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Abstract

This paper presents a new robotic navigation aid, called Co-Robotic Cane (CRC). The CRC uses a 

3D camera for both pose estimation and object recognition in an unknown indoor environment. 

The 6-DOF pose estimation method determines the CRC’s pose change by an egomotion 

estimation method and the iterative closest point algorithm and reduces the pose integration error 

by a pose graph optimization algorithm. The pose estimation method does not require any prior 

knowledge of the environment. The object recognition method detects indoor structures such as 

stairways, doorways, etc. and objects such as tables, computer monitors, etc. by a Gaussian 

Mixture Model based pattern recognition method. Some structures/objects (e.g., stairways) can be 

used as navigational waypoints and the others for obstacle avoidance. The CRC can be used in 

either robot cane (active) mode or white cane (passive) mode. In the active mode it guides the user 

by steering itself into the desired direction of travel, while in the passive mode it functions as a 

computer-vision-enhanced white cane. The CRC is a co-robot. It can detect human intent and use 

the intent to select a suitable mode automatically.
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I. Introduction

According to the World Health Organization, about 285 million people worldwide are 

visually impaired, of which 39 million are blind. Visual impairment degrades one’s 

independent mobility and deteriorates the quality of life. In the visually impaired 
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community, white canes are currently the most efficient and widely-used mobility tools. A 

white cane provides haptic feedback for obstacle avoidance. However, it cannot provide 

necessary information for wayfinding—taking a path towards the destination with awareness 

of position and orientation. Also, as a point-contact device a white cane has a limited range 

and cannot provide a “full picture” of its surrounding. To address these limitations, Robotic 

Navigation Aids (RNAs) have been introduced to replace/enhance white canes. But only 

limited success has been achieved. Up to date, there is no RNA that has effectively 

addressed both the obstacle avoidance and wayfinding problems. The main technical 

challenge is that both problems must be addressed inside a small platform with limited 

resources.

Existing RNAs can be classified into three categories: robotic wheelchair [1], Robotic 

Guide-Dog (RGD) [2, 3] and Electronic White Cane (EWC) [4, 5, 6]. A robotic wheelchair 

is well suited for a blind person with disability in lower extremity. However, it gives its user 

an unpleasant sense of being controlled. Safety concerns will keep the blind away from 

using robotic wheelchairs for their mobility needs. An RGD leads the blind user along a 

walkable direction towards the destination. In this case, the user walks by himself/herself. 

An RGD can be passive or active. A passive RGD [2] indicates the desired travel direction 

by steering the wheels and the user pushes the RGD forward. A passive RG gives its user the 

sense that they are controlling the device but requires extra workload that might cause 

fatigue to the user. An active RGD [3], however, generates an additional forward movement 

to lead the user to the destination. Therefore, it can take on a certain payload and does not 

require the user to push, causing no fatigue to the user. However, the robot-centric motion 

may cause safety concerns. In addition to the abovementioned disadvantages, both robotic 

wheelchairs and RGDs lack portability. This issue makes EWC an appealing solution. An 

EWC is a handheld device that detects obstacle(s) in its vicinity. The Nottingham obstacle 

detector [4] uses a sonar for obstacle detection. The C-5 laser cane [5] triangulates range 

using three pairs of laser-/photo-diodes. The “virtual white cane” [6] measures obstacle 

distance by a triangulation system comprising a laser pointer and a camera. The user 

receives multiple range measurements by swinging an EWC. In spite of the portability, these 

EWCs: (1) provide only limited obstacle information due to the restricted sensing capability; 

(2) do not provide location information for wayfinding; and (3) may limit or deny the use of 

a white cane.

