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Abstract

To quantify differences between dry deposition algorithms commonly used in North America, five 

models were selected to calculate dry deposition velocity (Vd) for O3 and SO2 over a temperate 

mixed forest in southern Ontario, Canada, where a 5-year flux database had previously been 

developed. The models performed better in summer than in winter with correlation coefficients for 

hourly Vd between models and measurements being approximately 0.6 and 0.3, respectively. 

Differences in mean Vd values between models were on the order of a factor of 2 in both summer 

and winter. All models produced lower Vd values than the measurements of O3 in summer and 

SO2 in summer and winter, although the measured Vd may be biased. There was not a consistent 

tendency in the models to overpredict or underpredict for O3 in winter. Several models produced 

magnitudes of the diel variation of Vd (O3) comparable to the measurements, while all models 

produced slightly smaller diel variations than the measurements of Vd (SO2) in summer. A few 

models produced larger diel variations than the measurements of Vd for O3 and SO2 in winter. 

Model differences were mainly due to different surface resistance parameterizations for stomatal 

and nonstomatal uptake pathways, while differences in aerodynamic and quasi-laminar resistances 

played only a minor role. It is recommended to use ensemble modeling results for ecosystem 

impact assessment studies, which provides mean values of all the used models and thus can avoid 

too much overestimations or underestimations.
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Erratum
In the originally published version of this article, there was an error in Section 4.2 (next-to-the last paragraph before Section 4.3). The 
formula “Vd for O” should be “Vd for O3”. The error has since been corrected and this version may be considered the authoritative 
version of record.
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1. Introduction

The lifetime of atmospheric pollutants is governed by several processes including emission, 

transport, transformation, and deposition (Seinfeld & Pandis, 2006). Deposition is the only 

process that ultimately removes pollutants from the atmosphere and controls pollutants input 

into ecosystems. Deposition can be wet or dry; the relative importance of each depends on 

the pollutant species, underlying surface, and precipitation amount. On a regional or global 

scale, the amounts of dry and wet deposition are roughly equally important but can vary 

considerably on a local scale (Lamarque et al., 2013; Liu et al., 2017; Vet et al., 2014).

At monitoring sites for atmospheric deposition studies, wet deposition is typically monitored 

through the collection of precipitation and subsequent laboratory analysis of precipitation 

composition (Amodio et al., 2014). Directly measuring dry deposition is expensive and 

technically challenging (Mohan, 2016; Wright et al., 2016); thus, ambient concentrations of 

pollutants of interest are measured for subsequent dry deposition estimation using the 

inferential method (e.g., Ban et al., 2016; Baumgardner et al., 2002; Flechard et al., 2011; 

Zhang et al., 2016). However, in chemical transport models (CTMs), both dry and wet 

deposition processes are parameterized and are mostly semiempirical or empirical 

algorithms (Gong et al., 2011; Pleim & Ran, 2011; Vivanco et al., 2017).

Uncertainties in wet deposition measurements are considered to be small, ranging from 10% 

to less than a factor of 2 depending on the precipitation concentration level (Otoshi et al., 

2001; Sirois & Vet, 1999). However, uncertainties in dry deposition measurements as well as 

in the dry and wet deposition fluxes estimated using empirical algorithms are considerably 

higher, as seen from model intercomparison studies on deposition budgets (Hardacre et al., 

2015; Vivanco et al., 2017). Dry deposition estimated using different dry deposition 

algorithms can differ by up to a factor of 2 for monthly to annual average values for ozone, 

sulfur, or nitrogen species (Flechard et al., 2011; Schwede et al., 2011; Wu et al., 2011, 

2012). These chemical species are among the most frequently studied, supported by a 

relatively rich set of field flux measurements (Fowler et al., 2009). However, dry deposition 

estimates for these species still have large uncertainties due to the many chemical, 

biological, and meteorological factors affecting dry deposition processes. Uncertainties for 

other chemical species are even larger (Fowler et al., 2009; Hicks et al., 2016; Mohan, 2016; 

Wesely & Hicks, 2000; Wright et al., 2016).

To identify the causes of the large discrepancies in the calculated dry deposition fluxes 

between two monitoring networks (Canadian Air and Precipitation Monitoring Network 

[CAPMoN] in Canada and Clean Air Status and Trends Network [CASTNET] in the United 

States), an intercomparison project was initiated about a decade ago. In the first stage of the 

project, Schwede et al. (2011) compared the estimated deposition fluxes at a colocated site 

(Egbert, Ontario) and found that the observed concentrations were very similar between the 

two networks while large differences existed in the model-derived Vd. Considering that most 

dry deposition algorithms have been evaluated against measurements conducted over short 

time periods ranging from several days to weeks, a long-term monitoring of O3 and SO2 

concentration gradient data at a temperate mixed forest (Borden, 15 km northwest of Egbert) 
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was then initiated, aiming to provide long-term flux data for further model evaluation. The 

present study is a continuation of the above-mentioned intercomparison project to further 

evaluate the two dry deposition algorithms used in the two networks using the recently 

generated 5-year flux data of O3 and SO2 (Wu et al., 2016), but we chose to expand the 

evaluation to include three additional community dry deposition algorithms widely used in 

North America in order to assess the uncertainties in and discrepancies between these 

algorithms. The magnitudes of the uncertainties of the modeled dry deposition velocities 

(and fluxes) were quantified, the dominant factors causing the differences were identified, 

and the ensemble modeling results were examined. Knowledge gained from the study will 

help the scientific community improve the capability of these models for better application 

to monitoring networks and CTMs, the results of which are used for developing air quality 

management strategies and regulatory policies. The dry deposition algorithms are briefly 

described in section 2, the measurement data in section 3, model evaluation and 

intercomparison results in section 4, and major conclusions and recommendations in section 

5.

