Table 7.
Parameter | M | SD | 2.5% percentile | 97.5% percentile |
---|---|---|---|---|
0.07 | 0.02 | 0.03 | 0.12 | |
0.75 | 0.15 | 0.50 | 1.09 | |
0.08 | 0.02 | 0.05 | 0.14 | |
0.58 | 0.13 | 0.37 | 0.87 | |
0.48 | 0.10 | 0.32 | 0.70 | |
0.85 | 0.14 | 0.59 | 1.14 | |
3.47 | 0.25 | 2.98 | 3.98 | |
0.31 | 0.07 | 0.20 | 0.47 | |
1.00 | 0.20 | 0.62 | 1.39 | |
0.97 | 0.14 | 0.73 | 1.26 | |
−0.010 | 0.006 | −0.021 | 0.001 | |
0.027 | 0.004 | 0.020 | 0.037 | |
0.76 | 0.03 | 0.71 | 0.81 | |
0.13 | 0.02 | 0.10 | 0.17 |
Note. The full reinforcement model had separate learning rates η+ and η− for positive and negative prediction errors, two parameters to describe the non-linear mapping between the difference in values and the drift rate, a scaling parameter vmod, and an asymptote , one fixed threshold parameter afixed, one value-modulation parameter amod, and finally one non-decision time Ter. Note that , , , and were transformed for interpretability