With respect to wayfinding, GPS has been widely used in portable navigation aids for the 

visually impaired [7, 8]. However, the approach cannot be used in GPS-denied indoor 

environments. To address this problem and the third disadvantage of the EWCs, a portable 

indoor localization aid is introduced in [9], where a sensor package, comprising an Inertial 

Measurement Unit (IMU) and a 2D laser scanner, is mounted on a white cane for device 

pose estimation. An extended Kalman filter is employed to predict the device’s pose from 

the data of the IMU and a user-worn pedometer and update the prediction using the laser 

scans (observation). The pose estimation method requires a map of the environment that 

must be vertical in order to predict laser measurements.

In [10], we conceive a new RNA, called Co-Robotic Cane (CRC), for indoor navigation for 

a blind person. The CRC uses a 3D camera for both pose estimation and object recognition 
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in an unknown indoor environment. The pose estimation method does not require any prior 

knowledge of the environment. The object recognition method detects indoor structures and 

objects, some of which may be used as navigational waypoints. The CRC is a co-robot. It 

can detect human intent and use the intent to automatically select its use mode. Recently, we 

designed and fabricated the CRC. This paper presents the three key technology components

—human intent detection, pose estimation and 3D object recognition—and the fabrication of 

the CRC. It is an extended version of [10].

II. Overview of Co-robotic Cane

The conceptual CRC is an indoor navigation aid as depicted in Fig. 1. The CRC is a 

computer-vision-enhanced white cane that allows a blind traveler to “see” better and farther. 

It provides the user the desired travel direction in an intuitive way and offers a friendly 

human-device interface. The computer vision system, comprising a 3D camera, a 3-axis 

gyro and a Gumstix Overo® AirSTORM COM computer, provides both pose estimation and 

object recognition functions. The CRC’s pose is used to provide the user with location 

information and to register the camera’s 3D points into a 3D map. The Gumstix reads data 

from the camera and gyro and relays the data via WiFi to a backend computer for pose 

estimation and object recognition computation. The results are sent back to the Gumstix for 

navigation. This arrangement is due to the Gumstix’s limited computing power and intended 

to save power. The CRC has an active rolling tip that can steer itself to the desired direction 

of travel. A speech interface using a Bluetooth headset and a keypad (on the cane’s grip) is 

being developed for human-device interaction.

The CRC has two navigation modes—robot cane (active) mode and white cane (passive) 

mode—that are selectable to the user by controlling the so-called Active Rolling Tip (ART). 

The ART comprises a rolling tip, a servo motor assembly with an encoder and an 

electromagnetic clutch. The rolling tip is connected to the motor through the clutch. A 

disengaged clutch sets the CRC to its passive mode. In this mode, the rolling tip rotates 

freely just like a conventional white cane when the user swings the CRC. In this case, the 

speech interface provides the desired travel direction and object/obstacle information to the 

user. An engaged clutch sets the CRC to the active mode, allowing the motor to drive the 

rolling tip and steer the CRC to the desired direction of travel. The CRC is a robot in this 

mode. Assuming that the CRC is swung from A to B with no slip (see Fig. 2), the yaw angle 

change of the device is Δψ = Δαr/CLcosθ, where Δα is the motor’s rotation angle, C is the 

gearhead reduction ratio, r is the rolling tip’s radius, and L is the cane’s length. This means 

that the cane’s turn angle can be accurately controlled by the motor.

Mode selection is made by using the keypad or an intuitive Human Intent Detection 

Interface (HIDI). The HIDI measures the user’s compliance with the cane’s motion by 

analyzing the data from the encoder and the 3-axis gyro (see Fig. 1). When the user is 

compliant with the cane’s motion, the CRC’s gyro-measured angular velocity ωg must agree 

with its encoder-measured angular velocity ωc = rΔα/CLΔt cosθ. If the user swings the cane 

in the active mode, substantial slip at the rolling tip will be produced. The slip is given by S 
= ωc − ωg. If S is above a threshold, a motion-incompliance, indicating the user’s intent of 

using the CRC in the passive mode, is then detected and the CRC is switched to the passive 
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mode. The CRC is switched back to the active mode once a motion-compliance is detected. 

