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Abstract

The World Health Organization (WHO) has embarked on a consultation
process to refine the 2030 goals for priority neglected tropical diseases
(NTDs), onchocerciasis among them. Current goals include elimination of
transmission (EOT) by 2020 in Latin America, Yemen and selected African
countries. The new goals propose that, by 2030, EOT be verified in 10
countries; mass drug administration (MDA) with ivermectin be stopped in at
least one focus in 34 countries; and that the proportion of the population no
longer in need of MDA be equal or greater than 25%, 50%, 75% and 100%
in at least 16, 14, 12, and 10 countries, respectively. The NTD Modelling
Consortium onchocerciasis teams have used EPIONCHO and ONCHOSIM
to provide modelling insights into these goals. EOT appears feasible in
low-moderate endemic areas with long-term MDA at high coverage (275%),
but uncertain in areas of higher endemicity, poor coverage and adherence,
and where MDA has not yet, or only recently, started. Countries will have
different proportions of their endemic areas classified according to these
categories, and this distribution of pre-intervention prevalence and MDA
duration and programmatic success will determine the feasibility of
achieving the proposed MDA cessation goals. Highly endemic areas would
benefit from switching to biannual or quarterly MDA and implementing
vector control where possible (determining optimal frequency and duration
of anti-vectorial interventions requires more research). Areas without loiasis
that have not yet initiated MDA should implement biannual (preferably with
moxidectin) or quarterly MDA from the start. Areas with loiasis not
previously treated would benefit from implementing
test-and(not)-treat-based interventions, vector control, and anti-Wolbachia
therapies, but their success will depend on the levels of screening and
coverage achieved and sustained. The diagnostic performance of IgG4
Ov16 serology for assessing EOT is currently uncertain. Verification of EOT
requires novel diagnostics at the individual- and population-levels.
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ABR, annual biting rate; APOC, African Programme for
Onchocerciasis Control; ATS, alternative treatment strategies;
DALY, disability-adjusted life-year; EMC, Erasmus Medical
Center; EOT, elimination of transmission; EPHP, elimination
as a public health problem; ICL, Imperial College London; IU,
implementation unit; MAP, maximum a posteriori (parameter
set); MDA, mass drug administration; NTD, neglected tropi-
cal disease; OCP, Onchocerciasis Control Programme in West
Africa; PCR, polymerase chain reaction; pOTTIS, provisional
operational thresholds for treatment interruption and initia-
tion of surveillance; PPV, positive predictive value; SSA, sub-
Saharan Africa; Ta(N)T, test-and-not-treat; TaT, test-and-treat;
WHO, World Health Organization; YLD, years of life lost to
disability.
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Health Organization. Publication in Gates Open Research
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Background

Onchocerciasis is a filarial disease caused by infection with
Onchocerca volvulus, a vector-borne parasitic nematode trans-
mitted via the bites of several Simulium blackfly species. In
sub-Saharan Africa (SSA), where 99% of the cases occur,
the main vectors belong to the Simulium damnosum sensu
lato species complex. Modelling of data from the 2013 Global
Burden of Disease Study suggests that at least 17 million peo-
ple are currently infected with O. volvulus'. An estimated 198
million people live in areas where there is potential for trans-
mission of the parasite, although this number may increase as
the mapping of areas of low transmission is finalized”. The dis-
ease is also known as river blindness because blackflies breed in
and bite near fast-flowing rivers, and because the most dev-
astating sequela is irreversible loss of vision. High infection
load, measured by the density of microfilariae (the larval
progeny of adult worms) in the skin, is associated both with
blindness incidence’ and excess human mortality, the lat-
ter over and above that due to blindness™. In addition to
ocular sequelae, onchocerciasis is also responsible for skin dis-
ease and troublesome itching (which disturbs sleep and work
patterns). The Global Burden of Disease Study 2015 estimated
the disability-adjusted life years (DALYs) due to onchocercia-
sis as 1,136,000 in 2015 (a 21% decrease since 2005)°. More
recently, the term river epilepsy has been used to highlight
the association between onchocerciasis and nodding syn-
drome (a condition in the epilepsy spectrum)’. The burden of
onchocerciasis-associated epilepsy for 2015 was estimated as
circa 13% of the total years lost due to disability (YLDs) attribut-
able to onchocerciasis and 10% of those attributable to epilepsy®.