2. Brief Description of the Five Dry Deposition Algorithms

Five dry deposition algorithms commonly used in air quality models and national 

monitoring networks in North America were selected for investigation. These include (1) the 

Zhang et al. (2003) scheme used in the CAPMoN and several Canadian and American air 

quality models (referred to as ZHANG below), (2) the Noah land surface model coupled 

with a photosynthesis-based Gas Exchange Model described in Niyogi et al. (2009) and Wu 

et al. (2012) (referred to as Noah-GEM below), (3) the dry deposition module of the 

Community Multiscale Air Quality (CMAQ) model version 5.0.2 described in Pleim and 

Ran (2011) (referred to as C5DRY below), (4) the dry deposition module of Weather 

Research and Forecasting model coupled with Chemistry (WRF-Chem) that employs the 

widely used Wesely (1989) scheme (referred to as WESELY below), and (5) the multilayer 

model used in the United States CASTNET based on Meyers et al. (1998; referred to as 

MLM below). These algorithms are briefly described here; detailed descriptions can be 

found in the references mentioned above.

All the five dry deposition algorithms are based on the resistance-analogy approach for 

calculating dry deposition velocity (Vd), although with substantial differences in their 

formulations (Table 1). MLM derives its aerodynamic (Ra) and quasi-laminar (Rb) resistance 

from routinely measured wind speed and direction, and the other four algorithms calculate 

Ra and Rb as a function of surface properties, such as surface roughness (z0), friction 

velocity (u*), and atmospheric stability (z/L) using Monin-Obukhov similarity theory 

(MOST). In MLM, the entire canopy is divided into multiple layers; resistance is first 

calculated for each layer before being integrated into canopy-scale resistance (Rc). In the 

other four algorithms, a single-canopy layer is used for calculating Rc. Rc is commonly split 

into two parallel paths, nonstomatal and stomatal resistance. For non-stomatal uptake, 

prescribed land use-dependent constants, adjusted by surface wetness, coldness, leaf area 

index (LAI), and humidity, are used in the models. ZHANG and Noah-GEM also includes 

the effect of u* on nonstomatal resistance (see Table 1).
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For stomatal uptake (Rs), WESELY, Noah-GEM, and C5DRY employ a one big-leaf 

approach, which treats the whole canopy as a single big leaf. ZHANG uses a two big-leaf 

approach that divides the whole canopy into sunlit and sunshade portions. MLM also uses 

sunlit and sunshade approach at each canopy layer. Rs is modeled following either the 

empirical Jarvis-type approach (Jarvis, 1976) or the semiempirical Ball-Berry approach 

(Ball et al., 1987). The Jarvis model predicts Rs based on a prescribed minimum stomatal 

resistance (Rs,min; resistance at maximum stomatal opening), which is regulated by a series 

of empirical environmental stress functions. ZHANG, C5DRY, and MLM apply the Jarvis-

type approach and include the stress effects of solar radiation, temperature, humidity, and 

soil water availability. WESELY uses a simplified Jarvis-type approach and only considers 

the effects of solar radiation and temperature. Noah-GEM employs a photosynthesis-based 

Ball-Berry approach that estimates Rs by considering the physiological process of the leaf 

response to net CO2 assimilation/photosynthesis rate (An), the relative humidity fraction at 

the leaf surface (hs), and CO2 partial pressure at the leaf surface (Cs).

3. Model Run Configuration and Field Data Description

3.1. Model Run Configuration

WESELY was extracted from the WRF-Chem model V3.1.1. C5DRY was extracted from 

the Pleim-Xu (PX) land surface model in WRF V3.4 and the CMAQ model V5.0.2, but the 

cuticular resistance for O3 was updated to the parameterization introduced in CMAQ V5.1. 

All the dry deposition models were executed in a single-point mode, driven by consistent on-

site meteorology, and with the same parameters for site characterization (e.g., LAI, 

roughness length, and canopy height). The land use type was set as mixed forest in Noah-

GEM, WESELY, and C5DRY. Since ZHANG does not include a land use type as mixed 

forest, Vd was calculated for deciduous broadleaf forest and evergreen needleleaf forest and 

then averaged into a mixed forest with Vd being based on the area fractions of the two forest 

types listed in Table S1 in the supporting information. Similarly, Vd from MLM was 

calculated for each tree species and then also averaged into a mixed forest Vd using the 

weighting factors in Table S1. Hourly measurements of temperature (T), relative humidity 

(RH), wind speed (WS), wind direction (WD), friction velocity (u*), Obukhov length (L = 

−ρCpu*
3θ/kgH), atmospheric pressure (Pa), downward shortwave radiation (Rg_in), 

downward long-wave radiation (Rlong_in), canopy wetness (Cwet), ground wetness (Gwet), 

precipitation rate (Precip), and snow depth (SD) were used as meteorological inputs to the 

models. The ZHANG model also required the input of cloud fraction, which was extracted 

from the archived data produced by the Canadian weather forecast model, Global 

Environmental Model (GEM). WESELY determines canopy wetness caused by dew or rain 

based on relative humidity and precipitation rate. In ZHANG, Noah-GEM, MLM, and 

C5DRY, the canopy wetness was determined from the leaf wetness sensor at 18 m (closest to 

the crown of the canopy) and the ground wetness was taken from the sensor at 1.3 m height. 

