Skip to main content
. 2019 Mar 28;26(4):1099–1121. doi: 10.3758/s13423-018-1554-2

Table 7.

Group parameter estimates of the full reinforcement learning diffusion decision model

Parameter M SD 2.5% percentile 97.5% percentile
ϕ(μη+) 0.07 0.02 0.03 0.12
ση+ 0.75 0.15 0.50 1.09
ϕ(μη) 0.08 0.02 0.05 0.14
ση 0.58 0.13 0.37 0.87
exp(μvmod) 0.48 0.10 0.32 0.70
σvmod 0.85 0.14 0.59 1.14
exp(μvmax) 3.47 0.25 2.98 3.98
σvmax 0.31 0.07 0.20 0.47
μafixed 1.00 0.20 0.62 1.39
σafixed 0.97 0.14 0.73 1.26
μamod −0.010 0.006 −0.021 0.001
σamod 0.027 0.004 0.020 0.037
μTer 0.76 0.03 0.71 0.81
σTer 0.13 0.02 0.10 0.17

Note. The full reinforcement model had separate learning rates η+ and η for positive and negative prediction errors, two parameters to describe the non-linear mapping between the difference in values and the drift rate, a scaling parameter vmod, and an asymptote vmax, one fixed threshold parameter afixed, one value-modulation parameter amod, and finally one non-decision time Ter. Note that μη+, μη, μvmod, and μvmax were transformed for interpretability