Currently, the mainstay of onchocerciasis control is through mass
drug administration (MDA) of the microfilaricidal drug iver-
mectin (Mectizan®), donated by Merck & Co. Inc. to endemic
countries through the Mectizan Donation Program’. Ivermectin
MDA (mostly of annual frequency in SSA) started in the late
1980’s, and great strides in reducing morbidity have been
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made'’. Although questions were raised concerning the feasibil-
ity of eradicability based on ivermectin MDA alone''"", stud-
ies in some foci of Mali and Senegal (in the western extension
of the Onchocerciasis Control Programme in West Africa, OCP),
indicated that local elimination may be achieved after 15-17
years of ivermectin MDA'*!. Based on this, in 2010, the African
Programme for Onchocerciasis Control (APOC) shifted its
goals from elimination of the disease as a public health prob-
lem (EPHP), to elimination of transmission (EOT)'. This
shift necessitates a drastic geographical extension of treat-
ment. Whilst for EPHP, mesoendemic and hyperendemic areas
had been prioritized for ivermectin MDA, EOT at a Pan-
African scale requires that treatment be distributed also
in hypoendemic areas. This poses challenges, particularly
where loiasis (a filariasis caused by Loa loa) is co-endemic due
to severe adverse events, including fatalities, that may result
from microfilaricidal treatment of individuals heavily infected
with L. loa". In onchocerciasis, the original definition of ende-
micity levels comprises three categories: i) hypoendemic
(microfilarial prevalence <30-35%), ii) mesoendemic (preva-
lence between 30-35% and 60%), and iii) hyperendemic
(260%)"'¢; EOT should be achieved in all three. A microfilarial
prevalence >80% has also been used to indicate holoendemicity'.

EOT is formally defined as a reduction to zero in the inci-
dence of infection (rate at which new cases arise)’’. However,
since in macroparasite epidemiology the number of parasites
in the population is more relevant than the number of cases,
the definition of EOT used here is the absence of adult worms
and larval stages (in humans and vectors) after cessation of
interventions’'. Onchocerciasis is in the fortunate position that
ivermectin reduces: i) morbidity (mainly caused by micro-
filariae), ii) microfilarial prevalent cases and microfilarial load,
and iii) transmission to vectors (microfilariae are the stages
infective to blackflies). This is achieved by a combination
of ivermectin’s microfilaricidal effect, temporary embryo-
static effect on adult female worms (macrofilariae)®,
and irreversible effects on female worm fecundity and/or
survival”. Given the disease- and transmission-curtailing
benefits of ivermectin MDA, the 2012 World Health Organi-
zation (WHO) roadmap to accelerate progress in combating
neglected tropical diseases (NTDs) proposed that onchocerciasis
be eliminated in selected African countries by 2020%. The
Joint Action Forum of APOC reformulated this goal to
EOT in 80% of endemic African countries by 2025%.

To help evaluate progress towards these goals, the develop-
ers of two mathematical models of onchocerciasis transmis-
sion dynamics and control (EPIONCHO and ONCHOSIM) have
joined forces under the umbrella of the Bill & Melinda Gates
Foundation-funded NTD Modelling Consortium. The modelling
groups, based at Imperial College London (ICL), UK, and
Erasmus Medical Center (EMC), The Netherlands, along
with multi-disciplinary collaborators have led the recent
onchocerciasis work. Firstly, a comparison of modelling assump-
tions and resulting outputs was conducted”’, highlighting
the need to present and discuss the models jointly*, and modify
some key assumptions crucial to fitting the microfilarial preva-
lence trends observed in the elimination studies of Mali and
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Senegal”. A policy paper followed, discussing the role of inter-
vention strategies other than annual ivermectin MDA to achieve
elimination in SSA*. A further understanding of critical uncer-
tainties led to a paper discussing these in light of data needs’’.
Due to knowledge gaps surrounding the processes regulat-
ing parasite establishment and fecundity of O. volvulus”—*, the
magnitude of exposure heterogeneity and its interaction with
such regulatory processes’’, and the impact of treatment on
population biology parameters, including the development of
acquired immunity®, the models have contrasting underlying
assumptions leading to differences in model predictions®*.
Despite these differences, the models generally agree on the
treatment strategies required to achieve EOT.

Moving towards the post-2020 goals, new NTD goals have
been proposed by the WHO for 2030 within the framework of
a consultation process. Table 1 summarizes the current (2020)
and proposed (2030) goals for onchocerciasis, the scenarios
in which both models agree that EOT is technically feasible
with current interventions, the alternative treatment strategies
(ATS*7) required when current ones are not sufficient, the
suitability of available tools for evaluating EOT, the princi-
pal uncertainties driving differences in model outputs, and the
biggest risks associated with the proposed 2030 goals.