Note that in the operational version in CMAQ, C5DRY uses a canopy wetness fraction 

calculated in the PX land surface model. Since this information is not available at the study 

site, the canopy wetness in C5DRY was set to 0 (dry) or 1 (wet) based on the information 

obtained from the leaf wetness sensor at the canopy height. In operational mode, CMAQ 

uses the same wetness fraction for both the canopy wetness and the ground wetness. For this 
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study, we took advantage of the additional information provided by the wetness sensor at 

1.3-m height and used this to determine the surface wetness of the ground. A sensitivity test 

of C5DRY was conducted by setting the canopy and ground wetness to 0 (dry). The 

differences of the averaged Vd between the sensitivity test and the base run were < 1% for 

O3 and about 6.6% for SO2 during the study period, which should be the upper limits of the 

uncertainties caused by the choice of the canopy/ground wetness in C5DRY. In operational 

mode, the vegetation fraction is used in PX and CMAQ representing the fraction of the grid 

that is covered with vegetation that is varied seasonally and ranges from 0.60 to 0.95 for a 

mixed forest. This parameter could be set for individual sites based on the flux footprint of 

the tower. Here we use the seasonally varying value that would correspond to a grid cell that 

was 100% mixed forest. The operational version of MLM at CASTNET was used in this 

study, which turns off the snow effects as the snow measurements are not available at the 

CASTNET sites and do not include the revision recently proposed by Saylor et al. (2014). 

Saylor et al. (2014) revised the resistance framework for the leaf-level Rb, which does not 

significantly impact the calculated Vd for O3 and SO2 (<3%).

3.2. Field Data Description

The Borden Forest Research Station (hereafter referred to as Borden Forest) is located in a 

mixed deciduous and coniferous boreal-temperate transition forest in southern Ontario, 

Canada (44°19′N, 79°56′W). A permanent 42-m tower was used as the main structure 

supporting instruments that measured O3 and SO2 concentration profiles and related 

meteorological variables. Eddy covariance fluxes of sensible heat, water vapor, momentum, 

and CO2 were measured above the canopy using a sonic anemometer coupled with a closed-

path infrared gas analyzer. Details on the site and the instrumental methods can be found in 

Froelich et al. (2015) and Wu et al. (2016).

A database of hourly Vd values for O3 and SO2 covering 1 May 2008 to 30 April 2013 was 

previously developed at Borden Forest (Wu et al., 2016). In the process of developing this 

database, dry deposition fluxes (F) of O3 and SO2 were calculated using concentration 

gradients between a level above and a level below the canopy top based on a modified 

gradient method (MGM) described in Wu et al. (2015). Briefly, the MGM is similar to the 

classic aerodynamic gradient method (AGM) in that fluxes are calculated by combining 

measurements of concentration gradients and micrometeorology (e.g., u*, L) with empirical 

models of wind and thermodynamic profiles. Like the AGM, the MGM applies empirical 

stability corrections for the calculation of Ra above the canopy. The AGM and MGM differ 

in that the latter incorporates measurements of concentration within the canopy crown to 

determine the gradient. This approach is advantageous from a measurement standpoint as 

gradients between the atmosphere and canopy crown are larger than gradients above the 

canopy (i.e., AGM), the magnitude of which is often less than the precision of the 

measurement itself. For the MGM, the eddy diffusivity for momentum within the crown 

space must therefore be specified, which in this case is estimated as a function of the 

empirically derived wind speed profile within the canopy. Additional detail on the MGM is 

provided by Wu et al. (2015).
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The MGM-estimated Vd values agreed well with previous eddy covariance measurements at 

this and other locations reported in the literature in the context of the magnitude, diel and 

seasonal variations, and some contrasting features between O3 and SO2 (Wu et al., 2016). 

However, uncertainties of the order of approximately 20% in the estimated Vd values likely 

exist due to the assigned canopy characteristics, limitation of the algorithm, and 

measurement uncertainties in concentrations. Uncertainties are expected to be higher in 

stable conditions (e.g., nighttime and winter) when accuracy of the stability correction 

functions decreases (Wu et al., 2015) and are higher for SO2 than O3 as concentrations of 

SO2 were relatively low through the measuring period (Wu et al., 2016). These uncertainties 

are considered when using the Vd database to evaluate the five dry deposition models below.

4. Results and Discussion

4.1. Comparison of Modeled Dry Deposition Velocities

The dry deposition velocities of O3 and SO2 calculated by the five models were compared 

against each other and with those estimated from concentration-gradient measurements (see 

Figures 1 and S1–S5 and Table 2). For the summer seasons (June–September), all the 

models reproduced the diel pattern to some extent when compared to measurements. The 

summer-average diel variations of hourly Vd from the models were in the range of 0.1 up to 

0.8 cm/s for both SO2 and O3 (Figure 1). In comparison, measurements showed a range of 

0.3 to 1.0 cm/s for O3 and 0.2 to 1.3 cm/s for SO2. Thus, a few models produced the same 

magnitudes as measurements of diel variations of O3 Vd, but all models produced smaller 

diel variations than measurements of SO2 Vd. As shown in Table 2, models produced 20–

60% lower Vd for both O3 and SO2 than the measurements, keeping in mind that 

measurement-based Vd values also had large uncertainties as mentioned in section 3. MLM 

estimated the lowest Vd while Noah-GEM/C5DRY the highest, with differences between the 

models up to a factor of 2.4 on the summer average. Correlations between model estimates 

and measurements were similar for all the models for O3 with correlation coefficients 

between 0.55 and 0.64 (Table 2). Correlation for SO2 in summer for most models ranged 

from 0.6 to 0.7. However, for C5DRY, the correlation was lower (0.19) due to a number of 

very high values (Figure S3). The deposition to wetted surfaces in C5DRY is a function of 

the Henry’s law constant. For cold, wet surfaces, the Henry’s law constant in C5DRY is 

quite high. Many of the other models employ a minimum resistance of 10 s/m; however, 

C5DRY does not set a minimum resistance.