The HIDI also detects motion-incompliance when the roller tip slips on a loose ground due 

to insufficient traction. This indicates that it is unsuitable to use the active mode. In this case, 

the CRC also switches itself into the passive mode until sufficient traction is produced. The 

user may override the auto-switch function by manually selecting a mode through the 

keypad.

Fig. 3 depicts the first CRC prototype we have fabricated. A SwissRanger SR4000 is used 

for 3D perception. The ART (bottom image) is an assembly of motor, encoder, gear head 

and electromagnetic clutch that is connected to a ball-bearing-supported rolling tip by a 

flexible coupling. A servo controller and a microcontroller boards (Teensy++ 2.0) are used 

to control the motor and the clutch, respectively. Both controller boards are connected to the 

Gumstix’s USB ports. An IMU is used to measure the cane rotation rate. Using ground truth 

rotation provided by a motion capture system, we found that the maximum S value with no 

slip is ~1°/s. So we simply use 2°/s as threshold for determining motion compliance. Since 

the S value is much bigger than 2°/s when the user swings the cane at the active mode, the 

threshold results in a reliable detection of motion compliance. This has been validated by 

experiments. With the current design, the CRC’s maximum rotational (yaw) speed is 30°/s in 

the active mode. We tested the CRC on the grounds in a few buildings on campus. With this 

maximum speed, S<2°/s (no slip produced). Currently, the CRC’s weight is close to 1 kg. 

The majority of the weight (0.7 kg) is located at 20 cm from the center of the hand grip to 

make it easy to swing the cane. Our test reveals that no discomfort is produced when the 

CRC user swings the CRC back and forth. The CRC weight may be reduced if a lighter 

camera will be used.

III. 3D Camera—SwissRanger SR4000

The SR4000 is a small-sized (65×65×68 mm3) 3D time-of-flight camera. It illuminates the 

environment with modulated infrared light and measures ranges up to 5 meters (accuracy: ±1 

cm, resolution: 176×144) using phase shift measurement. The camera produces range, 

intensity and confidence data at a rate up to 54 frames/s. The SR4000 has a much better 

range measurement accuracy for distant object and data completeness than a stereo/RGB-D 

camera (e.g., Microsoft Kinect). This may result in better pose estimation and object 

recognition performances. In addition, the camera has a smaller dimension that makes it 

suitable for the CRC.

IV. 6-DOF Pose Estimation

A. Egomotion Estimation

The camera’s pose change between two views is determined by an egomtion estimation 

method, called Visual Range Odometry (VRO) [11] and the Iterative Closest Point (ICP) 

algorithm. The VRO method extracts and matches the SIFT features [12] in two consecutive 

intensity images. As the features’ 3D coordinates are known from the depth data, the feature 

tracking process results in two associated 3D point sets, {pi} and {qi}. The rotation and 

translation matrices, R and T, between the two point sets can be determined by minimizing 

the error residual:
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e2 = ∑i = 1
N pi −Rqi − T, (1)

where N is the number of the matched SIFT features. This least-squares data fitting problem 

is solved by the Singular Value Decomposition method [13]. As SIFT feature matching may 

produce incorrect feature correspondences (outliers), a RANSAC process is used to reject 

the outliers. The resulted inliers are then used to estimate R and T, from which the camera’s 

pose change is determined. In this paper, the camera pose is described by the X, Y, Z 
coordinates and Euler angles (yaw-pitch-roll angles). To estimate pose change more 

accurately, a Gaussian filter is used to reduce the noises of the intensity and range data and 

SIFT features with low confidence are discarded [14] for VRO computation. To overcome 

the VRO’s performance degradation in a visual-feature-spare environment (e.g. an open area 

with texture-less floor), an ICP-based shape tracker is devised to refine the alignment of the 

two point sets and thus the camera’s pose change. In this work, a convex hall is created 

using the 3D points of the matched SIFT features. The 3D data points within the convex hall 

are used for ICP calculation. This scheme substantially reduces the computational time of a 

standard ICP process that uses all data points. The proposed egomotion estimation method is 

termed VRO-FICP [15].