Insights gained from quantitative and mathematical
modelling analyses

1) Initial model comparison: Predictions from EPIONCHO and
ONCHOSIM were compared over a range of baseline ende-
micities and treatment scenarios. In particular, comparisons
were made on: 1) microfilarial prevalence and intensity during
25 years of (annual or biannual) MDA with ivermectin;
2) required duration of treatment to bring microfilarial preva-
lence below a provisional operational threshold for treatment
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interruption (pOTTIS) of 1.4%'*; and 3) required dura-
tion to drive the parasite population to local elimination
(defined by stochastic fade-out in ONCHOSIM and passing the
transmission breakpoint in EPIONCHO). In mesoendemic
areas, the models predicted that the provisional opera-
tional prevalence threshold could be reached with annual
MDA. In highly hyperendemic areas, the models indicated
that annual MDA would be insufficient. In lower endemic-
ity settings, ONCHOSIM predicted that the time needed
to reach 1.4% microfilarial prevalence would be longer
than that required to reach local elimination; the oppo-
site. was true for higher endemicity settings. In EPIONCHO,
the pOTTIS was reached consistently sooner than the
breakpoint™.

2) Modelling elimination studies: Based on the initial
model comparison, technical refinements were implemented
(e.g. age-dependent adult worm mortality in EPIONCHO).
EPIONCHO and ONCHOSIM projections were tested
against microfilarial prevalence data from the two foci in
Mali and Senegal where the observed prevalence had been brought
to zero in 2007-2009 after 15-17 years of ivermectin MDA
only'*>. Model projections were trained using longitudinal
(microfilarial prevalence) data from 27 communities in two
transmission foci, incorporating programmatic information
(treatment frequency, duration and coverage), and evaluating
whether the projected outcome was elimination (local parasite
extinction) or resurgence. The epidemiological trends during
MDA were captured by both models but resurgence was
predicted by EPIONCHO in some communities of the River
Gambia focus in Senegal with the highest (inferred) annual
biting rates (no. vector bites/person/year) and associated
pre-intervention endemicities (Figure 1 and Figure 2)*. Resurgence
was never predicted by ONCHOSIM.

Table 1. Summary of modelling insights and challenges for reaching the World Health Organization (WHO) 2030 goals for

onchocerciasis.

Current WHO Goal (2020 Goal)

Proposed New WHO Goal (2030
Goal)
countries, respectively.

Is the new target technically
feasible under the current
intervention strategy?

If not, what is required to achieve
the target? (updated strategy, use
of new tools, etc.)

Are current tools able to reliably
measure the target?

What are the biggest unknowns?

Elimination of transmission (EOT) by 2020 in Latin America, Yemen, selected African countries.

Verified EOT in 10 countries; stopped mass drug administration (MDA) in at least one focus in 34
countries; stopped MDA in > 25%, >50%, >75% and 100% of population in >16, >14, >12, >10

EOT feasible in areas with low or moderate endemicity, where MDA has been ongoing for several
years; uncertain for hyper- and holoendemic areas or where MDA has not yet started (distribution of
pre-intervention prevalence in different countries will determine feasibility of stopping MDA goals).

Hyper- and holoendemic areas: switch to biannual or quarterly MDA, complementary vector control;
areas without loiasis not previously treated: biannual MDA, quarterly MDA, moxidectin. Areas with
loiasis not previously treated: Ta(N)T*, vector control, TaT** with anti-Wolbachia therapies.

Sensitivity and specificity of standardized 1gG4 antibody tests to Ov16 antigen for assessing EOT
are uncertain. Diagnostic tools for detection of reproductively active adult worms are needed.

Whether parasite acquisition becomes more efficient with declining transmission intensity; age- and

sex-dependence and individual heterogeneity in exposure; additional impact of vector control;
dynamics of Ov16 antibody responses; human/vector movement.

What are the biggest risks?

EOT may not be feasible with current tools in hyper- and holoendemic areas; risk of resurgence if

MDA is stopped prematurely; interruption/late commencement of MDA; population movement.