For the winter seasons (November–April), no consistent patterns were found between the 

models or between O3 and SO2. Measurements showed small diel variations of Vd (O3) and 

Vd (SO2), which were in the range of 0.1 to 0.2 cm/s and 0.5 to 0.8 cm/s, respectively. Two 

models (MLM and C5DRY) produced lower O3 Vd than measurements with nearly no diel 

variation while the three other models produced higher Vd than measurements with 

considerable diel variations. All models produced lower SO2 Vd than measurements (by 50–

70% or larger than a factor of 2.0), but C5DRY produced closer magnitudes of diel 

variations to the measurements, for example, 0.3–0.9 cm/s versus 0.5–0.8 cm/s. Correlation 

between the C5DRY estimates and measurements was relatively low (0.13), which is also 

due to the extremely high values of Vd (SO2) produced by C5DRY (Figure S3). Vd (SO2) by 
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MLM and WESELY was relatively low and showed very small diel variations (similar to Vd 

[O3] by MLM and C5DRY), which is mainly caused by nonstomatal resistances (Rns) 

having large values but small diel cycles (see Figure 5). The model-measurement 

correlations were similar between the other models with correlation coefficients in the range 

of 0.24 to 0.39, which were much lower than those in summer.

Large differences in modeled Vd have been reported in several previous studies. For 

example, Park et al. (2014) found differences in O3 Vd between the WESELY and a CMAQ 

dry deposition version reached a factor of 2 when driven by identical meteorology. Flechard 

et al. (2011) estimated the reactive nitrogen fluxes across the NitroEurope network using 

three European and one Canadian (ZHANG) dry deposition models and found considerable 

differences (a factor of 2–3) in the estimated fluxes. Schwede et al. (2011) compared Vd 

between MLM and ZHANG at four CASTNET sites using consistent meteorological input 

and showed that ZHANG produced higher Vd for O3 and SO2 at the forest sites but lower Vd 

at the grassland site compared to MLM. Myles et al. (2012) reported a similar finding to that 

of Schwede et al. (2011) for SO2 at a grassland site.

4.2. Comparison of Modeled Resistance Components and Sensitivity Tests

To investigate the causes of the differences in Vd across the models, the calculated resistance 

components were compared. For MLM, most resistances were calculated for 21 layers 

within canopy and the canopy-average resistance components were extracted by using a 

“zero-out” approach that sets all the other resistance/conductance components to zero except 

the one for output. Since the resistance can vary by 2–3 orders in magnitude (from 10 s/m to 

104/s m), the conductance, which is the inverse of resistance, is shown below.

Figure 2 shows the comparison of the maximum possible dry deposition velocity (Vd,max) 

that is the inverse of the sum of atmospheric resistances (Ra and Rb). The models employing 

the MOST approach (i.e., ZHANG, Noah-GEM, WESELY, and C5DRY) produced very 

similar Vd,max values (varying within 20%). The contribution of atmospheric resistances to 

the total resistances of O3 and SO2 was generally small (5–15% in this study), and the 

differences in the calculated Ra and Rb among the four MOST-based models are thought to 

have no noticeable effect on the overall differences in modeled Vd of O3 and SO2. MLM 

uses a simplified approach to calculate Ra for a practical reason (Hicks et al., 1987), making 

use of on-site measurements of mean wind speed and standard deviation of wind direction. 

Rb is calculated at each level in the canopy and is treated as being in series with each of the 

deposition pathways to the leaf. This approach has been questioned by Saylor et al. (2014), 

and an alternative model was proposed. However, here we retain the original MLM 

parameterization as used in the operational runs at CASTNET. The peak Vd,max by MLM 

was 4–5 times lower than those of the MOST-based models (Figure 2). Results from 

Schwede et al. (2011) also showed MLM produced a lower Vd for HNO3 than ZHANG by a 

factor of 2 on average over a maple forest site close to Borden Forest. Vd (HNO3) should be 

close to Vd,max as Rc (HNO3) is generally very small if not negligible (Meyers et al., 1989; 

Nguyen et al., 2015).

A sensitivity test was conducted by replacing Ra in MLM with the C5DRY-calculated Ra 

(hereafter as MLM-Ra; the MOST-based Rb formula is difficult to insert into the MLM 
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modeling framework). As shown in Figures S12 and S13, Ra is similar with Rb in magnitude 

and there is a consistent pattern in the differences between the MOST-based models and 

MLM for Ra and Rb. Thus, it is expected that the effect of differences in Rb should be 

similar to that of Ra. With reduced Ra in MLM, mean Vd only increased by about 10% 

(Table 2 and Figure 3). As the mean modeled Vd by MLM was only about half of the highest 

model estimates (Table 2), the main causes of the differences in Vd across the models is 

mainly due to the differences in the calculated Rc, especially for MLM. It is worth noting 

that the differences of Ra and Rb between the models found in this study should be important 

for some fast-depositing chemical species such as HNO3 that has near-zero Rc.

To identify which portion of Rc dominated the differences in modeled Vd of O3 and SO2, 

stomatal and non-stomatal uptake pathways were investigated separately. Figure 4 shows the 

comparison of the canopy stomatal conductance for water vapor (Gs = 1/Rs; conductance for 

gaseous pollutants are scaled to that of water vapor in the models). In addition to the 

modeled Gs, the observed Gs was also estimated for summer daytime by using the inversion 

of the Penman-Monteith (P-M) equation (Monteith & Unsworth, 1990), which establishes a 

relationship of Gs mainly with water vapor flux and vapor pressure deficit. The evaporation 

from soil water and liquid water on the vegetation surfaces is usually a minor contribution to 

the total water vapor flux observed above canopy during summer daytime, and it was 

assumed that 85% of the water vapor flux originates from transpiration (Turnipseed et al., 

2006) in this study. The models captured well the diel variations in Gs. The Jarvis-type 

models (i.e., ZHANG, C5DRY, WESELY, and MLM) produced lower Gs than that estimated 

by the inverted P-M method. Noah-GEM (Ball-Berry type) produced Gs close to the inverted 

P-M method in the afternoon but overestimated it during the early morning.

