mixture 

components from Hydrastis canadensis that enhanced the antimicrobial efficacy of berberine 

through additive or synergistic mechanisms.22 In this study, mass-spectrometry datasets 

were combined with biological assay data to produce selectivity ratio plots predicting 

putative additives and synergists (Fig. 8). In these plots, negative selectivity ratios are 

indicative of biological activity, because growth inhibition data (where smaller values 

indicate biological activity) were used to guide the models. Unlike other biochemometric 

studies of its kind,146,160 the biological activity data used in this study did not measure of 

antimicrobial activity, per se, but was rather a measure of each sample's ability to improve 

the antimicrobial efficacy of berberine. Using this approach, six flavonoids not previously 

identified using synergy-directed fractionation approaches alone17 were identified as 

putative additives or synergists. Of these, one compound, predicted by selectivity ratio 

models to be the top contributor to activity, was isolated and characterized for the first time 

and its activity as a synergist confirmed. Notably, this compound possessed no antimicrobial 

activity on its own and may have been missed using biochemometric analyses guided by 

antimicrobial data alone.22

6. Elucidating mechanisms that underlie synergy and antagonism

In addition to identifying putative active constituents contributing to biological effects of 

complex mixtures and recognizing the type of interactions in which they are involved, it is 

important to understand the cellular and molecular mechanisms by which complex mixtures 

exert their effects. To ascertain the molecular targets of mixtures, direct and indirect 

approaches can be taken.166 The direct approach utilizes targeted biological assays to 

identify molecules that affect specific molecular targets while indirect approaches aim to 

identify mechanisms of action through the evaluation of changes in gene, protein, and/or 

metabolite profiles in an untargeted manner.166 While these technologies show great 

promise, their effectiveness for identifying mechanisms of synergy and antagonism remains 

to determined.

6.1 Targeted assays evaluating specific mechanisms of action (direct approaches)

Targeted approaches to identify mechanisms of action rely on appropriate in vitro and in 
vivo models. One important example involves identifying compounds that synergize with 

existing antibiotics through the inhibition of bacterial efflux pumps.18,141,167 A popular 

method for evaluating efflux pump inhibition involves the use of an efflux pump substrate 

(such as ethidium bromide or Nile Red) that fluoresces upon contact with cellular DNA.
167-169 When efflux pumps are inhibited, fluorescence of the substrate increases due to 

increased cellular accumulation. This approach has been successfully utilized in numerous 

studies to identify efflux pump inhibitors from complex botanical mixtures.18,141 While 

often successful, these fluorescence-based methods are subject to false results due to matrix 

quenching effects, particularly when screening complex natural product mixtures.167 
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Fluorescence quenching is so common in the biological evaluation of drug candidates that 

fluorescence quenchers have been tagged as one type of “PAINS” (pan-assay interference 

compounds).170,171 However, the ability to absorb UV-vis light (and quench fluorescence) is 

a common feature of druggable small molecules (for example, tetracycline antibiotics) and 

only constitutes a problem with fluorescence assays. To overcome this limitation, mass 

spectrometric assays have been developed to monitor efflux pump inhibition or cellular 

accumulation in Staphylococcus aureus,167 Escherichia coli,172,173 Bacillus subtilis,172 and 

Mycobacterium smegmatis.172 These assays also offer the distinct advantage of being able 

to monitor drug accumulation of molecules that do not fluoresce.

Efflux pump inhibition assays, like many other assays used in classical drug discovery 

approaches, test compounds or mixtures one at a time to identify compounds with promising 

biological activity. To improve efficiency of these methods, mixtures of drugs can be 

simultaneously evaluated, but identifying which molecules in these mixtures exert biological 

effects can be challenging.174 To overcome this limitation, pulsed ultrafiltration mass 

spectrometry (PUF-MS) was developed, which enables screening of mixtures such as natural 

products and synthetic combinatorial libraries.174 PUF-MS involves the incubation of small 

molecule mixtures with a target protein in solution. Those molecules with affinity for the 

target will bind to the protein, and compounds that are not bound can be washed away using 

an ultrafiltration membrane.174 This approach, though effective, is slowed by the 

ultrafiltration step. To improve the speed of screening, a Magnetic Microbead Affinity 

Selection Screening (MagMASS) protocol was developed, in which the protein target of 

interest is not free in solution, but rather is bound to magnetic beads.175 To separate 

compounds with and without affinity for the given target, the receptor-bound fraction can be 

held in solution using a magnet.175 In a recent study, PUF-MS and MagMASS were 

compared, and both screening methods were found to reliably identify ligands of a specific 

molecular target from complex botanical matrices.175 MagMASS showed a 6-fold faster 

separation of bound and unbound compounds when compared to PUF-MS and is compatible 

with a 96-well plate format.175 Notably, these methods do not require molecules to bind to a 

particular active site on the target of interest, and can identify ligands that bind to active or 

allosteric sites. In this way, the assay could be modified to identify combination effects in 

which the protein's activity is changed through allosteric activation or inhibition.175 