“Ta(N)T: Test-and-not-treat: test for Loa loa microfilaraemia load (e.g. with LoaScope, and if 220,000 microfilariae/ml blood (associated with severe adverse
events following microfilaricidal treatment'’), not treat with ivermectin®. TaT: Test-and-treat: test for O. volvulus (e.g. with skin snips) and if positive treat with

anti-Wolbachia (e.g. doxycycline) therapy (L. loa lacks Wolbachia).
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Figure 1. Modelled relationship between annual biting rate (ABR) and endemic microfilarial prevalence. In EPIONCHO (a), the coupled
ABR-prevalence data are from nine communities in northern Cameroon, with each ABR measured as an average from multiple years and
locations within and around each community, weighted by the proportion of time community residents spent at these locations*’. Each thin
line corresponds to an EPIONCHO parameter set identified by a sampling importance resampling procedure to account for parametric
uncertainty. These are colored sequentially from yellow (hypoendemic) to red (hyperendemic). The thick black line corresponds to the
parameter set that achieved the highest likelihood. In ONCHOSIM (b), the thin lines correspond to stochastic realizations using the default
parameter set?!, colored sequentially according to endemicity category; the thick black line is the median of 500 simulations. The coupled
ABR-prevalence data are not shown in (b) because ONCHOSIM has not been re-fitted to these data. ABR = No. blackfly bites/person/year.
This figure has been reproduced from 29 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0) license.
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Figure 2. Observed and modelled microfilarial prevalence dynamics in 14 communities from the River Gambia focus, Senegal. Left (a)
and right (b) panels show, respectively, EPIONCHO and ONCHOSIM projections. The thin lines correspond to community-specific simulations
using maximum likelihood estimates of the community-specific ABRs and either the maximum a posteriori (MAP) parameter set (EPIONCHO)
or the default parameter set (ONCHOSIM). The estimated ABRs and MAP parameter sets were derived using the complete longitudinal
sequence of microfilarial prevalence for each community. For ONCHOSIM there are many stochastic projections for each community; for
EPIONCHO there is a single deterministic projection for each community, corresponding to the MAP parameter set. The thick solid lines show
the median dynamics by endemicity category (yellow: hypoendemic; orange: mesoendemic; red: hyperendemic). In the River Bakoye focus
of Mali, no resurgence was predicted by either model using the entire longitudinal microfilarial prevalence set. Panel insets show the period
between 2000 and 2020 using a transformed y-axis for a better visual appraisal of the model projections compared to the data close to zero.
This figure has been reproduced from 29 under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0) license.

3) Alternative treatment strategies: ONCHOSIM and the refined
version of EPIONCHO” were used to simulate trends in micro-
filarial prevalence for 80 different settings. These settings were
defined by their baseline endemicity and past programmatic
scenario (frequency and coverage of MDA) and future treat-
ment scenarios defined by the frequency (annual, biannual,

or quarterly), with or without vector control. Each strategy
was assessed whether it eventually led to elimination®.
Both models predicted that in areas with 40%-50% pre-
control microfilarial prevalence and 210 years of annual MDA,
elimination may be achieved within a further 7 years with-

out changing strategy. For areas with 70%-80% pre-control

Page 5 of 16



microfilarial prevalence, both annual and biannual MDA were
predicted by ONCHOSIM (but not by EPIONCHO) to be
sufficient strategies to reach elimination by 2025. The likeli-
hood that elimination will be reached thus depends on pre-
control endemicity (i.e. transmission intensity), duration and
frequency of past MDA, and the strategy implemented from
now until 2025. Biannual or quarterly MDA will acceler-
ate progress toward elimination but it cannot be guaranteed
by 2025 in high-endemicity areas. In such areas, MDA plus
concomitant vector control would be useful®.

4) Resilience to interventions: Both models incorporate micro-
filarial density-dependent establishment of O. volvulus L1
larvae within savannah species of S. damnosum sensu lato

Gates Open Research 2019, 3:1545 Last updated: 31 OCT 2019

EPIONCHO assumes transmission intensity-dependent para-
site establishment within humans®-*’>. An individual-based,
stochastic version of EPIONCHO (EPIONCHO-IBM) was
developed to explore the interaction between individual hetero-
geneity in exposure to infection (via vector bites) and parasite
establishment within humans (greater at lower transmission
intensities and vice versa). Transmission intensity is meas-
ured by the annual rate of human exposure to infective (L3)
larvae (no. L3 larvae/person/year). EPIONCHO-IBM was fit-
ted (using Latin hypercube sampling) to matched (savannah)
pre-intervention microfilarial prevalence, load and annual bit-
ing rate (ABR) data (extending Figure la range). Density
dependence in parasite establishment within humans was esti-
mated for different levels of (fixed) exposure heterogeneity