WESELY uses a simplified Jarvis-type stomatal submodule for which the main limitations 

are a lack of consideration of key biological (e.g., LAI) and meteorological (e.g., humidity 

and soil moisture) variables. The standard Jarvis stomatal submodule is implemented in 

ZHANG, C5DRY, and MLM. The stress effects of temperature, solar radiation, humidity, 

and soil moisture are included in the models, although different stress functions or 

parameters are used (see Tables S1 and S2). The Jarvis-type stomatal model is known for its 

linear dependence on the prescribed minimum stomatal resistance (rs,min; Kumar et al., 

2011; Wu et al., 2011). However, this parameter is mainly derived from empirical fits to field 

measurements and suffers from large uncertainties. Additionally, the value is usually derived 

from leaf-scale measurements for specific plant species, so values for a land use/land cover 

classification will depend on the assumed mix of species. For the models in this study and 

the tree species present in the vicinity of the tower, the value of rs,min ranges from 100 to 250 

s/m.

In order to investigate the impact of uncertainties of rs,min on modeled Vd, a series of 

sensitivity tests were conducted using the ZHANG model by adjusting the rs,min values. It 

was found that Rs modeled by ZHANG would match that of the inverse P-M method if rs,min 

was reduced by 25% (from 150–250 s/m to 113–188 s/m, hereafter referred to as ZHANG-

rs,min; Figure 4). The mean Vd for O3 and SO2 in ZHANG-rs,min increased by 14% and 12%, 

respectively, in summer compared to the base case (i.e., ZHANG; see Table 2 and Figure 3). 

The reduced rs,min value is still within the range of reported results by field measurements or 
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the other models (see Table S1). The change of rs,min had a minimal effect in winter for O3 

and SO2 Vd since LAI was small and stomatal uptake was limited at Borden Forest (Wu et 

al., 2016). As shown in Figure 3, large discrepancies still exist in Vd between ZHANG-rs,min 

and the observations, which can be further attributed to the nonstomatal parameterization of 

the model, as discussed below. The important role of rs,min on modeled Vd was confirmed by 

conducting similar tests on the other Jarvis-type models. For example, the C5DRY Vd for O3 

and SO2 in summer would increase by 16% and 14%, respectively, if rs,min is reduced by 

25%.

While stomatal conductance for water vapor can be inferred from field measurements and 

used for quantifying stomatal conductance of gaseous pollutants, the nonstomatal 

conductance (e.g., cuticular and ground) is difficult to measure or infer directly in field 

studies. Existing nonstomatal uptake parameterizations all use simple approaches without 

explicitly considering the complication of chemistry effects in the canopy air space. Figure 5 

presents a comparison of nonstomatal conductance (Gns) for O3 and SO2 in different 

seasons. There were substantial differences of the Gns among the five models in both the 

magnitude and the diel variations. MLM produced small Gns values compared to the other 

models that mainly contributed to the low MLM Vd values. ZHANG and Noah-GEM 

employ the nonstomatal scheme of Zhang et al. (2003), which was derived from an 

empirical regression analysis of the field measurements cited above and includes a 

dependence on u*
2 in the calculation of the in-canopy aerodynamic resistance and 

parameterizes the cuticular uptake as a function of u*. The calculated Gns by ZHANG and 

Noah-GEM was relatively high and produced a distinct diel cycle showing maxima around 

noon as expected given the strong dependence of the parameterization on u*. The Gns 

calculations by the other models showed relatively small diel variations as the in-canopy 

resistance is a weaker function of u* and they mostly relied on the prescribed constants for 

the cuticular resistance with minimal consideration of meteorological effects (e.g., u* and 

RH) other than canopy wetness (see Table 1). Field study measurements (Lamaud et al., 

2002, 2009; Zhang et al., 2003, 2002) show a correlation between total nonstomatal 

conductance and u*; however, these studies did not contain measurements to identify the 

processes responsible for this relationship. In the absence of more detailed measurements to 

better understand the nonstomatal conductance and in-canopy resistance, it is not possible to 

determine which modeling approach is most realistic. The intermodel differences emphasize 

the need for additional experimental work to inform improvements to parameterizations of 

in-canopy processes.

The nonstomatal pathways dominated the total surface uptake in winter. The Borden Forest 

was frequently covered with snow in winter, and analysis of the observation data found that 

the snow surface became an effective sink for SO2 but inhibited O3 deposition (Wu et al., 

2016). Measurements of deposition velocity over snow covered surfaces are challenging, and 

the observed values can have a high degree of uncertainty. Recent studies (e.g., Helmig et 

al., 2014; Zeller, 2000) indicate that O3 fluxes over snow may be positive or negative and 

can be influenced by many factors including the temporal storage in the air space within 

snow and reactions with chemicals contained within the snowpack.
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The snow effects are considered in the models in this study explicitly or implicitly, although 

in very simplified ways. ZHANG considers snow effects separately for different surface 

types and adjusts the ground resistance (Rg) and cuticle resistance (Rcut) by including a 

snow cover fraction (fsnow). fsnow is defined as the ratio of the snow depth (sd) to the 

maximum snow depth (sdmax), the latter is a prescribed land use-dependent constant 

representing the threshold value above which canopy leaf and ground surfaces are fully 