However, given that this approach utilizes protein targets rather than whole cells, the 

combination effects discovered may not translate to intact biological systems. Additionally, 

promiscuous inhibitors may cause false positive results using this method, requiring 

orthogonal approaches to confirm validity of results. Furthermore, these approaches require 

access to purified material of the protein target of interest. Therefore, while these assays 

provide target-specific information that can generate valuable hypotheses on mechanisms of 

action, methods based on PUF-MS and its iterations are not applicable for situations where 

the target of the active compound is either not known or not available.

6.2 Indirect approaches to identify multiple targets

While targeted approaches may be useful for identifying compounds that act upon specific 

molecular targets, assays involving single targets only are not capable of identifying 

combination effects that involve multiple targets. To identify these multi-target effects, 
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whether it be for a single compound or a combination of multiple constituents, indirect 

approaches are particularly useful. As discussed in recent review articles, synergistic drug 

combinations and their modes of action have been explored using molecular interaction 

profiles,76,112 and investigation of herbal ingredients using molecular interaction profiles 

may enable detection of synergistic mechanisms of action. As stated in the 2009 review by 

Ma et al.,76 over 1800 active ingredients from more than 1200 herbs had been subjected to 

molecular interaction profiling and found to interact with nearly 1000 proteins, many of 

which were therapeutic targets.76 Although these connections can be utilized to detect 

potential synergies, the efficacy of complex natural product mixtures and their impact on 

molecular targets can be influenced by variations in genetics, environment, host behaviour, 

and timing and dosage of treatment.76 These tools should, therefore, be considered 

hypothesis-generating, providing a framework for more comprehensive assessment. Lewis et 
al.176 recently produced a new visualization technique termed “Synergy Maps” which 

integrates Bliss independence-based combination data of individual compound combinations 

with their chemical properties into a single visualization. By identifying relationships 

between individual compound properties and their combination effects, insight into 

mechanism of action may be provided. Importantly, this tool is only applicable when 

individual constituents acting in combination are known.176

The use of DNA and RNA microarrays is another popular tool for probing combination 

effects within complex mixtures, enabling identification of genes that are up- or down-

regulated by natural product extracts alone and in combination. In a recent study, an RNA 

microarray of neuroglia cells was utilized to compare the number of genes impacted by 

treatment with Andrographis paniculata (Burm.f.) Nees (Acanthaceae), Eleutherococcus 
senticosus (Rupr. & Maxim.) Maxim. (Araliaceae), and their fixed combination Kan Jang.
177 Results illustrated that A. paniculata and E. senticosus deregulated 211 and 207 genes, 

respectively, 36 of which were common to cells treated with each extract. Using this 

information, researchers expected that 382 genes would be deregulated in cells treated with 

the fixed combination Kan Jang. However, only 250 genes were deregulated in Kan Jang 

treated cells, 111 of which were unique to the Kan Jang combination, potentially due to 

synergistic interactions between A. paniculata and E. senticosus. Alternatively, 170 genes 

were only affected by treatments with A. paniculata or E. senticosus and not by the Kan Jang 

mixture, possibly due to antagonistic interactions between the plant species when applied in 

combination.177 Importantly, microarray analyses do not provide infallible evidence that 

genes induced by treatments are responsible for physiological effects or mechanisms of 

synergy, but provide a framework for future research.

Because of the material- and time-consuming nature of biological testing, in silico 
approaches have been developed that enable prediction of activity and mechanism of action 

without the need for direct biological testing. Existing experimental activity data can be used 

to mine ligand–target relationships and reveal potential biological activities of diverse 

molecules.178 Key to the success of this approach for identifying putative mechanisms of 

action is the availability of compound databases that will facilitate sharing of data and 

innovation in drug discovery research with both single-target and multi-target approaches.178 

Similarly, computational approaches including molecular docking, pharmacophore 

modelling, and similarity searching can be used as so-called “virtual screening” techniques 
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to identify candidate compounds for follow-up testing.178 Of course, these techniques are 

subject to error and may not provide accurate representation of the biological system in 

question, particularly if the model datasets are based on incorrect literature-based 

annotations of compound activities and/or incomplete understanding of molecular processes 

of disease.