(i.e. S. damnosum sensu stricto / S. sirbanum)®. However, only ~ (Figure 3)"’. The interaction between overdispersion in
o
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Figure 3. Observed and predicted pre-intervention microfilarial prevalence and intensity vs. annual biting rates (ABRs). EPIONCHO-
IBM-predicted (solid lines) (a) microfilarial prevalence (percent) and (b) intensity (mean no. of microfilariae, mf, per mg of skin) for ABRs
in the epidemiological dataset (solid color circles), using the estimated parameters. The overdispersion exposure parameter (of a gamma
distribution) k. was varied between 0.2 (stronger aggregation of blackfly bites among humans) and 0.4 (lesser aggregation). A value of k. =
0.3 provided the best overall fit. Error bars are 95% confidence intervals (bootstrapped for intensity when raw data were available). Fitting data
are from Cameroon [1]%°, [2]*!, Burkina Faso/Coéte d’lvoire*; validation data are from the Onchocerciasis Control Programme in West Africa
(OCP)*, Venezuela® and Ecuador® (the latter two for vectors with similar vector competence to S. damnosum sensu stricto). This figure has
been reproduced from 31 under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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exposure to Dblackfly bites (parameter k) and density-
dependent parasite establishment stabilizes low (hypoendemic)
prevalence, but accentuates resilience to MDA, explaining the
lower EOT probabilities predicted by EPIONCHO.

In view of (1)—(4) above, Box 1 summarizes the insights gained
thus far and their implications for post-2020 goals.

Box 1. Lessons learned from onchocerciasis modelling and
implications for the post-2020 goals.

* Elimination of transmission (EOT) prospects depend
strongly on local transmission conditions. The required
duration of interventions increases and the probability of
reaching EOT decreases with higher baseline endemicity,
higher vector biting rates, and stronger aggregation of
infection in the human host population (due to exposure
heterogeneity)?-#9°'.

* Programme effectiveness is important. Program duration
increases, and probability of EOT decreases, with lower
coverage and higher systematic non-adherence*#’.

* Current strategies may not be sufficient. Implementation of
current strategies (annual mass drug administration [MDA],
with at least 65% coverage) would lead to long timelines to
EOT in some countries. Even with the more optimistic model
(ONCHOSIM), some countries would need to continue their
programs until 2045,

* Alternative treatment strategies (ATS) to accelerate
EOT. a) Improve MDA coverage (to 80%); b) minimize
systematic non-adherence; c) increase MDA frequency (to
biannual or quarterly)*°“¢; d) use more efficacious treatment
regimens (moxidectin*’, anti-Wolbachia drugs®™; e) where
feasible, implement additional vector control (e.g. ground-
based larviciding of vector breeding sites; slash-and-clear
of vegetation substrates of vector immature stages; adult
blackfly traps)**°"°2.

¢ Key uncertainties. EPIONCHO and ONCHOSIM model
outputs diverge concerning the feasibility of EOT in
hyperendemic areas (60-80% microfilarial prevalence) with
current or thus far modelled ATS strategies®, reflecting
uncertainty about key biological processes (e.g. those
regulating parasite establishment within humans and
exposure heterogeneity)®'. For holoendemic areas (80%
prevalence and above), both models agree that current
strategies will be insufficient.

* Expansion of interventions into (currently untreated)
hypoendemic areas. \Work is ongoing to define efficient
sampling strategies for delineation of new (hypoendemic)
treatment areas, based on serology-based start-MDA
thresholds. This is problematic in areas where loiasis is co-
endemic, as ivermectin treatment can be fatal in individuals
with high Loa loa microfilaraemia'’. A test-(for loiasis)-and-
not-treat (if microfilaraemia is above dangerous thresholds)
strategy can be used®. Because the proportion of people with
heavy L. loa microfilaraemia is often small (~2-4%), models
predict that this strategy could lead to EOT if screening and
treatment coverage/adherence are high.

Gates Open Research 2019, 3:1545 Last updated: 31 OCT 2019

Practical implications of the currently proposed EOT
goals

Measuring the target

1) Definition of EOT according to the models.