covered by snow. A value of 200 cm is assigned to the tall canopies such as deciduous 

broadleaf forest and evergreen leaf forest. A sensitivity test was conducted by reducing 

sdmax to a value of 10 cm, the same as the default value for the short canopies (e.g., grass 

and crops), in ZHANG-rs,min (hereafter as ZHANG-SD). Gns for O3 in ZHANG-SD was 

decreased by as much as 40% in winter, and, on the other hand, Gns for SO2 increased by a 

similar percentage (Figure 5). The measured snow depth at Borden Forest did not exceed 80 

cm during the study period (see Figure 6 in Wu et al., 2016). The value of 200 cm is likely 

too high to get any meaningful snow cover fraction (fsnow) for underlying surfaces inside 

forests. Note that snow cover enhances SO2 uptake but inhibits O3 deposition; improper 

definition on fsnow will thus affect the overall ground/cuticle uptake. After reducing sdmax, 

the winter Gns (O3) by ZHANG was within the range of results by the other models and the 

Gns (SO2) by ZHANG in winter was much larger than the results by the other models 

(Figure 5). Compared with ZHANG-rs,min, Vd in ZHANG-SD decreased about 30% for O3 

and increased by about 40% for SO2 in winter, both approaching the observations (Table 2).

As Noah-GEM employs the same nonstomatal parameterization as in ZHANG, the 

reduction of sdmax impacted the Noah-GEM Vd to a similar extent (see Noah-GEM-SD). 

C5DRY also considers the effects of snow cover but uses a different approach than ZHANG. 

In CMAQ V5.0.2, the model considers parallel pathways to the snow, vegetation, and bare 

ground. For snow covered ground, the snow resistance is additionally divided into ice and 

liquid fractions of snow. The model calculates the liquid water content of the snow using the 

approach of Bales et al. (1987) to distinguish between wet snow and dry snow on the 

ground. The resistance to wet snow is driven by Henry’s law constant, so soluble species 

such as SO2 will readily deposit to the wet snow covered surfaces. For cold (< 0°C), wet 

conditions, the cuticular resistance is set to the resistance for dry snow. Closer examination 

of the C5DRY code during this study motivated sensitivity testing to examine an alternative 

coding of the resistance framework (hereafter as C5DRY-fw). The revised framework 

considers vegetated and nonvegetated parallel pathways. Rather than the snow pathway 

being considered parallel to the vegetated and nonvegetated pathways, the ground resistance 

in the revised framework is treated as parallel pathways of snow covered and bare ground. 

The snow covered surfaces are treated as before, being split into wet and dry snow, and the 

bare ground resistances are as in the original model with wet and dry soil pathways. Cold, 

wet soil is treated as frozen ground. The change in the resistance framework caused a large 

change in the predicted deposition velocities as seen in Figure 3 and improved the 

correlation with the observed values (Table 2). Overall, none of the modeling results showed 

a strong correlation with the observed values, indicating that there is still substantial model 

development required to adequately model deposition over snow.

Given the variability in Vd values calculated by the five models, it would be challenging to 

recommend a single value for use in deposition assessments. Instead, an ensemble value 

Wu et al. Page 10

J Adv Model Earth Syst. Author manuscript; available in PMC 2019 October 30.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



might be more appropriate. Therefore, an ensemble averaging of Vd was derived from the 

five models (using results of ZHANG-SD, Noah-GEM-SD, C5DRY-fw, WESELY, and 

MLM), as shown in Figure 3 and Table 2. The ensemble model results agreed well in 

magnitude with the observed Vd for O3 in winter but still underestimated Vd for O3 in 

summer and SO2 in summer and winter. Correlation between the ensemble results and the 

observed Vd for O3 (R = 0.65) was higher than that for each model (the highest R = 0.60). 

For Vd (SO2), the correlation coefficient for the ensemble results (R = 0.40) was within the 

range of that for each model (R = 0.15–0.50).

While the purpose of our analysis is to understand the differences in Vd across models, the 

ultimate application of the air-surface exchange model is to provide an estimate of chemical 

flux to the ecosystem. For that reason, it is informative to quantify the impact of differences 

in Vd on the resulting flux at the annual scale. Table 3 presents the annual cumulative fluxes 

(F) of O3 and SO2 from the observations and models. To obtain the annual fluxes, hourly 

fluxes were first calculated using hourly Vd and concentrations, which were then aggregated 

into daily, monthly, and annual fluxes by weighting the missing data periods. Similar to Vd, 

all the models underestimated the fluxes on annual basis as well. The mean modeled annual 

fluxes followed the order of Noah-GEM-SD > ZHANG-SD > WESELY > Ensemble > 

C5DRY-fw > MLM for F (O3) and ZHANG-SD > C5DRY-fw > Noah-GEM-SD > 

Ensemble > WESELY > MLM for F (SO2). Relative differences between the model 

ensemble and observed means are larger for annual fluxes than for Vd, particularly for SO2, 

reflecting the importance of model underestimation of Vd when concentrations are higher 

(i.e., day versus night; summer versus winter O3 concentration; and winter versus summer 

SO2 concentration; Wu et al., 2016). With respect to fluxes, the ensemble reflects the 

average bias of the models taking into account the relationships between concentration and 

Vd. Models perform differently for O3 and SO2 relative to the observations, but as with Vd, 

the ensemble approach provides mean values among all the models, which can avoid too 

much overestimation or underestimation.

4.3 Impact of Meteorological Input on Modeled Vd

As shown in section 4.2, Vd values for O3 and SO2 from MLM (the algorithm used in 

CASTNET) were 30–40% lower than those from ZHANG (the algorithm used in CAPMoN) 

on an annual basis when the two algorithms were driven by the same meteorological inputs. 