A systems biology-based approach, network pharmacology, predicts the complex 

interactions between small molecules and proteins in a biological system, and shows 

potential as a way to evaluate pharmacological effects of natural product mixtures.178 Unlike 

the classic “silver bullet” approach where single-target mechanisms are identified for single 

drugs, network pharmacology focuses on multiple constituents with multiple targets. Several 

studies have successfully utilized network pharmacology to putatively identify active 

constituents with both known and unknown molecular targets.166,176,178,179 Networks can be 

built using existing literature data, computationally-derived data, or experimental data. The 

predictive accuracy of the resulting networks relies on the completeness of databases, the 

robustness of the computational models, the understanding of the underlying mechanisms of 

disease, and/or the chosen biological assay.178

Recently, a broad-scale approach was developed in which functional signature ontology 

(FUSION) maps are utilized to classify putative mechanisms of action of natural products.
180 With this method, cellular responses to natural product treatment can be tracked by 

measuring gene expression of a small, representative subset of genes that provide insight 

into the physiological state of the cell. The resulting data can then be combined into 

FUSION maps capable of linking putative bioactive molecules to the proteins and biological 

pathways that they target in cells.180 This approach has been successfully utilized to link 

natural products to their mechanisms of action180 and to identify a marine-derived natural 

product that inhibits AMPK kinase activity in colon tumor cells.181

A similar approach, the Connectivity Map, or CMap, was developed in which genes, drugs, 

and disease states are connected based on the gene expression fingerprints that they share.182 

Originally produced using 164 drugs and mRNA expression profiling, the CMap has since 

been expanded more than 1000-fold, and now contains over 1.3 million publicly available 

profiles. This scale-up was achieved using a high-throughput, reduced representation in 

which only 1000 landmarks are assessed rather than the full transcriptome. This approach, 

termed L1000, is sufficient to recover 81% of the information contained in the full 

transcriptome. The L1000 approach offers advantages over popular approaches such as gene 

expression microarrays and RNA sequencing because of its low cost and hybridization-

based nature, making detection of low-abundant transcripts possible without the need for 

deep sequencing.182 Preliminary testing has illustrated the potential of the expanded L1000 

CMap to determine the mechanisms of action of small molecules based on the similarities of 

their genetic perturbations to those of compounds with known activities. This approach can 

also be utilized to identify potential off-target effects of a drug or drug combinations.182

During a pilot study, the L1000 CMap was successfully utilized to recover known 

mechanisms of action from 63% of existing drugs under analysis, to identify the mechanism 

of action of a previously uncharacterized compound, and to identify compounds with a 
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particular activity of interest. Importantly, the L1000 CMap is not infallible, and 37% of 

small molecules with known mechanisms of action were not linked to their expected targets 

during this study. The authors suggest six reasons for this failure: (1) incomplete inhibition 

of the target by the compound, (2) off target effects, (3) incomplete information in the L1000 

data, (4) incorrect data in the literature, (5) biological differences between complete loss of 

function and loss of a specific protein function, and (6) existence of previously unrecognized 

connections with stronger connections than expected ones.182 Despite these limitations, the 

preliminary results of this study emphasize the potential of the L1000 CMap as a launching 

point for both target- and ligand-based drug discovery.182 Although they have not been 

explicitly applied to identify mechanisms of synergy or antagonism, the utilization of 

FUSION maps and the L1000 CMap platform may represent useful tools to enable 

identification of genes and pathways impacted by a synergistic/antagonistic combination, 

providing insight into potential mechanisms of action in complex natural product mixtures.

7. Conclusions and future directions

In recent years, the concept of synergy in natural product mixtures has gained attention, and 

the importance of multi-target combination therapies has come to the forefront. However, 

the classification of combination effects within complex mixtures and the identification of 

contributing constituents remains a challenging task, particularly when the majority of 

established tools have been designed to reduce complexity of natural product mixtures. 

Additionally, there remains a lack of consensus in the field about which reference models 

are best for defining combination effects, making interpretation of studies challenging. 

Recent models using the explicit mean equation55 and the zero interaction potency model47 

represent newly developed and robust reference models that may permit improved 

identification combination effects. These models have yet to be employed for real world 

applications in studying natural product mixtures, and future studies will reveal their 

applicability for this approach.