EOT is modelled as absence of parasites in humans and
flies 50 years after treatment cessation’’. The probability
of EOT is the proportion of runs out of the total number of
simulations in which EOT is achieved. In practice, evaluating
whether foci are in track to achieve EOT depends on the abil-
ity of current (and novel) diagnostics to measure accurately
interruption of transmission. Indicators of exposure in children
and fly samples have been suggested for such evaluation.

2) Diagnostics.
The WHO guidelines for verification of EOT require <0.1%

IgG4 antibody seropositivity to the Ov-16 O. volvulus anti-
gen in children younger than 10 years, and <0.05% positivity
by pool screen PCR in at least 6,000 wild-caught flies (heads
only)”. Models suggest that the magnitude of the serologi-
cal thresholds will depend on: i) local transmission conditions
(e.g., the higher the ABR, the lower the thresholds will need
to be and vice versa; this also applies to entomological indica-
tors); ii) age-dependent exposure patterns (e.g. the younger the
age at which exposure to transmission starts, and the greater
the rate of increase with age, the younger the age group for
which serological monitoring will be informative and vice
versa; see below for sampling implications); iii) history of pre-
vious control interventions; iv) heterogeneity concerning the
above within evaluation areas; v) spatial scale at which EOT
is assessed; vi) desired positive predictive value (PPV, the
probability of elimination below the said threshold) of EOT;
vii) assumptions on parasite population regulation; and
viii) diagnostic performance of the tests™.

3) Sources of uncertainty in current threshold estimates.

A key uncertainty is the operation of regulatory processes upon
within-human parasite establishment (e.g. due to acquisition
of anti-L3 immunity in areas of intense transmission). Omit-
ting such processes (ONCHOSIM) leads to higher (more leni-
ent) thresholds; including them (EPIONCHO) results in lower
(more stringent) thresholds. Adjusting modelling results by
the diagnostic performance of the tests changes the apparent
magnitude of the thresholds. Diagnostic performance
(e.g. sensitivity/specificity) of current tests is another key
uncertainty*.

4) Sampling implications.

Modelling indicates that the childhood age group most informa-
tive for Ov-16 serology will depend on the age-specific pat-
terns of exposure that prevail in the various foci. In areas
where exposure increases quickly from birth, the 0-9yr age
group may be suitable. In areas where exposure increases
more slowly, the 5-14yr age group will be more informative.
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Deciding which age group to choose can be aided by inspecting
baseline infection age profiles™.

Timeline to achieve the target
1) Technical feasibility

¢ General considerations. Elimination prospects
depend strongly on local transmission conditions
(Box 1). The required strategy intensifies (e.g. the

duration and/or frequency of interventions increases,
and the need for complementary/ATS increases) with higher
baseline endemicity, higher ABRs, and stronger aggregation
of infection in the human population (acting as a core group
maintaining transmission)' "',

¢ Moderate transmission settings. EOT can be achieved
with annual or biannual MDA if coverage and adher-
ence are high (in the models, ‘enhanced’ coverage is
defined as 80% therapeutic coverage and 1% systematic
non-adherence).

¢ Hyper- and holoendemic settings. The model-predicted
feasibility of EOT is more uncertain, even when model-
ling the ATS considered thus far (increased coverage and
frequency, vector control’’). The epidemiological impact
of other ATS (e.g. moxidectin®, macrofilaricides’*)

needs to be evaluated.

2) Operational feasibility
* General considerations. Multiple intervention strat-
egies will need to be combined in an optimal way to
achieve continent-wide EOT. Further research is needed
to identify such strategies according to epidemiological
features™.

* Role of epidemiology/transmission ecology. The choice
of intervention strategies will depend on epidemiological
and ecological features. Hyperendemic areas would ben-
efit from biannual/quarterly MDA if feasible to implement
(non-loiasis co-endemic’”*; no sub-optimal responses to
ivermectin®); highly hyperendemic/holoendemic areas
will likely need optimized ATS, including macrofilaricidal
interventions®*’. The optimal ATS suite (vector control,
moxidectin, anti-Wolbachia therapies, macrofilaricides)
needs to be determined according to setting. Programs
need to expand into currently untreated hypoendemic
areas, including untreated loiasis co-endemic areas™
(see above for test-and(not)treat strategies™).

¢ Programmatic features. Achieving and maintaining high
coverage and adherence over each MDA round is para-
mount, especially in highly endemic settings. Long-term
treatment can suffer from programme, communities and
donor fatigue. Weak EOT programs need strengthening®.