Due to the lack of on-site meteorological measurements at CAPMoN sites, the archived 

meteorological forecast data produced by the Canadian weather forecast model were used to 

drive the ZHANG model to produce Vd, an approach previously described in Brook et al. 

(1999). Hourly meteorological forecast data at the surface and the first model layer 

(typically at 40–50-m height) are extracted from the archived model forecasts for the model 

grids containing the measurement sites. At CASTNET sites, continuous on-site 

meteorological measurements are taken at 10-m towers and ground-based sensors. 

Therefore, besides the different algorithms deployed in the monitoring networks (such as 

CASTNET and CAPMoN), differences in meteorological inputs are another source 

contributing to the Vd differences. The effects of different meteorological inputs on the 

calculated Vd were examined below.
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Table 4 shows the statistical results of the observed and modeled meteorological variables. 

On average, the forecasted mean temperature at the surface was close to the measurement 

mean with a mean bias of only −0.1°C while, at the reference height, the modeled mean was 

0.7°C lower than the observed value. The forecasted and measured temperatures are 

correlated well, with a correlation coefficient of 0.98. Differences between the forecast and 

observed relative humidity were very small (2.2%). The forecasted daytime solar radiation 

was about 10% lower than measured. The friction velocity calculated in the forecast model 

was almost twice that of the observed. The forecast model poorly captured the precipitation 

amount and its temporal variation. Large differences (>50%) also existed in the snow depth 

between the forecasted and measured values, but the correlation was reasonably good (R = 

0.64).

The ZHANG model was applied at Borden Forest using the forecasted meteorology 

mentioned above, as is done routinely at the CAPMoN sites (hereafter referred to as forecast 

driven). The parameter configuration used here is the same as in ZHANG-SD since this 

version showed the best agreement in Vd of O3 and SO2 with the observations at Borden 

Forest. The forecast-driven Vd values were generally 30% larger than the observation-driven 

values (i.e., ZHANG-SD; Figure 6) and with slightly lower correlations (Table 2). These 

differences between forecast-driven Vd and observation-driven Vd were solely caused by the 

different meteorological inputs.

To identify the dominant meteorological variables responsible for the Vd differences, a 

number of tests were conducted by replacing every observed meteorological variable in 

ZHANG-SD with the forecast model values. The relative differences in Vd for O3 and SO2 

are shown in Table 5. The use of the model-based u* resulted in a 33.6% and 44.6% increase 

of Vd (O3) and Vd (SO2), respectively, as the modeled u* values were about twice those from 

the observations (Table 4) and the nonstomatal parameterization depends on u* (Table 1). 

The change of Vd due to snow depth was about 10% in winter and expectedly smaller on an 

annual basis. The impacts of the other meteorological variables were negligible (typically 

<3%) because those variables were forecasted reasonably accurately, and the dry deposition 

model is much less sensitive to these variables than to u*. A similar test was conducted by 

using the forecasted meteorology to drive the WESELY scheme, in which the surface 

resistance is parameterized without including u*. The results (Figure S16 and Table 2) show 

that the impact of meteorological inputs on WESELY Vd for O3 and SO2 was small. The 

mean relative differences between the forecast-driven and observation-driven Vd values were 

about 5%. Schwede et al. (2001) calculated Vd (O3) by MLM using on-site meteorology as 

well as the output of two meteorological models (MM5 and Eta) and found that the average 

bias in Vd from using modeled meteorology ranged from −0.001 to 0.106 cm/s, which is 

within the error of the dry deposition model. Discussions above suggest that, when on-site 

meteorological data are not available, forecasted meteorology data can be used as a 

surrogate, such as the approach used in CAPMoN, to drive dry deposition models. 

Uncertainties in dry deposition estimates from using forecasted meteorology are much 

smaller than those from using different dry deposition models for the majority of chemical 

species.
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5. Conclusions and Recommendations

Five commonly used dry deposition algorithms in North America were compared to each 

other and to a 5-year Vd database of O3 and SO2. Considerable differences were found in the 

estimated Vd values of O3 and SO2 between the five algorithms, which were attributed 

mainly to differences in the models’ surface resistance parameterizations for both stomatal 

and nonstomatal uptake pathways. Although the effects of Ra and Rb on Vd of O3 and SO2 

were small in four of the five formulations, their effects were considerably larger in MLM, 

which has potentially large implications for fast-depositing chemical species (e.g., HNO3). 

Due to the large uncertainties in historical dry deposition flux measurements, the five dry 

deposition algorithms developed and evaluated using these flux data showed similar 

magnitudes of uncertainties. The uncertainty in prescribed minimum stomatal resistance 

(Rs,min) dominates the errors in estimated stomatal uptakes of the Jarvis-type stomatal 

resistance submodules. Several key biological (LAI) and meteorological variables (solar 

radiation, temperature, humidity, and soil moisture) should be included in parameterizing 

stomatal uptake. The nonstomatal uptake parameterization including the effects of biological 

(LAI), meteorological (friction velocity and humidity), and external surface (wetness) 

conditions performed better than those without such considerations, as demonstrated by the 

better correlations with the observed Vd. This suggests the necessity for additional 

measurements of in-canopy processes in order to better understand nonstomatal pathways to 

improve current parameterizations. It is worth to note that, in general, model development 

relies on a rather limited availability of field flux measurements, which often contain 

significant uncertainties themselves. Models parameterized from data sets collected in a 

specific ecosystem, phenological period, atmospheric chemistry regime, etc. will perform 

better under conditions reflective of the underlying data from which a parameterization was 

developed. Some models may therefore perform better than others in one scenario (land use, 

season, etc.) but may be worse in a different scenario.