B. Pose Error Minimization by Pose Graph Optimization

Visual feature tracking by state estimation filter such as the Extended Kalman Filtering 

(EKF) and Pose Graph Optimization (PGO) methods have been proposed to reduce the 

accumulative pose error of the dead reckoning approach. Our recent study [16] shows that a 

PGO method has a better performance consistency than an EKF. Therefore, we use PGO to 

minimize the pose error in this paper.

Let x = (x1,…,xN)T be a vector consisting of nodes x1,…,xN, where xi for i=1, …, N, is the 

SR4000’s pose at time step i (i.e., image frame i). Let zij and Ωij be the mean and 

information matrix of a virtual measurement between nodes i and j. Let zi j be the expected 

value of zij. The measurement error ei j xi, x j = zi j − zi j xi, x j  and Ωij are used to describe the 

edge connecting nodes i and j. Fig. 4 shows a pose graph with 5 nodes.

A number of approaches are taken to ensure a quality graph for PGO. When adding node xi 

to the graph, z(i−1)i (i.e., pose change between i and j) may be unavailable if VRO-FICP 

fails. In this case, we assume a constant movement and use z(i−2)(i−1) to create node xi, i.e., 

e(i−2)(i−1) and Ω(i−2)(i−1) are used for edge E(i−1)i. For non-consecutive nodes, no edge is 

created if VRO-FICP fails or the pose change uncertainties are large. We use the following 

bootstrap method to compute pose change uncertainties: (1) Compute a pose change using K 
= min(0.75N, 40) samples randomly drawn from the N correspondences given by VRO-

FICP; (2) Compute 50 pose changes by repeating step (1) and calculate the standard 

deviation. Finally, Ωij is computed as the inverse of the diagonal matrix of the pose change 

uncertainties. Compared with the existing works that assume a constant uncertainty in graph 

construction, our method may result in a more accurate graph and thus improves the pose 

estimation result.
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The PGO process is to find the node-configuration x* that minimizes the following 

nonlinear cost function:

F x = ∑i j ei j xi, x j
TΩi j ei j xi, x j . (2)

A numerical approach based on the Levenberg-Marquardt algorithm is used to solve the 

optimization problem iteratively. Details on the PGO method are referred to [17]. In this 

paper, we use the GTSAM C++ library [18] for PGO. The VRO-FICP based approach 

substantially improves the pose estimation accuracy of the VRO-based method and reduces 

the computational time of the VRO-ICP-based method. Readers are referred to [15] for more 

details.

V. 3D Object Recognition

Object recognition is important to wayfinding. Objects detected by the CRC can be used: (1) 

as waypoints for navigation, (2) for environment awareness (e.g. in an office, hallway, etc.), 

and (3) for obstacle avoidance. A detected stairway may be used as a waypoint to access the 

next floor and a doorway a waypoint to enter/exit a room. Detection of a hallway may assist 

the CRC user with moving direction. Five objects (doorway, hallway, stairway, ground and 

wall) representing indoor structures and three objects (monitor, table, parallelepiped) related 

to office environment are considered in this paper. It is noted that the parallelepiped is not 

yet associated with an office object yet. But it can be a computer case if the relevant data are 

used to train the detector. As most of the target objects are indoor structures, their 

determining factors are geometric features rather than visual features. For example, a 

stairway contains a group of alternating treads and risers with a fixed size while its visual 

appearance can be various. Therefore, a geometric feature based object recognition method 

becomes appropriate.

The state-of-the-art graph-based object recognition method [19] is of NP complexity. For 

computational efficiency, we propose a Gaussian-Mixture-Model (GMM) based object 

recognition method as depicted in Fig. 5. It consists of five main procedures: range data 

acquisition, plane extraction, feature extraction, GMM Plane Classifier design and training, 

and plane clustering. Each of them is described in this section.