3) Ability to sustain achievement of the goal
e Dynamics of resurgence. The dynamics of resur-
gence according to setting need further investiga-
tion”, as well as the factors leading to resurgence, e.g.
residual (endogenous) infections or re-introduction of

Gates Open Research 2019, 3:1545 Last updated: 31 OCT 2019

(allogenous) infections from surrounding areas through
migration of humans and/or flies. Investigation of these
dynamics will inform post-treatment and post-elimination
surveillance protocols™.

4) Considerations of cost
* Health and economic benefits. Achieving EOT in
Africa would lead to substantial health and economic
benefits, reducing the needs for health workforce and
outpatient services’’. ATS needs and cost-effectiveness
remain to be captured?’’#6>3,

e Logistic and cost implications. Striving for Pan-African
EOT has considerable logistic and cost implications,
due to required programme expansion into currently
untreated areas, prospects of enhanced or more fre-
quent MDA or ATS, and improved (post-treatment and
post-EOT) surveillance. The increased costs should be
weighed against shorter programme duration and higher
probability of success. Costs per year are higher for
biannual than for annual MDA, but costs do not sim-
ply double®®. Annual moxidectin may be more cost-
effective than biannual ivermectin, should this drug
be donated”. Economic analyses of moxidectin,
anti-Wolbachia therapies, macrofilaricides, and vec-
tor control (ground larviciding, slash-and-clear, adult
fly traps) need to be conducted. The costs of test-
and-not-treat for loiasis co-endemic areas were recently
assessed in Cameroon®.

Risks faced by treatment programs that need to be
mitigated to achieve EOT

Some programs, particularly those in areas affected by con-
flict are more likely to under-perform, suffer from interrupted
MDA schedules, or be delayed in starting and up-scaling imple-
mentation. Internal population displacement as well as mass
migration to other countries could jeopardize progress towards
EOT. Weak programs/health systems need to be identified, sup-
ported and strengthened®. Movement of infected individuals
(between endemic communities within countries, and between-
countries) due to traditional cultural and trade patterns may
lead to re-introduction of infection in areas achieving EOT.
Risk of declining drug efficacy following multiple rounds
of MDA/existence of sub-optimal responses to treatment
should be monitored™®. Low coverage and systematic non-
adherence may lead to persistent transmission, particularly (but
not exclusively) in loiasis co-endemic areas”. Factors associ-
ated with non-compliance need further investigation. Reported
coverage levels are generally higher than true coverage, possibly
because coverage has been a primary indicator of program
effectiveness. Population denominators may not be cor-
rect due to lack of updated censuses. Reported coverages are
aggregated by district, but disaggregate data are needed to
evaluate and correct coverage heterogeneity.

Modelling priorities to support goals in the 2030
horizon and beyond

Table 2 outlines the priority modelling questions for further
research that were elaborated in discussion with the WHO.
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Table 2. Modelling priorities for further work discussed with the World Health Organization (WHO).

Priority issue / question identified in
discussion with WHO

1. Assess time to elimination of
transmission (EOT) based on ivermectin

How can quantitative and mathematical modelling address this?

1.1 Generate projections, by implementation unit (IU), of trends in infection since the
start of MDA, using both models. Identify countries that are likely to achieve country-

mass drug administration (MDA)

wide EOT by 2030 or beyond.

1.2 Identify |Us that are expected to be able to stop MDA by 2023, 2025, 2030.
Estimate the endemic population size by IU and estimate the % of the endemic
population no longer requiring MDA by 2023, 2025, 2030 for each country.

2. Estimate elimination thresholds with
uncertainty boundaries for different
infection indicators at community level

2.1 Simulate serological (and potentially entomological) thresholds for elimination.
First estimates have already been published for ONCHOSIM®>*¢. Compare these
to estimates for EPIONCHO-IBM to understand their dependency on structural

uncertainties and assumptions about local transmission conditions.
2.2. |dentify optimal demographic groups for serological monitoring.

3. Assess potential for resurgence when
MDA is stopped based on current/revised
decision algorithms and stopping criteria

above.

models.

3.1 Revise current (serological and entomological) stopping criteria based on (2)

3.2 Investigate dynamics of recrudescence following cessation of MDA with both

4. Evaluate the potential of macrofilaricides 4.1 Generate projections of the epidemiological impact of macrofilaricides.

as alternative treatment strategies to
accelerate EOT
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Kenneth Pfarr
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Germany

The authors have submitted an open letter summarizing modelling with EPIONCHO and ONCHOSIM to
determine if and under what conditions elimination of transmission of onchocerciasis, as proposed by the
WHO by 2030, can be achieved. The discussion of the previously published results focused on four
aspects of quantitative and mathematical modelling analyses: initial model comparison, modelling
elimination studies, alternative treatment strategies, and resilience to interventions to define lessons
learned and implications for the goals.