For CTM applications, it is recommended to choose an algorithm as base case that can 

produce mean or median Vd values among all of the available algorithms, and thus likely 

causing minimum bias. Alternative formulations could then be used for assessments of 

uncertainty in model output, a practice that has been employed in WRF-Chem in the United 

States and is also under development in Global Environmental Multiscale - Modelling Air 

quality and CHemistry (GEM-MACH) in Canada. Ensemble averaging of results from 

multiple algorithms is also affordable in network operations such as in CASTNET and 

CAPMoN, an approach that has been used in air quality model simulations (Kioutsioukis & 

Galmarini, 2014). The ensemble will not always minimize bias relative to observations, as is 

the case shown in the present study. This may be due to a systematic error (bias) in the 

observations or a missing process in the models. The ensemble may minimize bias when the 

models yield estimates that scatter around an unbiased average observation, a case that may 

suggest that the models are generally capturing the most important processes. Much progress 

is still needed to develop more mechanistic models of nonstomatal processes, and thus the 

use of an ensemble approach is warranted. It should be noted that, although the ensemble 

approach does not necessarily perform better than all of the individual models based on 

statistical results at this site, it can avoid too much overestimation or underestimation, as has 
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seen in some individual models. Future work will further explore the utility of an ensemble 

Vd approach in the development of total deposition budgets, and estimates of their 

uncertainty, used for critical loads and other applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points:

• Differences in mean Vd values of O3 and SO2 between models were on the 

order of a factor of 2

• Model differences were mainly due to different surface resistance 

parameterizations for stomatal and nonstomatal uptake pathways

• Ensemble averaging of results from multiple dry deposition algorithms is 

recommended
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Figure 1. 
Comparison of averaged diel cycles of observed and modeled dry deposition velocities (Vd) 

of O3 and SO2 in summer (June–September) and winter (November–April). LST = local 

standard time.
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Figure 2. 
Comparison of averaged diel cycles of modeled maximum possible dry deposition velocities 

(Vd,max) of O3 and SO2. Note that Vd,max = 1/(Ra + Rb). LST = local standard time.
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Figure 3. 
Sensitivity tests of modeled dry deposition velocities (Vd) of O3 and SO2. LST = local 

standard time.
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Figure 4. 
Comparison of modeled and observed averaged diel cycles of stomatal conductance (Gs) for 

water vapor in summer (June–September). Gs for water vapor is about 1.6 and 1.9 times of 

that for O3 and SO2, respectively. LST = local standard time.
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Figure 5. 
Comparison of averaged diel cycles of modeled nonstomatal conductance (Gns) in summer 

(June–September) and winter (November–April). LST = local standard time.
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Figure 6. 
Comparison of averaged diel cycles of observed and modeled dry deposition velocities (Vd) 

of O3 and SO2 by the ZHANG scheme using on-site observed and model forecasted 

meteorological forcing. LST = local standard time.
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Table 3

The Mean and Standard Deviation of the Observed and Modeled Annual Cumulative Fluxes of O3 and SO2 

(g·m−2·year−1)

Observation ZHANG-SD Noah-GEM-SD C5DRY-fw WESELY MLM Ensemble

F (O3) 8.563 ± 1.314 6.669 ± 1.040 6.909 ± 1.103 4.745 ± 0.969 6.380 ± 0.998 4.012 ± 0.819 5.743 ± 0.971

F (SO2) 0.566 ±0.198 0.360 ± 0.134 0.355 ± 0.141 0.356 ± 0.129 0.229 ± 0.080 0.175 ± 0.071 0.295 ± 0.109
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Table 4

Statistic Results of the Observed and Modeled Meteorological Variables

Mean

Meteorological variables Number Obs Sim Bias MAE RMSE R

Temperature at reference height (°C) 15677 11.3 10.6 −0.7 1.6 2.0 0.98

Surface temperature (°C) 15677 9.7 9.6 −0.1 1.8 2.4 0.98

Relative humidity (%) 15677 69.1 71.3 2.2 8.5 11.1 0.80

Daytime solar radiation (W/m2)   8109 308.4 275.1 −33.3 91.0 129.4 0.89

Friction velocity (cm/s) 15677 47.2 81.3 34.1 38.4 48.3 0.74

Precipitation rate (0.1 mm/hr) 15677 0.57 0.01 −0.56 0.58 4.51 0.17

Surface pressure (hPa) 15677 989.8 987.0 −2.8 2.8 2.9 0.99

Winter snow depth (cm)   5746 15.2 7.2 8.0 9.0 16.6 0.64

Note. Note that Obs is observation, Sim is simulation, MAE is mean absolute error, RMSE is root-mean-square error, R is the correlation 
coefficient between observation and model simulation, daytime is 0600–1800 (LST), and winter is November–April. Equations for the statistic 
parameters are shown in equations (S1–S4). LST = local standard time.
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Table 5

Relative Change of Dry Deposition Velocities (Vd) of O3 and SO2 Due to Change in Input Meteorological 

Forcing

Relative 
change (%)

Temperature at 
reference height

Surface 
temperature

Relative 
humidity

Solar 
radiation

Friction 
velocity

Precipitation 
rate

Surface 
pressure

Snow 
depth

Vd (O3) 0.1 −1.1 0.8 −1.3 33.6 −0.04 0.1 2.6

Vd (SO2) −0.1 −3.1 1.3 −0.5 44.6 −0.9 −0.05 −6.1

Note. Note that a relative change is defined as Vd,s − Vd,c /Vd,c × 100%,, where Vd,c is the mean Vd in the control experiment that uses the 

on-site meteorology, and Vd,s is the mean Vd in the sensitivity experiment that is the same as the control experiment except that the specified 

meteorological forcing is from the model simulations instead of the on-site observations.
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