A. Range Data Acquisition and Plane Segmentation

Using the estimated poses, the 3D range data of the camera are registered to form a large 3D 

point cloud map. The point cloud data is then segmented into N planar patches, P1, P2, …, 

PN, by the NCC-RANSAC method [20].

B. Features and Feature Vectors

Each of the N patches is then assigned a feature vector that describes its intrinsic attributes 

and geometric context, i.e., Inter-Plane Relationships (IPRs) representing the geometric 

arrangement with reference to another planar patch. In this paper, we define three classes of 

features—Basic Feature (BF), Low Level Feature (LLF), and High Level Feature (HLF).
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Basic Features: BFs are local features that describe a patch’s intrinsic attributes. They 

serve as the identity of the patch. Similar to [19], three BFs—Orientation, Area and Height 

(OAH)—are defined for a planar patch. They are computed as the angle between the patch’s 

normal and Z-axis, size of the patch, and the maximum Z coordinate of the points in the 

patch, respectively. The computational details are omitted for simplicity.

Low Level Features: To classify a patch into a constituent element of a model object, the 

patch’s IPR must be considered in addition to its BFs. The following 9 IPRs are defined for 

patch Pi with reference to patch Pj: (1) plane-distance is a value representing the minimum 

distance between the points of Pi and the points of Pj; (2) plane-angle represents the angle 

between Pi and Pj; (3) parallel-distance, denoted li
j, represents the distance between two 

parallel planes, Pi and Pj, and is computed as the mean of the distance from the centroid of 

Pi to patch Pj and the distance from the centroid of Pj to patch Pi; (4) projection-overlap-rate 
is a value representing to what extent Pi overlaps Pj and it is calculated as the area ratio of 

the projected Pi (onto Pj) to Pj; (5) projection-distance is the minimum distance from the 

points of Pi to plane Pj; (6) is-parallel describes if Pi is parallel to Pj (1: parallel, 0: not 

parallel); (7) is-perpendicular describes if Pi is perpendicular to Pj (1: perpendicular, 0: not 

perpendicular); (8) is-coplanar describes if Pi is co-planar with Pj (1: coplanar, 0: not 

coplanar); (9) is-adjacent describe if Pi is adjacent to Pj. (1: adjacent, 0: not adjacent). Due to 

the SR4000’s noise, threshold values are used in computing the above LLFs. The details are 

omitted. Since there are N patches, an N×N matrix is formed to record each of the 9 IPRs 

among the N patches. Each matrix is called an LLF. In an LLF matrix, an element at (i, j) 
describes the IPR of Pi with reference to Pj. For example, is-parallel(i, j)=1 indicates that Pi 

is parallel to Pj.

High Level Features and Feature Vectors: In this work, each planar patch is classified 

as a plane belonging to one of the eight objects (models). To this end, we define 6 mutually 

exclusive High Level Features (HLFs) as shown in Fig. 6. Each HLF represents a set of 

particular IPRs that exists in an object model. The HLF extraction is a process to identify the 

HLF for each of the N planar patches and assign each patch an HLF vector. The BFs 

extracted earlier are used in constructing the HFL vector. We first construct a BF vector [O, 
A, H] for a planar patch. Each BF is then extended based on the patch’s HLF. For a patch 

with HLF-1, HLF-2, HLF-3 or HLF-6, we add parameter d into its BF vector to form a HLF 

vector [O, A, H, d]. For a patch with HLF-5, we add parameter d1 and d2 to form a HLF 

vector [O, A, H, d1, d2]. For a patch with HLF-4, we simply use the BF vector as the HLF 

vector. A plane is treated as an object if it is a wall/ground. Such a plane does not have an 

IPR. We therefore simply use its BF vector as the HLF vector. A plane with an HLF as 

depicted in Fig. 6 is called a complex plane, while a wall/ground plane an elementary plane.