Both models predict that elimination of transmission is possible by the WHO proposed dates in areas that
have already started MDA and where coverage is at least 75%, which is higher than the currently
accepted 65% coverage. Hyperendemic regions and those regions that have only just recently started or
have not started will require biannual to quarterly MDA to keep to this schedule. Areas coendemic with
loiasis could also achieve elimination using test-and-not-treat and alternative strategies, e.g. anti-
Wolbachia treatments. However, the latter will need newer analysis once results from treatment in such
areas become available.

The analysis of the results from both models highlighted the need for greater research into diagnostics of
onchocerciasis infections and the biology of infection, especially in how it relates to microfilariae
prevalence and transmission rates. Both areas are sources of uncertainty in the modelling. Nevertheless,
the authors provided straight forward conclusions as to the practical implications of the current elimination
goals and timeline to achieving them, and provide a list of priorities discussed with the WHO for
prioritizing modelling in support of the goals by 2030 and beyond.

To improve the manuscript, | have the following suggestions for changes:
1. Figures 1 and 2, define “(in 5+)” in the y-axes for those without access to the original publication.

2. Figure 1 legend, define panel insets as was done in Figure 2.
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3. To help set the magnitude, it would be helpful to know the number of countries/foci that are in the
different endemic categories: hypo-, meso-, hyper- and holoendemic. | believe this will be useful in
highlighting where elimination can be achieved using current MDA strategies and define how large
the problem is in regards to hypoendemic areas. It will also help demonstrate that hyper- and
holoendemic areas could also achieve elimination with the proper individualized treatment
strategies.

4. In Box 1, the last sentence, please define the percentage of treatment coverage meant by “high”. In
the letter 65%, 75% and 80% have been discussed. In Box 1 a definite percentage needs to be
stated.

5. In the Timeline to achieve target point 3), in addition to resurgence and re-introduction of infection,
that spread of infection to previously nonendemic areas should be considered, e.g. as seen for
Wuchereria bancrofti infection in India (Chand et al., 2013").
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Johnny Viaminck
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| greatly enjoyed reviewing the current letter on the WHO 2030 goals for onchocerciasis as seen from a
mathematical modelling perspective. The article read really fluently due to the good language and
grammar.

| found that the letter started by providing a nice overview of the background of onchocerciasis control, the
evolution of how modelling assisted in the evaluation of program progress and moving towards an
overview of how the 2030 goals differ from the current ones.

Next, modelling analysis using the Onchosim and Epioncho models illustrate important insights which are
summarized in Box 1.

The final part of the paper focuses on discussing the practical implications of the current goals and with it,
highlights some important research gaps (Table 2).

| particularly like that it questions the current set stop criteria (Table 2, item 3). | think this is something that
is relevant for more than just onchocerciasis. Both diagnostic thresholds and stopping criteria are not set
in stone and should be continuously challenged and evaluated using empirical data from field studies
supported by models such as Onchosim and Epioncho.
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James A. Whitworth
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This Open Letter is a valuable addition to the scientific literature about onchocerciasis elimination. The
authors clearly explain how their modelling work helps to assess the likely progress that can be made
using existing approaches to onchocerciasis control, and highlight the scenarios in which these
approaches will not achieve the desired goals.

In some cases the two statistical models used differ in their conclusions, but the authors explain why this
is in terms of the underlying assumptions and boundaries of our current knowledge, and thereby outline
the limitations of current models. It is encouraging that in most scenarios the models do agree in their
conclusions.

Two aspects were not entirely clear and could be clarified. Firstly, it is not clear to what extent Alternative
Treatment Strategies have been modelled, or indeed could be. These are recommended, but while some
of these are achievable - increasing coverage and treatment frequency, others, such as adding vector
control strategies, moxidectin and yet to be developed macrofilaricide drugs are not so easily
implemented. This section of the paper seems rather speculative as currently written.

It is also not clear whether the comments about Ov16 serology arise from the conclusions of the modelling
work; | suspect not. | suppose that the authors are pointing out that uncertainties about the performance of
the diagnostic test limits confidence in surveillance and evaluation components of control programmes.
But this could be clarified.
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