Metabolomics and biochemometric approaches are promising tools for studying synergy, 

and have just begun to be applied to identifying constituents that participate in combination 

effects.22 While useful, biochemometric models are subject to limitations based on the 

biological assays and reference models used to define biological activity. Similarly, the 

linear regression models used to predict active constituents are inherently limited given that 

true linear relationships rarely exist, particularly when assessing complex mixtures with 

numerous unknown combination effects. The application of statistical tools capable of 

identifying non-linear relationships will be helpful for future research initiatives. In addition, 

untargeted approaches to identify molecular targets of synergy and unravel synergistic (or 

antagonistic) mechanisms of action have just begun to be explored, and continued studies on 

this topic are of the utmost importance. Advancements in Big Data approaches show great 

promise for identifying active mixture constituents, characterizing the nature of their 

interactions, and elucidating their potential mechanisms of action. Integrated technologies 

capable of completing all of these tasks simultaneously remain to be developed. The 

production of such integrated techniques will become increasingly important in our 

continued pursuit to understand the biological activities of complex mixtures.
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Fig. 1. 
Chromatograms (obtained with liquid-chromatography coupled to mass spectrometry) of a 

complex extract of the botanical Salvia mittiorrhiza (Chinese red sage or Danshen). The full 

chromatogram is shown in (A), while (B) shows a zoomed in version of the baseline that 

demonstrates the immense complexity of the mixture. Counts for numbers of ions detected 

are shown at the right, and it is observed that the number of ions detected increases by ~10-

fold with each 10-fold decrease in the cutoff for peak area. Notably, each mixture 

component may be represented by more than one ion, making it difficult to assign 

specifically the number of mixture components. Nonetheless, the data indicate the immense 

complexity of the botanical extract.
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Fig. 2. 
Example of isobolograms for antagonistic, additive, and synergistic components. Axes 

represent the doses of individual agents, and the points represent the combination of 

concentrations of the two agents required to reach a particular fixed effect.
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Fig. 3. 
Example of synergistic (top) and antagonistic (bottom) interaction landscapes using delta 

scores (δ) calculated with the zero interaction potency model of compounds in combination 

with ibrutinib, an approved anti-cancer drug targeting Bruton's tyrosine kinase. (A) 

Interaction map between anti-cancer activity of ispinesib (a selective kinesin spindle protein 

inhibitor) and ibrutinib. Average delta across the dose–response matrix (Δ) is 17.596, 

indicative of overall synergy. (B) Interaction map between canertinib (an epidermal growth 

factor receptor family inhibitor) and ibrutinib. The Δ value is −14.038, indicative of overall 

antagonism. Figure is reprinted with permission from Yadav et al. 2015.47
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Fig. 4. 
Bacterial resistance mechanisms that could be targeted with combination therapy enabling 

re-sensitization of resistant organisms to existing antibiotics.
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Fig. 5. 
Synergy-directed fractionation workflow. Reproduced with permission from Junio et al. 
2011.17
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Fig. 6. 
Bioactive molecular networking in which nodes connected in a network represent 

structurally related compounds based on MS/MS fragmentation patterns, and the size of 

nodes represents the correlation of compound peak areas with biological activity of interest. 

Figure is reprinted with permission from Nothias et al. 2018.148

Caesar and Cech Page 35

Nat Prod Rep. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Compound activity mapping workflow. (A) Network analysis of the full chemical space of 

the tested actinobacterial extracts. Light blue nodes represent extracts connected to all m/z 
features (red), illustrating the immense chemical complexity of the extract library. (B) 

Activity histograms and cluster scores for all m/z features. (C) Compound activity map, 

displaying only extracts and m/z features predicted to be responsible for consistent 

phenotypes of interest. (D) Close up of a specific bioactive cluster, belonging to the 

staurosporine natural product family. This figure is reprinted with permission from Kurita et 
al. 2015.147
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Fig. 8. 
Selectivity ratio plots for first, second, and third stages of fractionation [(A–C), respectively] 

of the botanical Hydrastis canadensis. Growth inhibition data were used to guide selectivity 

ratio analysis, so variables with negative selectivity ratio are most likely to possess additive 

or synergistic activity. Known flavonoids (likely to be synergists) are marked in green, while 

known alkaloids (likely to be additives) are marked in red. First-stage (A) and second-stage 

(B) models were not able to identify known compounds as contributing to activity. However, 

the third-stage model (C) predicted seven flavonoids (1, 2, 3, 5, 6, 8, 29) and three alkaloids 

(10, 22, 23) to possess additive or synergistic activity. With this approach, a new synergistic 

flavonoid (29) was identified in H. canadensis, and known flavonoids and alkaloids not 

previously known to possess additive or synergistic activity were prioritized for future 

studies. This figure is reprinted with permission from Britton et al. 2017.22
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Table 1

Recommended fractional inhibitory concentration (∑FIC) indices for assigning combination effects

Combination effect ∑FIC range

Synergy ∑FIC ≤ 0.5

Additivity 0.5 < ∑FIC ≤ 1.0

Indifference 1.0 < ∑FIC ≤ 4.0

Antagonism 4.0 < ∑FIC
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