For each of the N planar patches, the LLF matrix is analyzed to detect the HLFs and the 

corresponding feature vector is assigned to the patch for each detected HLF. The assigned 

HLF vectors are then sent to the GMM Plane Classifier (GMM-PC) (Fig. 5) for plane 

classification. The HLF vector assignment process also generates 6 matrices, Q1 ,…, Q6, 

each of which records the N planar patches’ IPRs for HLF-1, …, HLF-6, respectively.
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C. GMM Plane Classifier

The GMM-PC consists of 8 GMMs, each of which has been trained using data captured 

from a particular type of objects and is thus able to identify a plane related to that type of 

object when the relevant HLF vector is present. For simplicity, we call a GMM for detecting 

object type Ok for k =1, ⋯, 8, an Ok-GMM. Here, O1, O2,…, O8 represent doorway, 

hallway, stairway, parallelepiped, monitor, table, ground and wall, respectively. We call a 

plane belonging to object Ok an Ok-plane and a scene with object Ok an Ok-scene. In the 

GMM-PC, the Oi-GMM receives all HLF-i vectors and determine if each vector’s associated 

patch is an Oi-plane (here, i =1, ⋯, 6). The ground-GMM and the wall-GMM receive the 

remaining BFs and classify each of the associated planar patches into a ground-plane or a 

wall-plane.

A GMM is a probability density function represented as a weighted sum of M Gaussian 

component densities given by:

p x λ = ∑i = 1
M ωig x μi, Σi , (3)

where x is a D-dimensional (in our case, D=3, 4 or 5) vector with continuous values, ωi, i = 

1,…,M, are the mixture weights, and g(x|μi, Σi), i = 1,…,M, are the component Gaussian 

densities with mean vector μi and covariance matrix Σi. The mixture weights satisfy 

∑i = 1
M ωi = 1. The complete GMM is parameterized by μi, Σi and ωi for i = 1,…,M. We 

denote these parameters collectively by λ from now on for conciseness. In this paper, the 

configuration (M and λ) of an Ok-GMM is estimated by training the GMM using a set of 

HLF vectors obtained from a number of Ok-scenes. The maximum likelihood estimate of λ 
is iteratively obtained by the Expectation Maximization (EM) method. The value of M is 

determined by repeating the training process with an increasing i and observing the trained 

GMM’s output p(x|λ). If the mean of the output difference between an I-component GMM 

and an (I+1)-component GMM is below a threshold, we let M=I because more Gaussian 

component densities will not change the GMM’s probability density.

We acquired 500 datasets from different Ok-scenes. After plane segmentation and feature 

extraction, we obtained a set of HLF vectors from each dataset. We then trained the Ok-

GMM using these HLF vectors. The training process determined the Ok-GMM’s 

configuration (M and λ). The smallest probability density pmin
k  of the trained Ok-GMM for 

the training data is recorded as the threshold for plane classification in a later stage.

After the training, each GMM of GMM-PC is able to classify a patch into one of the eight 

plane types using the patch’s HLF vector. To be specific, a planar patch’s HLF (or BF if an 

HLF is unavailable) is presented to the relevant GMM. The GMM’s output, pk(X|λ) for k = 

1,⋯,8, is compared with pmin
k . If pk X λ > pmin

k , the planar patch is classified as an Ok-

plane. In case that a patch is classified as both an elementary plane and a complex plane, the 

complex plane classification overrides the elementary one. All extracted HLF vectors are 

presented to the GMM-PC and the corresponding planar patches are classified into the eight 
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types of planes. The GMM-PC results in 8 arrays, Gk for k = 1,⋯,8, each of which stores the 

indexes of the planar patches that have been classified as Ok-planes.

D. Recursive Plane Clustering

In this stage, the classified planes, Ok-planes for k = 1,⋯,4, are recursively clustered into a 

number of objects, Ok for k = 1,⋯,4. This means that the doorway-/hallway-/stairway/

parallelepiped-planes are grouped into doorway(s) /hallway(s)/stairway(s)/parallelepiped(s) 

by a Recursive Plane Clustering (RPC) process. A monitor-/table-/ground-/wall-plane is 

treated as a standalone object and thus no further process is needed. Four recursive 

procedures, RPC-1, …, and RPC-4, process G1, …, G4, respectively and cluster the 

neighboring object planes into the four types of objects by analyzing Q1 ,…, Q4.

VI. Experimental Results

We collected data from various scenes inside a number of buildings on campus to train 

and/or test the methods. Five students who are not the developers of the methods 

participated in data collection.

A. Pose Estimation

We carried out 9 experiments (Group I) in feature-rich environments and 5 (Group II) in 

feature-sparse environments. In each experiment, the CRC user walked with the cane in a 

looped trajectory (path-length: 20–40 meters). The CRC’s Final Position Error (FPE) (in 

percentage of path-length) is used as the overall accuracy of pose estimation. The PGO 

method’s FPE is compared with that of the baseline (dead reckoning) method and the 

percentage error reduction indicates the performance of PGO. The results are tabulated in 

Table I. The PGO method reduces the FPEs in all cases in feature-sparse environments. For 

feature-rich environments, the PGO slightly increases the FPEs in 4 cases but substantially 

decreases the FPEs in the other 5 case. Overall, the method improves the pose estimation 

results in feature-rich environments. It can be seen that the PGO achieves a much larger and 

more consistent pose estimation improvement in a feature-sparse environment. This property 

will benefit indoor navigation where feature-spare scenes occur from time to time.

Fig. 7 depicts the result of experiment 1 in Group I. It can be observed that the FPE of the 

PGO algorithm is much smaller than that of the dead reckoning method.

B. Object Recognition

We collected 60 data sets from each type of scenes, half (Type I) from the same scenes that 

were used for GMM training and the other half (Type II) from similar scenes with the same 

type of objects. We ran the object recognition method on the 480 (8×60) datasets and 

evaluated its performance in term of the success rate of object recognition. The results are 

tabulated in Table II. For each object type, the success rates on Type I data are slightly 

higher than that on Type II data because the GMM was trained using the similar type of data. 

The fact that the success rate on Type II data is over 86.7% (except for monitor scenes) 

indicates that the trained GMMs generalize well in object recognition.
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Fig. 8 depicts the object recognition results on stairway, doorway, hallway, parallelepiped 

(box), monitor, desk and grounds. In all cases, the proposed method detects and labels the 

objects correctly. We have also run the object recognition method on two range data sets, 

each of which consists of multiple views of the scene, collected in our lab and nearby a 

stairway, respectively. In either case, the estimated CRC poses were used for range data 

registration. The method successfully detected all target objects, including desks, monitors, 

walls, stairway and grounds. The results demonstrate that the method can accommodate the 

PGO pose estimation errors.

VII. Conclusions and Discussions

We have presented the concept of the CRC for indoor navigation of a visually impaired 

individual. As a co-robot, the CRC detects human-intent and uses the intent to automatically 

choose the device’s use mode. In the active mode, the CRC may steer into the desired 

direction of travel and thus provide accurate guidance to a blind traveler. Three technology 

components—human intent detection, pose estimation and 3D object recognition—have 

been developed to enable wayfinding and obstacle avoidance by using a single 3D imaging 

sensor. The design of the CRC takes into account safety: if all robotic functions fail, the 

CRC degrades itself into a white cane that can still be used as a conventional mobility tool 

for navigation.

The CRC is in its development stage. We are working with the orientation and mobility 

specialists and blind trainees of the World Service for the Blind (Little Rock, AR) in 

designing and refining the CRC functions. By the time of writing this paper, we have just 

built and tested two standalone systems, one for object detection and the other for 

wayfinding. A speech interface was used for human-device interaction. The object detector 

is working properly at present and it announces the detection result when pointed towards a 

known object. In our tests, we used single frame range data for the sake of realtime object 

detection. The wayfinding system locates the user on a floor and guides the user to the 

destination using the pose estimation method and the floorplan. In the current tests, the 

CRC’s starting point and the initial heading is assumed to be known. It was found that an 

early orientation error created by the pose estimation method may accrue a big position error 

over time and make the system out of work. A temporary solution was to extract the wall 

from the range data and match the wall to the floorplan to reset the error periodically. Using 

this scheme, the wayfinding system successfully guided a user (blind-folded) to the 

destinations by the speech interface. It was also found that the system worked well when the 

swing speed is moderate (<30°/s). In the future, we will use the result of the 3D object 

detection method to reset the accumulative pose error. In addition, a method to determine the 

initial position and heading will be developed for wayfinding. Finally, the method in [21] 

may be used to provide the system with tactile landmark(s) to recover the system from a 

total failure of pose estimation. It is noted that we do not consider loop closure issue in this 

paper. The reasons are twofold. First, most wayfinding tasks do not have a closed path. 

Second, existing loop closure detection methods are computationally costly and thus 

impractical for the CRC as they compare the current image frame with a large number of 

previous key image frames.
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Fig. 1. 
The Co-Robotic Cane
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Fig. 2. 
The CRC Swings from A to B
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Fig. 3. 
The first CRC prototype and the active rolling tip
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Fig. 4. 
A pose graph with five nodes: Eij =< eij,Ωij > represents the edge between nodes i and j.
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Fig. 5. 
Diagram of the proposed object recognition method
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Fig. 6. 
Definition of HLFs: (a) HLF-1: co-planar with distance d; (b) HLF-2: parallel and face-to-

face with distance d; (c) HLF-3: step-shape with distance d; (d) HLF-4: parallelepiped-

shape; (e) HLF-5: side-above with distance d1 and d2: d1 is the A’s projection-distance while 

d2 is the minimum distance between A’s projection-points on B and B’s points; (f) HLF-6: 

above-with-distance d. A, B and C represent any three patches out of the N planar patches.

Ye et al. Page 19

IEEE Syst Man Cybern Mag. Author manuscript; available in PMC 2019 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Pose estimation in a feature-rich environment (experiment 1 in Group I). Left: snapshot of 

scene; Right: CRC’s trajectories estimated by the dead reckoning and PGO methods plotted 

over the 3D point cloud map.
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Fig. 8. 
Experimental results with a doorway, hallway and box. Left: intensity image; Right: 3D 

view of the detected objects (stair in red, doorway in purple, hallway in blue, desk in light 

green, parallelepiped in green, grounds in black).
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Table I

Performance of the PGO method in various environments

Group I
FPE [%]

ER [%] Group II
FPE [%]

ER [%]
DR PGO DR PGO

1 4.45 2.65 1.80 1 3.01 1.15 1.86

2 2.97 2.37 0.60 2 3.58 2.50 1.08

3 2.71 3.07 −0.36 3 2.42 2.23 0.19

4 2.66 2.50 0.16 4 4.17 2.75 1.43

5 1.2 1.33 −0.13 5 2.21 1.64 0.57

6 2.03 2.28 −0.25

7 2.05 0.46 1.59

8 5.7 4.71 0.99

9 3.3 3.79 −0.49

Mean 0.43 Mean 1.02

Standard Deviation 0.86 Standard Deviation 0.67

DR: Dead Reckoning, ER: Error Reduction, FPE: Final Position Error
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Table II

Success rates in object recognition

Object Type Type I Data Type II Data Average

Stairway 0.967 0.900 0.933

parallelepiped 1.000 0.933 0.967

Hallway 1.000 1.000 1.000

Doorway 0.933 0.867 0.900

Table 1.000 0.967 0.983

Monitor 0.900 0.800 0.850

Wall 1.000 1.000 1.000

Ground 1.000 1.000 1.000
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